Skip to main content

Electrochemical Polymerization

  • Reference work entry
  • First Online:
Functional Polymers

Abstract

Advances in molecular electronic devices such as sensors, organic solar cells, and organic light emitting diodes have increased the interest and research on electrosynthetic conducting polymers. This chapter focuses on electrochemical polymerization (or electropolymerization) as a cost-effective and easy-to-use method for the preparation of electrosynthetic conducting polymer films. Electropolymerized materials, characteristically, possess unique morphological, physical, electronic, and electrochemical proprieties which make them amenable to various applications. Electropolymerization is initiated by the oxidation of a monomer in an electrochemical cell, followed by the growth of the polymer film on the surface of the working electrode, which may be a carbonaceous, a metallic, or a conducting glass material. As the oxidation of the monomer is voltage- or current-induced, electrochemical polymerization is, therefore, a green chemistry methodology. Being devoid of the use of toxic oxidants, the technique ensures real-time controlled production of very high purity conducting polymer films. The films exhibit excellent electrical, electronic, magnetic, optical, and rheological properties. Polyaniline films in their pristine and doped forms and the films of other conducting polymers are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.A. De Paoli, W.A. Gazotti, Electrochemistry, polymers and opto-electronic devices: A combination with a future. J. Braz. Chem. Soc. 13, 410–424 (2002)

    Article  Google Scholar 

  2. A.A. Syed, M.K. Dinesan, Review: Polyaniline-A novel polymeric material. Talanta 38, 815–837 (1991)

    Article  CAS  PubMed  Google Scholar 

  3. P. Monk, R. Mortimer, D. Rosseinsky, Conjugated conducting polymers, in Electrochromism and Electrochromic Devices (Cambridge University Press, New York, 2007), p. 312

    Google Scholar 

  4. R. de Surville, M. Jozefowicz, L.T. Yu, J. Perichon, R. Buvet, Electrochemical chains using protolytic organic semiconductors. Electrochim. Acta 13, 1451–1458 (1968)

    Article  Google Scholar 

  5. A.A. Syed, M.K. Dinesan, E.M. Genies, Basic behavior of chemically synthesized polyanilines. Bull. Electrochem. 4, 737–742 (1988)

    CAS  Google Scholar 

  6. A.F. Diaz, J.A. Logan, Electroactive polyaniline films. J. Electroanal. Chem. 111, 111–114 (1980)

    Article  CAS  Google Scholar 

  7. N. Mermilliod, J. Tanguy, M. Hoclet, A.A. Syed, Electrochemical characterization of chemically synthesized polyanilines. Synth. Met. 18, 359–364 (1987)

    Article  CAS  Google Scholar 

  8. A.G. MacDiarmid, J.C. Chiang, M. Halpern, W.S. Huang, S.L. Mu, N.L.D. Somasiri, W. Wu, S.I. Yaniger, Polyaniline: Interconversion of metallic and insulating forms. Mol. Cryst. Liq. Cryst. 121, 173–180 (1985)

    Article  CAS  Google Scholar 

  9. G. Mengoli, M.T. Munari, C. Folonari, Anodic formation of polynitroanilide films onto copper. J. Electroanal. Chem. 124, 237–246 (1981)

    Article  CAS  Google Scholar 

  10. S. Cosnier, Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosens. Bioelectron. 14, 443–456 (1999)

    Article  CAS  PubMed  Google Scholar 

  11. H.T. Santoso, Electrochemical processing of polythiophene films with enhanced structural order, Thesis, Georgia Institute of Technology, Atlanta, 2011, p. 117

    Google Scholar 

  12. S. Yong, W. Kazuya, H. Kazuhito, Hydroxylated and aminated polyaniline nanowire networks for improving anode performance in microbial fuel cells. J. Biosci. Bioeng. 112, 63–66 (2011)

    Article  CAS  Google Scholar 

  13. R. Gupta, M. Singhal, S.K. Nataraj, D.N. Srivastava, A potentiostatic approach of growing polyaniline nanofibers in fractal morphology by interfacial electropolymerization. RSC Adv. 6, 110416–110421 (2016)

