Skip to main content

Enhanced Oil Recovery

  • Reference work entry
  • First Online:
Book cover Functional Polymers

Abstract

Worldwide energy demand has been increased in last few decades, and it is expected that it will increase up to 50% by the end of next decade. Oil and gas were major sources of energy in past, and it is expected that it will remain the primary source of energy in next few decades. Therefore, efforts are being made to upgrade drilling, completion, workover, and production operations to maximize the oil recovery at a lower cost. In last few decades, water-soluble polymers have been extensively used in different gas and oilfield applications. In the present chapter, we discuss the various types of polymeric systems that have been applied in various oilfield applications. These applications are mainly enhanced oil recovery, drilling fluids, and kinetic gas hydrate inhibition. Properties required for each application are also discussed and related to the chemical structure of the polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAs:

Antiagglomerates

AM:

Acrylamide

AMPS:

2-Acrylamido-2-Methylpropane Sulfonic Acid

API:

American Petroleum Institute

ASP:

Alkali-surfactant-polymer

CEC:

Cation exchange capacity

CMC:

Carboxymethylcellulose

EOR:

Enhanced Oil Recovery

HAPAM:

Hydrophobically modified polyacrylamide

HEC:

Hydroxyethylcellulose

HPAM:

Partially hydrolyzed polyacrylamide

HP-μDSC:

High-pressure microdifferential scanning calorimetry

HTHS:

High-temperature high-salinity

IEP:

Isoelectric point

k :

Permeability

KHIs:

Kinetic hydrate inhibitors (), and

k o :

Permeability of oil

k w :

Permeability of water

MD:

Molecular dynamic

PAM:

Polyacrylamide

PEO:

Polyethylene oxide

PVCap:

Poly(vinyl caprolactam)

PVIMA:

Poly (N-methyl,N-vinylacetamide)

PVP:

Poly(vinyl pyrrolidone)

sI:

Structure I

sII:

Structure II

sIII:

Structure III

SP:

Surfactant-polymer

sT:

Structure T

ta:

Hydrate plug formation time

THIs:

Thermodynamic hydrate inhibitors

ti:

Induction time

VIMA:

N-methyl,N-vinylacetamide

VP:

Vinylpyrrolidone

μ:

Viscosity

μo:

Viscosity of oil

μw:

Viscosity of water

References

  1. I. Lakatos, Role of chemical IOR/EOR methods in the 21st century, in 18th World Petroleum Congress, 25–29 September, Johannesburg. 2005. World Petroleum Congress, WPC-18-0883

    Google Scholar 

  2. M.S. Kamal et al., Evaluation of rheological and thermal properties of a new fluorocarbon surfactant-polymer system for EOR applications in high-temperature and high-salinity oil reservoirs. J. Surfactant Deterg. 17(5), 985–993 (2014)

    Article  CAS  Google Scholar 

  3. A. Al Adasani, B. Bai, Analysis of EOR projects and updated screening criteria. J. Pet. Sci. Eng. 79(1), 10–24 (2011)

    Article  CAS  Google Scholar 

  4. E.J. Manrique et al., EOR: Current Status and Opportunities. SPE Improved Oil Recovery Symposium, 24–28 April, (Society of Petroleum Engineers, Tulsa, Oklahoma, USA. 2010)

    Google Scholar 

  5. M.S. Kamal, A.S. Sultan, I.A. Hussein, Screening of amphoteric and anionic surfactants for cEOR applications using a novel approach. Colloids Surf. A Physicochem. Eng. Asp. 476, 17–23 (2015)

    Article  CAS  Google Scholar 

  6. Y. Wang et al., Optimized Surfactant IFT and Polymer Viscosity for Surfactant- Polymer Flooding in Heterogeneous Formations. SPE Improved Oil Recovery Symposium, 24–28 April, (Society of Petroleum Engineers, Tulsa, Oklahoma, USA 2010)

    Google Scholar 

  7. A. Bera et al., Adsorption of surfactants on sand surface in enhanced oil recovery: Isotherms, kinetics and thermodynamic studies. Appl. Surf. Sci. 284, 87–99 (2013)

    Article  CAS  Google Scholar 

  8. A. Bera et al., Screening of microemulsion properties for application in enhanced oil recovery. Fuel 121, 198–207 (2014)

    Article  CAS  Google Scholar 

  9. A. Samanta et al., Effects of alkali, salts, and surfactant on rheological behavior of partially hydrolyzed polyacrylamide solutions. J. Chem. Eng. Data 55(10), 4315–4322 (2010)