    Article  CAS  Google Scholar 

  14. M.J. Bleda-Martínez, C. Peng, S. Zhang, G.Z. Chen, E. Morallón, D. Cazorla-Amorós, Electrochemical methods to enhance the capacitance in activated carbon/polyaniline composites. J. Electrochem. Soc. 155, A672–A678 (2008)

    Article  CAS  Google Scholar 

  15. J. Heinze, B.A. Frontana-Uribe, S. Ludwigs, Electrochemistry of conducting polymers persistent models and new concepts. Chem. Rev. 110, 4724–4771 (2010)

    Article  CAS  PubMed  Google Scholar 

  16. W. Schuhmann, C. Kranz, H. Wohlschliiger, J. Strohmeier, Pulse technique for the electrochemical deposition of polymer films on electrode surfaces. Biosens. Bioelectron. 12, 1157–1167 (1997)

    Article  CAS  PubMed  Google Scholar 

  17. H. Okamoto, T. Kotaka, Structure and properties of polyaniline films prepared via electrochemical polymerization. I: Effect of pH in electrochemical polymerization media on the primary structure and acid dissociation constant of product polyaniline films. Polymer 39, 4349–4358 (1998)

    Article  CAS  Google Scholar 

  18. K. Imanishi, M. Satoh, Y. Yasuda, R. Tsushima, S. Aoki, Solvent effect on electrochemical polymerization of aromatic compounds. J. Electroanal. Chem. 242, 203–208 (1988)

    Article  CAS  Google Scholar 

  19. L.J. Duic, Z. Mandic, F. Kovacicek, The effect of supporting electrolyte on the electrochemical synthesis, morphology, and conductivity of polyaniline. J. Polym. Sci. Part A 32, 105–111 (1994)

    Article  CAS  Google Scholar 

  20. G. Inzelt, Conducting Polymers-A New Area in Electrochemistry (Springer, Berlin, 2008), pp. 123–135

    Google Scholar 

  21. G.G. Wallace, P.R. Teasdale, G.M. Spinks, L.A.P. Kane-Maguire, Conductive Electroactive Polymers, 3rd edn. (Taylor & Francis Group, Boca Raton, 2009)

    Google Scholar 

  22. A.M. Kumar, Z.M. Gasem, In situ electrochemical synthesis of polyaniline/f-MWCNT nanocomposite coatings on mild steel for corrosion protection in 3.5% NaCl solution. Prog. Org. Coat. 78, 387–394 (2015)

    Article  CAS  Google Scholar 

  23. G. Fomo, T.T. Waryo, P.G. Baker, E.I. Iwuoha, Electrochemical deposition and properties of polyaniline films on carbon and precious metal surfaces in perchloric acid/acetonitrile. Int. J. Electrochem. Sci. 11, 10347–10361 (2016)

    Article  CAS  Google Scholar 

  24. A.M.P. Hussain, A. Kumar, Electrocemical synthesis and characterization of chloride deped polyaniline. Bull. Mater. Sci. 26, 329–334 (2003)

    Article  CAS  Google Scholar 

  25. A. Kraft, A.C. Grimsdale, A.B.. Holmes, Electroluminescent conjugated polymersðseeing polymers in a new light. Angew. Chem. Int. Ed. 37, 402–428 (1998)

    Article  PubMed  Google Scholar 

  26. G. Fomo, T.T. Waryo, C.E. Sunday, A.A. Baleg, P.G. Baker, E.I. Iwuoha, Aptameric recognition-modulated electroactivity of poly(4-styrenesolfonic acid)-doped polyaniline films for single-shot detection of tetrodotoxin. Sensors 15, 22547–22560 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. J.H.P. Utley, J. Gruber, Electrochemical synthesis of poly(p-xylylenes) (PPXs) and poly(p-phenylenevinylenes) (PPVs) and the study of xylylene (quinodimethane) intermediates; an underrated approach. J. Mater. Chem. 12, 1613–1624 (2002)