    Article  CAS  Google Scholar 

  10. A. Samanta et al., Comparative studies on enhanced oil recovery by alkali–surfactant and polymer flooding. J. Pet. Explor. Prod. Technol. 2(2), 67–74 (2012)

    Article  CAS  Google Scholar 

  11. Y. Wang et al., A novel thermoviscosifying water-soluble polymer: Synthesis and aqueous solution properties. J. Appl. Polym. Sci. 116(6), 3516–3524 (2010)

    CAS  Google Scholar 

  12. D. Zhu et al., Aqueous hybrids of silica nanoparticles and hydrophobically associating hydrolyzed polyacrylamide used for EOR in high-temperature and high-salinity reservoirs. Energies 7(6), 3858–3871 (2014)

    Article  CAS  Google Scholar 

  13. J.J. Taber, Dynamic and static forces required to remove a discontinuous oil phase from porous media containing both oil and water. Soc. Pet. Eng. J. 9(1), 3 (1969)

    Article  CAS  Google Scholar 

  14. W.R. Foster, A low-tension waterflooding process. J. Pet. Technol. 25(02), 205–210 (1973)

    Article  CAS  Google Scholar 

  15. M.A. Ahmadi et al., Preliminary evaluation of mulberry leaf-derived surfactant on interfacial tension in an oil-aqueous system: EOR application. Fuel 117, 749–755 (2014)

    Article  CAS  Google Scholar 

  16. P. Fernandes et al., Biosurfactant, solvents and polymer production by Bacillus subtilis RI4914 and their application for enhanced oil recovery. Fuel 180, 551–557 (2016)

    Article  CAS  Google Scholar 

  17. M.S. Kamal, A review of gemini surfactants: Potential application in enhanced oil recovery. J. Surfactant Deterg. 19(2), 1–14 (2016)

    Article  CAS  Google Scholar 

  18. M.A. Ahmadi, S.R. Shadizadeh, Implementation of a high-performance surfactant for enhanced oil recovery from carbonate reservoirs. J. Pet. Sci. Eng. 110, 66–73 (2013)

    Article  CAS  Google Scholar 

  19. M.A. Ahmadi, M. Galedarzadeh, S.R. Shadizadeh, Wettability alteration in carbonate rocks by implementing new derived natural surfactant: Enhanced oil recovery applications. Transp. Porous Media 106(3), 645–667 (2015)

    Article  CAS  Google Scholar 

  20. M. Mohammed, T. Babadagli, Wettability alteration: A comprehensive review of materials/methods and testing the selected ones on heavy-oil containing oil-wet systems. Adv. Colloid Interf. Sci. 220, 54–77 (2015)

    Article  CAS  Google Scholar 

  21. M.A. Ahmadi, S.R. Shadizadeh, Experimental investigation of adsorption of a new nonionic surfactant on carbonate minerals. Fuel 104, 462–467 (2013)

    Article  CAS  Google Scholar 

  22. M.A. Ahmadi, S. Shadizadeh, Experimental and theoretical study of a new plant derived surfactant adsorption on quartz surface: Kinetic and isotherm methods. J. Dispers. Sci. Technol. 36(3), 441–452 (2015)

    Article  CAS  Google Scholar 

  23. M.A. Ahmadi, S.R. Shadizadeh, Induced effect of adding nano silica on adsorption of a natural surfactant onto sandstone rock: Experimental and theoretical study. J. Pet. Sci. Eng. 112, 239–247 (2013)

    Article  CAS  Google Scholar 

  24. L. Fu et al., Study on organic alkali-surfactant-polymer flooding for enhanced ordinary heavy oil recovery. Colloids Surf. A Physicochem. Eng. Asp. 508, 230–239 (2016)

    Article  CAS  Google Scholar 

  25. M.S. Kamal et al., Review on polymer flooding: Rheology, adsorption, stability, and field applications of various polymer systems. Polym. Rev. 55(3), 491–530 (2015)

    Article  CAS  Google Scholar 

  26. A.Z. Abidin, T. Puspasari, W.A. Nugroho, Polymers for enhanced oil recovery technology. Procedia Chem. 4, 11–16 (2012)

    Article  CAS  Google Scholar 

  27. M. Han et al., Laboratory study on polymers for chemical flooding in carbonate reservoirs. SPE EOR Conference at Oil and Gas West Asia, 31 March-2 April, (Society of Petroleum Engineers, Muscat, Oman 2014)

    Google Scholar 

  28. G. Atesok, P. Somasundaran, L.J. Morgan, Charge effects in the adsorption of polyacrylamides on sodium kaolinite and its flocculation. Powder Technol. 54(2), 77–83 (1988)