    Article  CAS  Google Scholar 

  28. B. Sari, M. Talu, F. Yildirim, Electrochemical polymerization of aniline at low supporting-electrolyte concentrations and characterization of obtained films. Russ. J. Electrochem. 38, 707–713 (2002)

    Article  CAS  Google Scholar 

  29. W.S. Huang, B.D. Humphrey, A.G. MacDiarmid, Polyaniline, a novel conducting polymer morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J. Chem. Soc. Faraday Trans. 182, 2385–2400 (1986)

    Article  Google Scholar 

  30. Y. Diamant, E. Furmanovich, A. Landau, J.P. Lellouche, A. Zaban, Electrochemical polymerization and characterization of a functional dicarbazole conducting polymer. Electrochim. Acta 48, 507–512 (2003)

    Article  CAS  Google Scholar 

  31. https://www.ch.cam.ac.uk/group/melville/cyclic-voltammetry

  32. B.B. Berkes, G. Inzelt, E. Vass, Electrochemical nanogravimetric study of the adsorption of 4-aminoindole and the surface layer formed by electrooxidation in aqueous acid media. Electrochim. Acta 96, 51–60 (2013)

    Article  CAS  Google Scholar 

  33. M. Hosseini, M.M. Momeni, M. Faraji, Electrochemical fabrication of polyaniline films containing gold nanoparticles deposited on titanium electrode for electro-oxidation of ascorbic acid. J. Mater. Sci. 45, 2365–2371 (2010)

    Article  CAS  Google Scholar 

  34. Y. Li, M. Liu, C. Xiang, Q. Xie, S. Yao, Electrochemical quartz crystal microbalance study on growth and property of the polymer deposit at gold electrodes during oxidation of dopamine in aqueous solutions. Thin Solid Films 497, 270–278 (2006)

    Article  CAS  Google Scholar 

  35. G. Fomo, Ionophoric and aptameric recognition-modulated electroactive polyaniline films for the determination of tetrodotoxin, Thesis, University of the Western Cape, 2015, p. 344

    Google Scholar 

  36. B.N. Grgur, A. Žeradjanin, M.M. Gvozdenović, M.D. Maksimović, T.L. Trišović, B.Z. Jugović, Electrochemical characteristics of rechargeable polyaniline/lead dioxide cell. J. Power Sources 217, 193–198 (2012)

    Article  CAS  Google Scholar 

  37. D. Bhattacharjya, I. Mukhopadhyay, Controlled growth of polyaniline fractals on HOPG through potentiodynamic electropolymerization. Langmuir 28, 5893–5899 (2012)

    Article  CAS  PubMed  Google Scholar 

  38. M.M. Gvozdenović, B.Z. Jugović, J.S. Stevanović, T.L.J. Trišović, B.N. Grgur, Electrochemical Polymerization of Aniline, Electropolzmeriyation, ed. by E. Schab-Balcerzak (InTech, Rijeka, 2011)

    Google Scholar 

  39. M.M. Gvozdenović, B.Z. Jugović, J.S. Stevanović, B.N. Grgur, B.N. Hemijis, Electrochemical synthesis of electroconducting polymers. Hem. Ind. 68, 673–684 (2014)

    Article  Google Scholar 

  40. A. Adenier, M.M. Chehimi, I. Gallardo, J. Pinson, N. Vila, Electrochemical oxidation of aliphatic amines and their attachment to carbon and metal surfaces. Langmuir 20, 8243–8253 (2004)

    Article  CAS  PubMed  Google Scholar 

  41. R. Zhang, G.D. Jin, D. Chen, X.Y. Hu, Simultaneous electrochemical determination of dopamine, ascorbic acid and uric acid using poly(acid chrome blue K) modified glassy carbon electrode. Sensors Actuators B Chem. 138, 174–181 (2009)

    Article  CAS  Google Scholar 

  42. X. Huang, Y. Li, Y. Chen, L. Wang, Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly(3-methylthiophene) composites coated glassy carbon electrode. Sensors Actuators B Chem. 234, 780–786 (2008)

    Article  CAS  Google Scholar 

  43. J.H. Park, J.M. Ko, O.O. Park, D.W. Kim, Capacitance properties of graphite/polypyrrole composite electrode prepared by chemical polymerization of pyrrole on graphite fiber. J. Power Sources 105, 20–25 (2002)

    Article  CAS  Google Scholar 

  44. C.C. Hu, C.H. Chu, Electrochemical impedance characterization of polyaniline-coated graphite electrodes for electrochemical capacitors ­effects of film coverage/thickness and anions. J. Electroanal. Chem. 503, 105–116 (2001)

    Article  CAS  Google Scholar 

  45. B. Jugović, M. Gvozdenović, J. Stevanović, T. Trišović, B. Grgur, Characterization of electrochemically synthesized PANI on graphite electrode for potential use in electrochemical power sources. Mater. Chem. Phys. 114, 939–942 (2009)

    Article  CAS  Google Scholar 

  46. T. Hatano, A.H. Bae, M. Takeuchi, N. Fujita, K. Kaneko, H. Ihara, M. Takafuji, S. Shinkai, Helical superstructure of conductive polymers as created by electrochemical polymerization by using synthetic lipid assemblies as a template. Angew. Chem. 116, 471–475 (2004)

    Article  Google Scholar 

  47. L.H. Mascaro, A.N. Berton, L. Micaroni, Electrochemical synthesis of polyaniline/poly-o-aminophenol copolymers in chloride medium. Int. J. Electrochem. 2011, 1–8 (2011)

    Article  CAS  Google Scholar 

  48. M. Magnuson, J.H. Guo, S.M. Butorin, A. Agui, C. Såthe, J. Nordgren, A.P. Monkman, The electronic structure of polyaniline and doped phases studied by soft X-ray absorption and emission spectroscopies. J. Chem. Phys. 111, 4756–4761 (1999)

    Article  CAS  Google Scholar 

  49. http://www.ecochemie.nl/Products/Echem/Accessories/Metal_WE.html

  50. http://www.horiba.com/es/application/material-property-characterization/water-analysis/water-quality-electrochemistry-instrumentation/ph-knowhow/the-basis-of-ph/measuring-ph-using-a-glass-electrode/detector-reference-electrode-temperature-compensation-electrode-combination-ele

  51. https://orders.gamry.com/platinum-wire-counter-electrode-15-cm.html

  52. A. Eftekhari, Y. Bahareh, Morphological effects of Ni nanostructures on electropolymerization of aniline. J. Appl. Polym. Sci. 122, 1579–1586 (2011)

    Article  CAS  Google Scholar 

  53. G.L. Zhang, J.H. Xinxi, X. Pang, H. Yang, Y. Wang, K. Ding, Preparation and characterization of polyaniline (PANI) doped-Li3V2 (PO4)3. Int. J. Electrochem. Sci. 7, 830–843 (2012)

    CAS  Google Scholar 

  54. T.H. Le, T. Ngoc, L.H. Nguyen, H.B. Nguyen, V.A. Nguyen, T.D. Nguyen, Electrosynthesis of polyaniline–multiwalled carbon nanotube nanocomposite films in the presence of sodium dodecyl sulfate for glucose biosensing. Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 025–014 (2013)

    Google Scholar 

  55. R. Yue, F. Jiang, Y. Du, J. Xu, P. Yang, Electrosynthesis of a novel polyindole derivative from 5-aminoindole and its use as catalyst support for formic acid electrooxidation. Electrochim. Acta 77, 29–38 (2012)

    Article  CAS  Google Scholar 

  56. G. Nie, T. Cai, S. Zhang, Q. Bao, J. Xu, Electrodeposition of poly(indole-5-carboxylic acid) in boron trifluoride diethyl etherate containing additional diethyl ether. Electrochim. Acta 52, 7097–7106 (2007)