    Article  CAS  Google Scholar 

  29. M. Celik, S. Ahmad, H. Al-Hashim, Adsorption/desorption of polymers from Saudi Arabian limestone. J. Pet. Sci. Eng. 6(3), 213–223 (1991)

    Article  CAS  Google Scholar 

  30. A. Muggeridge et al., Recovery rates, enhanced oil recovery and technological limits. Phil. Trans. R. Soc. A 372(2006), 20120320 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. H.R. Li et al., Effect of organic alkalis on interfacial tensions of surfactant/polymer solutions against hydrocarbons. Energy Fuel 29(2), 459–466 (2015)

    Article  CAS  Google Scholar 

  32. A.A. Olajire, Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges. Energy 77, 963–982 (2014)

    Article  CAS  Google Scholar 

  33. X.M. Zhang et al., Adaptability of a hydrophobically associating polyacrylamide/mixed-surfactant combination flooding system to the Shengli Chengdao oilfield. J. Appl. Polym. Sci. 131(12), 40390 (1–9) (2014)

    Google Scholar 

  34. F.W. Smith, The behavior of partially hydrolyzed polyacrylamide solutions in porous media. J. Pet. Technol. 22(02), 148–156 (2013)

    Article  Google Scholar 

  35. M.S. Kamal et al., Rheological study on ATBS-AM copolymer-surfactant system in high-temperature and high-salinity environment. J. Chem. 2013, 801570 (2013)

    Google Scholar 

  36. C. Zhou et al., Synthesis and solution properties of novel comb-shaped acrylamide copolymers. Polym. Bull. 66(3), 407–417 (2011)

    Article  CAS  Google Scholar 

  37. A. Borthakur et al., Partially hydrolyzed polyacrylamide for enhanced oil-recovery. Res. Ind. 40(2), 90–94 (1995)

    CAS  Google Scholar 

  38. R.D. Shupe, Chemical stability of polyacrylamide polymers. J. Pet. Technol. 33(08), 1513–1529 (1981)

    Article  CAS  Google Scholar 

  39. H. Lu et al., Retention behaviors of hydrophobically associating polyacrylamide prepared via inverse microemulsion polymerization through porous media. J. Macromol. Sci., Part A: Pure Appl. Chem. 47(6), 602–607 (2010)

    Article  CAS  Google Scholar 

  40. R.G. Ryles, Chemical stability limits of water-soluble polymers used in oil recovery processes. SPE Reserv. Eng. 3(01), 23–34 (1988)

    Article  CAS  Google Scholar 

  41. A. Moradi-Araghi, D.H. Cleveland, I.J. Westerman, Development and Evaluation of EOR Polymers Suitable for Hostile Environments: II-Copolymers of Acrylamide and Sodium AMPS. 1987

    Google Scholar 

  42. R.S. Seright et al., Stability of partially hydrolyzed polyacrylamides at elevated temperatures in the absence of divalent cations. SPE J. 15(02), 341–348 (2010)

    Article  CAS  Google Scholar 

  43. H. Nasr-El-Din., B. Hawkins, K. Green, Viscosity behavior of alkaline, surfactant, polyacrylamide solutions used for enhanced oil recovery, in SPE International Symposium on Oilfield Chemistry, 20–22 February, (Society of Petroleum Engineers, Anaheim, California 1991)

    Google Scholar 

  44. M.S. Kamal et al., Rheological properties of thermoviscosifying polymers in high-temperature and high-salinity environments. Can. J. Chem. Eng. 93(7), 1194–1200 (2015)

    Article  CAS  Google Scholar 

  45. Y. Niu et al., Research on hydrophobically associating water-soluble polymer used for EOR. SPE International Symposium on Oilfield Chemistry, 13–16 February, (Society of Petroleum Engineers, Houston, Texas 2001)

    Google Scholar 

  46. M. Buchgraber et al., The displacement of viscous oil by associative polymer solutions. SPE Annual Technical Conference and Exhibition, 4–7 October, (Society of Petroleum Engineers, New Orleans, Louisiana 2009)

    Google Scholar 

  47. D. Lijian, W. Biao, Hydrophobically associating terpolymer and its complex with a stabilizer in brine for enhanced oil recovery. SPE International Symposium on Oilfield Chemistry, 14–17 February, (Society of Petroleum Engineers, San Antonio, Texas 1995)