    Article  CAS  Google Scholar 

  57. N. Bicak, B. Karagoz, Polymerization of aniline by copper-catalyzed air oxidation. J. Polym. Sci. A Polym. Chem. 44, 6025–6031 (2006)

    Article  CAS  Google Scholar 

  58. Y. Lee, S. Chen, H. Tu, S. Yau, L.L. Fan, Y. Yang, W.P. Dow, In situ STM revelation of the adsorption and polymerization of aniline on Au (111) electrode in perchloric acid and benzenesulfonic acid. Langmuir 26, 5576–5582 (2010)

    Article  CAS  PubMed  Google Scholar 

  59. S. Perc, Electrochemical synthesis of poly(2-iodoaniline) and poly(aniline-co-2-iodoaniline) in acetonitrile. J. Appl. Polym. Sci. 89, 1652–1658 (2003)

    Article  CAS  Google Scholar 

  60. Y. Sahin, A. Aydin, Y.A. Udum, K. Pekmez, A. Yildiz, Electrochemical synthesis of sulfonated polypyrrole in FSO3H/acetonitrile solution. J. Appl. Polym. Sci. 40, 526–533 (2004)

    Article  CAS  Google Scholar 

  61. J.M. Pringle, J. Efthimiadis, P.C. Howlett, J. Efthimiadis, D.R. MacFarlane, A.B.. Chaplin, S.B. Hall, D.L. Officer, G.G. Wallace, M. Forsyth, Electrochemical synthesis of polypyrrole in ionic liquids. Polymer 45, 1447–1453 (2004)

    Article  CAS  Google Scholar 

  62. S. Mu, Pronounced effect of the ionic liquid on the electrochromic property of the polyaniline film: Color changes in the wide wavelength range. Electrochim. Acta 52, 7827–7834 (2007)

    Article  CAS  Google Scholar 

  63. W. Lu, A.G. Fadeev, B. Qi, E. Smela, B.R. Mattes, J. Ding, G.M. Spinks, J. Mazurkiewicz, D. Zhou, G.G. Wallace, D.R. MacFarlane, S.A. Forsyth, M. Forsyth, Use of ionic liquids for π-conjugated polymer electrochemical devices. Science 297, 983–987 (2002)

    Article  CAS  PubMed  Google Scholar 

  64. M.L. Schwuger, K. Stickdorn, R. Schomaecker, Microemulsions in technical processes. Chem. Rev. 95, 849–864 (1995)

    Article  CAS  Google Scholar 

  65. V. Tsakova, S. Winkels, J.W. Schultze, Anodic polymerization of 3, 4-ethylenedioxythiophene from aqueous microemulsions. Electrochim. Acta 46, 759–768 (2000)

    Article  CAS  Google Scholar 

  66. C. Lagrost, M. Jouini, J. Tanguy, S. Aeiyach, J.C. Lacroix, K.I. Chane-Ching, P.C. Lacaze, Bithiophene electropolymerization in aqueous media: A specific effect of SDS and β-cyclodextrin. Electrochim. Acta 46, 3985–3992 (2001)

    Article  CAS  Google Scholar 

  67. M. Fall, M.M. Dieng, J.J. Aaron, S. Aeiyach, P.C. Lacaze, Role of surfactants in the electrosynthesis and the electrochemical and spectroscopic characteristics of poly(3-methoxythiophene) films in aqueous micellar media. Synth. Met. 118, 149–155 (2001)

    Article  CAS  Google Scholar 

  68. G.E. Barr, C.N. Sayre, D.M. Connor, D.M. Collard, Polymerization of hydrophobic 3-alkylpyrroles from aqueous solutions of sodium dodecyl sulfate. Langmuir 12, 1395–1398 (1996)

    Article  CAS  Google Scholar 

  69. A. Mani, K.L.N. Phani, Spherulitic morphology of electrochemically-deposited polyparaphenylene (PPP) films. J. Electroanal. Chem. 513, 126–132 (2001)