    Google Scholar 

  48. Z. Ye et al., Hydrophobically associating acrylamide-based copolymer for chemically enhanced oil recovery. J. Appl. Polym. Sci. 130(4), 2901–2911 (2013)

    Article  CAS  Google Scholar 

  49. Y. Wang et al., A novel thermoviscosifying water-soluble polymer for enhancing oil recovery from high-temperature and high-salinity oil reservoirs. Adv. Mater. Res. 307, 654–657 (2011)

    Google Scholar 

  50. P. Maroy, et al., Thermoviscosifying polymers, their synthesis and their uses in particular in the oil industry. EP Patent 0,583,814. 1998

    Google Scholar 

  51. J. Sheng, Modern Chemical Enhanced Oil Recovery: Theory and Practice (Gulf Professional Publishing, 2010)

    Google Scholar 

  52. X.J. Liu et al., Synthesis and evaluation of a water-soluble acrylamide binary sulfonates copolymer on MMT crystalline interspace and EOR. J. Appl. Polym. Sci. 125(2), 1252–1260 (2012)

    Article  CAS  Google Scholar 

  53. Z. Ye et al., Synthesis and characterization of a water-soluble sulfonates copolymer of acrylamide and N-allylbenzamide as enhanced oil recovery chemical. J. Appl. Polym. Sci. 128(3), 2003–2011 (2013)

    CAS  Google Scholar 

  54. Y. Xu et al., Synthesis and aqueous solution properties of a novel nonionic, amphiphilic comb-type polyacrylamide. J. Macromol. Sci., Part B 50(9), 1691–1704 (2011)

    Article  CAS  Google Scholar 

  55. C.L. McCormick, L.C. Salazar, Water-soluble copolymers. 43. Ampholytic copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate with [2-(acrylamido)-2-methylpropyl] trimethylammonium chloride. Macromolecules 25(7), 1896–1900 (1992)

    Article  CAS  Google Scholar 

  56. C.L. McCormick, J.C. Middleton, D.F. Cummins, Water-soluble copolymers. 37. Synthesis and characterization of responsive hydrophobically modified polyelectrolytes. Macromolecules 25(4), 1201–1206 (1992)

    Article  CAS  Google Scholar 

  57. F. Yang et al., Synthesis, characterization, and applied properties of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr. Polym. 78(1), 95–99 (2009)

    Article  CAS  Google Scholar 

  58. L. Bai et al., Synthesis and solution properties of comb-like acrylamide copolymers. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 27(6), 1105–1109 (2012)

    Article  CAS  Google Scholar 

  59. J.F. Berret et al., Fluorocarbon associative polymers. Curr. Opin. Colloid Interface Sci. 8(3), 296–306 (2003)

    Article  CAS  Google Scholar 

  60. J.F. Argillier et al., Solution and adsorption properties of hydrophobically associating water-soluble polyacrylamides. Colloids Surf. A Physicochem. Eng. Asp. 113(3), 247–257 (1996)

    Article  CAS  Google Scholar 

  61. W. Zhou et al., Application of hydrophobically associating water-soluble polymer for polymer flooding in China offshore heavy oilfield. International Petroleum Technology Conference, 4–6 December, (Dubai, U.A.E. 2007)

    Google Scholar 

  62. L. Petit et al., Synthesis of graft polyacrylamide with responsive self-assembling properties in aqueous media. Polymer 48(24), 7098–7112 (2007)

    Article  CAS  Google Scholar 

  63. X. Liu et al., Effect of inorganic salts on viscosifying behavior of a thermoassociative water-soluble terpolymer based on 2-acrylamido-methylpropane sulfonic acid. J. Appl. Polym. Sci. 125(5), 4041–4048 (2012)

    Article  CAS  Google Scholar 

  64. M.J. Zohuriaan, F. Shokrolahi, Thermal studies on natural and modified gums. Polym. Test. 23(5), 575–579 (2004)

    Article  CAS  Google Scholar 

  65. D.F. Petri, Xanthan gum: A versatile biopolymer for biomedical and technological applications. J. Appl. Polym. Sci. 132(23), 42035 (1–13)

    Google Scholar 

  66. A. Palaniraj, V. Jayaraman, Production, recovery and applications of xanthan gum by Xanthomonas campestris. J. Food Eng. 106(1), 1–12 (2011)

    Article  CAS  Google Scholar 

  67. C. Kim et al., Drag reduction characteristics of polysaccharide xanthan gum. Macromol. Rapid Commun. 19(8), 419–422 (1998)