    Article  CAS  Google Scholar 

  70. M. Kanungo, A. Kumar, A.Q. Contractor, Studies on electropolymerization of aniline in the presence of sodium dodecyl sulfate and its application in sensing urea. J. Electroanal. Chem. 528, 46–56 (2002)

    Article  CAS  Google Scholar 

  71. K. Matyjaszewski, T. Davys, Handbook of Radical Polymerization (Wiley, Hoboken, 2002), pp. 1–177

    Book  Google Scholar 

  72. K. Karon, M. Lapkowski, Carbazole electrochemistry: A short review. J. Solid State Electrochem. 19, 2601–2610 (2015)

    Article  CAS  Google Scholar 

  73. M. Ates, A. Dolapdere, Electrochemical polymerization of thiophene and poly(3-hexyl)thiophene, nanocomposites with TiO2, and corrosion protection behaviors. Polym. Plast. Technol. Eng. 54, 1780–1786 (2015)

    Article  CAS  Google Scholar 

  74. P. Novak, K. Muller, K.S.V. Santhana, O. Haas, Electrochemically active polymers for rechargeable batteries. Chem. Rev. 97, 207–281 (1997)

    Article  CAS  PubMed  Google Scholar 

  75. J. Bobacka, A. Ivaska, Ion sensors with conducting polymers, as ion-to-electron transducers. Compr. Anal. Chem.. (Elsevier 49, 73–86 (2007)

    Google Scholar 

  76. R.J. Waltman, J.B. Argon, Electrically conducting polymers: A review of the electropolymerization reaction, of the effects of chemical structure on polymer film properties, and of applications towards technology. Can. J. Chem. 64, 76–95 (1986)

    Article  CAS  Google Scholar 

  77. R. Lazzaroni, J. Riga, J.J. Verbist, L. Christiaens, M. Renson, Electrochemical synthesis and preliminary characterization of poly(thieno[3,2-b]pyrrole). J. Chem. Soc. Chem. Commun., 999–1000 (1985)

    Google Scholar 

  78. V. Gupta, N. Miura, Large-area network of polyaniline nanowires prepared by potentiostatic deposition process. Electrochem. Commun. 7, 995–999 (2005)

    Article  CAS  Google Scholar 

  79. J.M. Pringle, J. Efthimiadis, P.C. Howlett, J. Efthimiadis, D.R. MacFarlane, A.B.. Chaplinc, S.B. Hallc, D.L. Officer, G.G. Wallace, M. Forsyth, Electrochemical synthesis of polypyrrole in ionic liquids. Polymer 45, 1447–1453 (2004)

    Article  CAS  Google Scholar 

  80. B. Broda, G. Inzelt, Preparation and characterization of poly(5-aminoindole) by using electrochemical quartz crystal nanobalance technique. Acta Chim. Slov. 61, 357–365 (2014)

    CAS  PubMed  Google Scholar 

  81. K. Darowicki, J. Kawula, Impedance characterization of the process of polyaniline first redox transformation after aniline electropolymerization. Electrochim. Acta 49, 4829–4839 (2004)

    Article  CAS  Google Scholar 

  82. X. Li, Y. Li, Electrochemical preparation of polythiophene in acetonitrile solution with boron fluoride-ethyl ether as the electrolyte. J. Appl. Polym. Sci. 90, 940–946 (2003)

    Article  CAS  Google Scholar 

  83. G. Odian, Y. Atassi, M. Tally, Chapter 3: Radical chain polymerization, in Principles of Polymerization, 4th edn., (Wiley, Hoboken, 2004)

    Chapter  Google Scholar 

  84. P. Audebert, J.M. Catel, G.L. Coustumer, V. Duchenet, P. Hapiot, Electrochemistry and polymerization mechanism of thiophene-pyrrole-thiophene oligomers and terthiophenes. Experimental and theoretical modeling studies. J. Phys. Chem. B 102, 8661–8669 (1998)