    Article  CAS  Google Scholar 

  68. H.Y. Jang et al., Enhanced oil recovery performance and viscosity characteristics of polysaccharide xanthan gum solution. J. Ind. Eng. Chem. 21, 741–745 (2015)

    Article  CAS  Google Scholar 

  69. T. Lund, J. Lecourtier, G. Müller, Properties of xanthan solutions after long-term heat treatment at 90??C. Polym. Degrad. Stab. 27(2), 211–225 (1990)

    Article  CAS  Google Scholar 

  70. I. Norton et al., Mechanism and dynamics of conformational ordering in xanthan polysaccharide. J. Mol. Biol. 175(3), 371–394 (1984)

    Article  CAS  PubMed  Google Scholar 

  71. E. Morris et al., Order-disorder transition for a bacterial polysaccharide in solution. A role for polysaccharide conformation in recognition between Xanthomonas pathogen and its plant host. J. Mol. Biol. 110(1), 1–16 (1977)

    Article  CAS  PubMed  Google Scholar 

  72. S.L. Wellington, Biopolymer solution viscosity stabilization-polymer degradation and antioxidant use. Soc. Pet. Eng. J. 23(06), 901–912 (1983)

    Article  CAS  Google Scholar 

  73. M. Rashidi, A.M. Blokhus, A. Skauge, Viscosity study of salt tolerant polymers. J. Appl. Polym. Sci. 117(3), 1551–1557 (2010)

    CAS  Google Scholar 

  74. C.T. Hou, N. Barnabe, K. Greaney, Biodegradation of xanthan by salt-tolerant aerobic microorganisms. J. Ind. Microbiol. 1(1), 31–37 (1986)

    Article  CAS  Google Scholar 

  75. S. Abbas, J. Donovan, A. Sanders, Applicability of hydroxyethylcellulose polymers for chemical EOR, in 2013 SPE Enhanced Oil Recovery Conference, 2–4 July, (Kuala Lumpur, Malaysia 2013)

    Google Scholar 

  76. C. Gao, Application of a novel biopolymer to enhance oil recovery. J. Pet. Explor. Prod. Technol., 6(4) 749–753 (2016)

    Google Scholar 

  77. A.-L. Kjøniksen et al., Modified polysaccharides for use in enhanced oil recovery applications. Eur. Polym. J. 44(4), 959–967 (2008)

    Article  CAS  Google Scholar 

  78. C. Gatlin, Petroleum engineering, drilling and well completions (Prentice-hall Inc, Englewood Cliffs, 1960). 341 p

    Google Scholar 

  79. R. K. Clark, Applications of water-soluble polymers as shale stabilizers in drilling fluids. Advances in Chemistry Series 213, 171–181 (1986)

    Google Scholar 

  80. Z. Vryzas, V.C. Kelessidis, Nano-based drilling fluids: A review. Energies 10(4), 540 (2017)

    Article  Google Scholar 

  81. C. Moore, V. Lafave, Air and gas drilling. J. Pet. Technol. 8(02), 15–16 (1956)

    Article  Google Scholar 

  82. C. Maranuk et al., Unique system for underbalanced drilling using air in the Marcellus Shale, in SPE Eastern Regional Meeting, 21–23 October, (Society of Petroleum Engineers, Charleston, WV, USA 2014)

    Google Scholar 

  83. S. Saintpere et al., Hole cleaning capabilities of drilling foams compared to conventional fluids, in SPE Annual Technical Conference and Exhibition, 1–4 October, (Society of Petroleum Engineers, Dallas, Texas 2000)

    Google Scholar 

  84. A. Paknejad, J.J. Schubert, M. Amani, Key parameters in foam drilling operations, in IADC/SPE Managed Pressure Drilling and Underbalanced Operations Conference & Exhibition, 12–13 February, (Society of Petroleum Engineers, San Antonio, Texas 2009)

    Google Scholar 

  85. J. Davies et al., Environmental effects of the use of oil-based drilling muds in the North Sea. Mar. Pollut. Bull. 15(10), 363–370 (1984)

    Article  CAS  Google Scholar 

  86. R. Caenn, H.C. Darley, G.R. Gray, Composition and properties of drilling and completion fluids (Gulf professional publishing, 2011)

    Google Scholar 

  87. J. Shafer, et al., Core and log NMR measurements indicate reservoir rock is altered by OBM filtrate, in SPWLA 45th Annual Logging Symposium, 6–9 June, (Society of Petrophysicists and Well-Log Analysts, Noordwijk, Netherlands 2004)