    Article  CAS  Google Scholar 

  85. L. Duid, Z. Mandid, Counter-ion and pH effect on the electrochemical synthesis of polyaniline. Electroanal. Chem. 335, 207–221 (1992)

    Article  Google Scholar 

  86. W.S. Huang, B.D. Humphrey, A.G. MacDiarmid, Polyaniline, a novel conducting polymer morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J. Chem. Soc. Faraday Trans. 1(82), 2385–2400 (1986)

    Article  Google Scholar 

  87. D. Seeger, W. Kowalchyk, C. Korzeniewski, Investigation of polymer-dopant interactions in polyaniline-modified electrodes: In situ analysis by FTIR spectroscopy. Langmuir 6, 1527–1534 (1990)

    Article  CAS  Google Scholar 

  88. H. Okamoto, T. Kotaka, Effect of counter ions in electrochemical polymerization media on the structure and responses of the product polyaniline films III. Structure and properties of polyaniline films prepared via electrochemical polymerization. Polymer 40, 407–417 (1998)

    Article  Google Scholar 

  89. M.S. Lee, S.B. Lee, J.Y. Lee, H.S. Kang, H.S. Kang, S. Hyun, J. Joo, A.J. Epstein, All-polymer FET based on simple photolithographic micro-patterning of electrically conducting polymer. Mol. Cryst. Liq. Cryst. 405, 171–178 (2003)

    Article  CAS  Google Scholar 

  90. M. Immaculate, Synthesis, electrodynamics and biosensor applications of novel sulphonated polyaniline nanocomposites, PhD Thesis, University of the Western Cape, 2007, p. 223

    Google Scholar 

  91. W. Yanyan, L. Kalle, Influence of dopant on electroactivity of polyaniline. Macromol. Symp. 317, 240–247 (2012)

    Google Scholar 

  92. T. Lindfors, A. Ivaska, Potentiometric and UV–vis characterisation of N-substituted polyanilines. J. Electroanal. Chem. 535, 65–74 (2002)

    Article  CAS  Google Scholar 

  93. M.H. Pournaghi-Azar, B. Habibi, Electropolymerization of aniline in acid media on the bare and chemically pre-treated aluminium electrodes: A comparative characterization of the polyaniline deposited electrodes. Electrochim. Acta 52, 4222–4230 (2007)

    Article  CAS  Google Scholar 

  94. A. Balamurugan, S.M. Chen, Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode for selective detection of dopamine in the presence of ascorbic acid and uric acid. Anal. Chim. Acta 596, 92–98 (2007)

    Article  CAS  PubMed  Google Scholar 

  95. M.R. Nateghi, M. Zahedi, M.H. Mosslemin, S. Hachemian, S. Behzad, A. Minnai, Autoacceleration/degradation of electrochemical polymerization of substituted polyanilines. Polymer 46, 11476–11483 (2005)

    Article  CAS  Google Scholar 

  96. L. Komsiyska, T. Tsacheva, V. Tsakova, Electrochemical formation and copper modification of poly-o-methoxyaniline. Thin Solid Films 493, 88–95 (2005)

    Article  CAS  Google Scholar 

  97. S. Sadki, P. Schottland, N. Brodie, G. Sabouraud, The mechanisms of pyrrole electropolymerization. Chem. Soc. Rev. 29, 283–293 (2000)

    Article  Google Scholar 

  98. M. Saraji, A. Bagheri, Electropolymerization of indole and study of electrochemical behavior of the polymer in aqueous solutions. Synth. Met. 98, 57–63 (1998)

    Article  CAS  Google Scholar 

  99. P. Jennings, A.C. Jones, A.R. Mount, A.D. Thomson, Electrooxidation of 5-substituted indoles. J. Chem. Soc. Far. Trans. 93, 3791–3797 (1997)