    Google Scholar 

  88. R. Minton, B. Secoy, Annular re-injection of drilling wastes. J. Pet. Technol. 45(11), 1081–1085 (1993)

    Article  CAS  Google Scholar 

  89. M. Sadeghalvaad, S. Sabbaghi, The effect of the TiO 2/polyacrylamide nanocomposite on water-based drilling fluid properties. Powder Technol. 272, 113–119 (2015)

    Article  CAS  Google Scholar 

  90. S. Elkatatny, H. Nasr-El-Din, M. Al-Bagoury, Properties of ilmenite water-based drilling fluids for HPHT applications, in IPTC 2013: International Petroleum Technology Conference, 26–28 March, Beijing, China 2013

    Google Scholar 

  91. A. Kamel, A. Hosny, A novel mud formulation for drilling operations in the permafrost, in SPE Western Regional & AAPG Pacific Section Meeting 2013 Joint Technical Conference, 19–25 April, (Society of Petroleum Engineers, Monterey, California, USA 2013)

    Google Scholar 

  92. F. Huadi et al., Successful KCl free highly inhibitve and cost effective WBM applications, Offshore East Kalimantan, Indonesia, in IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition, 1–3 November, (Society of Petroleum Engineers, Ho Chi Minh City, Vietnam 2010)

    Google Scholar 

  93. B. Bui, A. Tutuncu, Creep-recovery test: A critical tool for rheological characterization of drilling fluids, in Unconventional Resources Technology Conference, 12–14 August, (Society of Petroleum Engineers, Denver, Colorado, USA 2013)

    Google Scholar 

  94. R. Caenn, G.V. Chillingar, Drilling fluids: State of the art. J. Pet. Sci. Eng. 14(3), 221–230 (1996)

    Article  CAS  Google Scholar 

  95. J.P. Simpson, Drilling fluid filtration under stimulated downhole conditions, in SPE Symposium on Formation Damage Control, 30 January–2 February, (Society of Petroleum Engineers, New Orleans, Louisiana 1974)

    Google Scholar 

  96. C.I.R. de Oliveira et al., Characterization of bentonite clays from Cubati, Paraíba (northeast of Brazil). Cerâmica 62(363), 272–277 (2016)

    Article  Google Scholar 

  97. G. Xie et al., Investigation of the inhibition mechanism of the number of primary amine groups of alkylamines on the swelling of bentonite. Appl. Clay Sci. 136, 43–50 (2017)

    Article  CAS  Google Scholar 

  98. H. Yarranton, Development of Viscosity Model for Petroleum Industry Applications, Doctoral dissertation. University of Calgary, 2013

    Google Scholar 

  99. K.S. Hafshejani, A. Moslemizadeh, K. Shahbazi, A novel bio-based deflocculant for bentonite drilling mud. Appl. Clay Sci. 127, 23–34 (2016)

    Article  CAS  Google Scholar 

  100. H. Zhong et al., Shale inhibitive properties of polyether diamine in water-based drilling fluid. J. Pet. Sci. Eng. 78(2), 510–515 (2011)

    Article  CAS  Google Scholar 

  101. H. Zhong et al., Inhibitive properties comparison of different polyetheramines in water-based drilling fluid. J. Nat. Gas Sci. Eng. 26, 99–107 (2015)

    Article  CAS  Google Scholar 

  102. A. Benchabane, K. Bekkour, Effects of anionic additives on the rheological behavior of aqueous calcium montmorillonite suspensions. Rheol. Acta 45(4), 425–434 (2006)

    Article  CAS  Google Scholar 

  103. K.Y. Choo, K. Bai, Effects of bentonite concentration and solution pH on the rheological properties and long-term stabilities of bentonite suspensions. Appl. Clay Sci. 108, 182–190 (2015)

    Article  CAS  Google Scholar 

  104. R. Jain et al., Study the effect of synthesized graft copolymer on the inhibitive water based drilling fluid system. Egypt. J. Pet. 26(4), 875–883 (2017)

    Google Scholar 

  105. V.C. Kelessidis, M. Zografou, V. Chatzistamou, Optimization of drilling fluid rheological and fluid loss properties utilizing PHPA polymer, in SPE Middle East Oil and Gas Show and Conference, 10–13 March, (Society of Petroleum Engineers, Manama, Bahrain 2013)

    Google Scholar 

  106. J.C. Estes, Role of water-soluble polymers in oil well drilling muds, in Water-soluble polymers: Beauty with performance, vol. 213, (ACS Publications, USA 1986), p. 155

    Google Scholar 

  107. J.K.M. William et al., Effect of CuO and ZnO nanofluids in xanthan gum on thermal, electrical and high pressure rheology of water-based drilling fluids. J. Pet. Sci. Eng. 117, 15–27 (2014)