    Article  CAS  Google Scholar 

  100. M.K.L. Coelho, J.D.F. Giarola, A.T.M. Da Silva, C.R.T. Tarley, K.B. Borges, A.C. Pereira, Development and application of electrochemical sensor based on molecularly imprinted polymer and carbon nanotubes for the determination of carvedilol. Chemosensors 4, 1–15 (2016)

    Article  CAS  Google Scholar 

  101. S. Nambiar, J.T.W. Yeow, Conductive polymer-based sensor for biomedical application. Biosens. Bioelectron. 26, 1825–1832 (2011)

    Article  CAS  PubMed  Google Scholar 

  102. P.N. Bartlett, J.M. Cooper, A review of the immobilization of enzyme in electropolymerized films. J. Electroanal. Chem. 362, 1–12 (1993)

    Article  CAS  Google Scholar 

  103. S. Cosnier, Biosensors based on electropolymerized films: New trends. Anal. Bioanal. Chem. 377, 507–520 (2003)

    Article  CAS  PubMed  Google Scholar 

  104. S. Cosnier, Recent advances in biological sensors based on electrogenerated polymers: A review. Anal. Lett. 40, 1260–1279 (2007)

    Article  CAS  Google Scholar 

  105. M. Gerard, A. Chaubey, B.D. Malhotra, Application of conducting polymers to biosensors. Biosens. Bioelectron. 17, 345–359 (2002)

    Article  CAS  PubMed  Google Scholar 

  106. M.A. Rahman, P. Kumar, D.-S. Park, Y.B. Shim, Electrochemical sensor based on organic conjugated polymers. Sensors 8, 118–141 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. K.S.V. Santhanan, Conducting polymers for biosensors: Rational based models. Pure Appl. Chem. 70, 1259–1262 (1998)

    Article  Google Scholar 

  108. T.D. McQuade, A.E. Pullen, T.M. Swager, Conjugated polymer-based chemical sensors. Chem. Rev. 100, 2537–2574 (2000)

    Article  CAS  PubMed  Google Scholar 

  109. U. Lange, N.V. Raznyatovskaya, V.M. Mirsky, Conducting polymers in chemicals sensors and array. Anal. Chim. Acta 614, 1–26 (2008)

    Article  CAS  PubMed  Google Scholar 

  110. H. Peng, L. Zhang, C. Soeller, J. Travas-Sejdic, Conducting polymers for electrochemical DNA sensing. Biomaterials 30, 2132–2148 (2009)

    Article  CAS  PubMed  Google Scholar 

  111. A. Rudge, I. Raistnck, S. Go-Ite~Fizld, J.P. Ferr, A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors. Electrochim. Acta 39, 273–287 (1994)

    Article  CAS  Google Scholar 

  112. D. McQuade, A.E.P. Tyler, T.M. Swager, Conjugated polymer-based chemical sensors. Chem. Rev. 100, 2537–2574 (2000)

    Article  CAS  PubMed  Google Scholar 

  113. P. Audebert, G. Bidan, Polyhalopyrroles: Electrochemical synthesis and some characteristics. J. Electroanal. Chem. 190, 129–139 (1985)

    Article  CAS  Google Scholar 

  114. R. Saraswathi, M. Gerard, B.D. Malhotra, Characteristics of aqueous polycarbazole batteries. J. Appl. Polym. Sci. 74, 145–150 (1999)

    Article  CAS  Google Scholar 

  115. T. Kawai, T. Kuwabara, S. Wang, K. Yoshino, Secondary battery characteristics of poly(3-alkylthiophene). Jap. J. Appl. Phys. 29, 602–605 (1990)

    Article  CAS  Google Scholar 

  116. K.S.V. Santhanam, N. Gupta, Conducting-polymer electrodes in batteries. TRIP 1, 284–289 (1993)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gertrude Fomo or Emmanuel Iwuoha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fomo, G., Waryo, T., Feleni, U., Baker, P., Iwuoha, E. (2019). Electrochemical Polymerization. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95987-0_3

Download citation

Publish with us

Policies and ethics