    Article  CAS  Google Scholar 

  108. A.S. Ragab, A. Noah, Reduction of formation damage and fluid loss using nano-sized silica drilling fluids. Pet. Technol. Dev. J. 2, 75–88 (2014)

    Google Scholar 

  109. C.M. Perfeldt et al., Inhibition of gas hydrate nucleation and growth: Efficacy of an antifreeze protein from the longhorn beetle rhagium mordax. Energy Fuel 28(6), 3666–3672 (2014)

    Article  CAS  Google Scholar 

  110. E.D. Sloan, Fundamental principles and applications of natural gas hydrates. Nature 426(6964), 353–363 (2003)

    Article  CAS  PubMed  Google Scholar 

  111. N. Daraboina, S. Pachitsas, N. von Solms, Experimental validation of kinetic inhibitor strength on natural gas hydrate nucleation. Fuel 139, 554–560 (2015)

    Article  CAS  Google Scholar 

  112. V. Mohebbi, R.M. Behbahani, Experimental study on gas hydrate formation from natural gas mixture. J. Nat. Gas Sci. Eng. 18, 47–52 (2014)

    Article  CAS  Google Scholar 

  113. P. Englezos et al., Kinetics of formation of methane and ethane gas hydrates. Chem. Eng. Sci. 42(11), 2647–2658 (1987)

    Article  CAS  Google Scholar 

  114. Y.C. Song et al., The status of natural gas hydrate research in China: A review. Renew. Sust. Energ. Rev. 31(0), 778–791 (2014)

    Article  CAS  Google Scholar 

  115. P. Bishnoi, P. Dholabhai, Experimental study on propane hydrate equilibrium conditions in aqueous electrolyte solutions. Fluid Phase Equilib. 83, 455–462 (1993)

    Article  CAS  Google Scholar 

  116. M.S. Kamal et al., Application of various water soluble polymers in gas hydrate inhibition. Renew. Sust. Energ. Rev. 60, 206–225 (2016)

    Article  CAS  Google Scholar 

  117. E.G. Hammerschmidt, Formation of gas hydrates in natural gas transmission lines. Ind. Eng. Chem. Res. 26(8), 851–855 (1934)

    Article  CAS  Google Scholar 

  118. M.A. Kelland, History of the development of low dosage hydrate inhibitors. Energy Fuel 20(3), 825–847 (2006)

    Article  CAS  Google Scholar 

  119. X. Zhao, Z. Qiu, W. Huang, Characterization of kinetics of hydrate formation in the presence of kinetic hydrate inhibitors during Deepwater drilling. J. Nat. Gas Sci. Eng. 22, 270–278 (2015)

    Article  CAS  Google Scholar 

  120. M.A. Kelland, J.E. Iversen, Kinetic hydrate inhibition at pressures up to 760 bar in deep water drilling fluids. Energy Fuel 24(5), 3003–3013 (2010)

    Article  CAS  Google Scholar 

  121. M. Illbeigi, A. Fazlali, A.H. Mohammadi, Thermodynamic model for the prediction of equilibrium conditions of clathrate hydrates of methane+ water-soluble or-insoluble hydrate former. Ind. Eng. Chem. Res. 50(15), 9437–9450 (2011)

    Article  CAS  Google Scholar 

  122. A. Eslamimanesh et al., Phase equilibrium modeling of structure H clathrate hydrates of methane plus water “insoluble” hydrocarbon promoter using QSPR molecular approach. J. Chem. Eng. Data 56(10), 3775–3793 (2011)

    Article  CAS  Google Scholar 

  123. A. Eslamimanesh et al., Application of gas hydrate formation in separation processes: A review of experimental studies. J. Chem. Thermodyn. 46, 62–71 (2012)

    Article  CAS  Google Scholar 

  124. J. Chen et al., Insights into the formation mechanism of hydrate plugging in pipelines. Chem. Eng. Sci. 122, 284–290 (2015)

    Article  CAS  Google Scholar 

  125. M. Arjmandi et al., Is subcooling the right driving force for testing low-dosage hydrate inhibitors? Chem. Eng. Sci. 60(5), 1313–1321 (2005)

    Article  CAS  Google Scholar 

  126. H. Tavasoli et al., Prediction of gas hydrate formation condition in the presence of thermodynamic inhibitors with the Elliott–Suresh–Donohue Equation of State. J. Pet. Sci. Eng. 77(1), 93–103 (2011)

    Article  CAS  Google Scholar 

  127. Z. Long et al., Phase equilibria of ethane hydrate in MgCl2 aqueous solutions. J. Chem. Eng. Data 55(8), 2938–2941 (2010)

    Article  CAS  Google Scholar 

  128. A.H. Mohammadi, D. Richon, Gas hydrate phase equilibrium in the presence of ethylene glycol or methanol aqueous solution. Ind. Eng. Chem. Res. 49(18), 8865–8869 (2010)

    Article  CAS  Google Scholar 

  129. M. Sun, A. Firoozabadi, New surfactant for hydrate anti-agglomeration in hydrocarbon flowlines and seabed oil capture. J. Colloid Interface Sci. 402, 312–319 (2013)

    Article  CAS  PubMed  Google Scholar 

  130. M.A. Kelland et al., Studies on some alkylamide surfactant gas hydrate anti-agglomerants. Chem. Eng. Sci. 61(13), 4290–4298 (2006)

    Article  CAS  Google Scholar 

  131. E.D. Sloan, A changing hydrate paradigm – From apprehension to avoidance to risk management. Fluid Phase Equilib. 228, 67–74 (2005)

    Article  CAS  Google Scholar 

  132. Z. Huo et al., Hydrate plug prevention by anti-agglomeration. Chem. Eng. Sci. 56(17), 4979–4991 (2001)

    Article  CAS  Google Scholar 

  133. J.W. Lachance, E.D. Sloan, C.A. Koh, Determining gas hydrate kinetic inhibitor effectiveness using emulsions. Chem. Eng. Sci. 64(1), 180–184 (2009)

    Article  CAS  Google Scholar 

  134. P. Naeiji, A. Arjomandi, F. Varaminian, Amino acids as kinetic inhibitors for tetrahydrofuran hydrate formation: Experimental study and kinetic modeling. J. Nat. Gas Sci. Eng. 21, 64–70 (2014)

    Article  CAS  Google Scholar 

  135. H. Zeng et al., Differences in nucleator adsorption may explain distinct inhibition activities of two gas hydrate kinetic inhibitors. Chem. Eng. Sci. 63(15), 4026–4029 (2008)

    Article  CAS  Google Scholar 

  136. L. Del Villano, M.A. Kelland, Tetrahydrofuran hydrate crystal growth inhibition by hyperbranched poly (ester amide)s. Chem. Eng. Sci. 64(13), 3197–3200 (2009)

    Article  CAS  Google Scholar 

  137. R.W. Hawtin, P.M. Rodger, Polydispersity in oligomeric low dosage gas hydrate inhibitors. J. Mater. Chem. 16(20), 1934–1934 (2006)

    Article  CAS  Google Scholar 

  138. T.Y. Makogon, E.D. Sloan, Mechanism of kinetic hydrate inhibitors

    Google Scholar 

  139. H. Zeng, V.K. Walker, J.A. Ripmeester, Approaches to the design of better low-dosage gas hydrate inhibitors. Angew. Chem. – Int. Ed. 46(28), 5402–5404 (2007)

    Article  CAS  Google Scholar 

  140. Z.R. Chong et al., Review of natural gas hydrates as an energy resource: Prospects and challenges. Appl. Energy 162, 1633–1652 (2016)

    Article  Google Scholar 

  141. H. Sharifi, J. Ripmeester, P. Englezos, Recalcitrance of gas hydrate crystals formed in the presence of kinetic hydrate inhibitors. J. Nat. Gas Sci. Eng. 35, 1573 (2016)

    Article  CAS  Google Scholar 

  142. M. Tariq et al., Experimental and DFT approach on the determination of natural gas hydrate equilibrium with the use of excess N2 and choline chloride ionic liquid as an inhibitor. Energy Fuel 30(4), 2821–2832 (2016)

    Article  CAS  Google Scholar 

  143. M.F. Qureshi et al., Gas hydrate prevention and flow assurance by using mixtures of ionic liquids and Synergent compounds: Combined kinetics and thermodynamic approach. Energy Fuel 30(4), 3541–3548 (2016)

    Article  CAS  Google Scholar 

  144. E.F. May et al., Quantitative kinetic inhibitor comparisons and memory effect measurements from hydrate formation probability distributions. Chem. Eng. Sci. 107, 1–12 (2014)

    Article  CAS  Google Scholar 

  145. N. Daraboina et al., Natural gas hydrate formation and decomposition in the presence of kinetic inhibitors. 2. Stirred reactor experiments. Energy Fuel 25(10), 4384–4391 (2011)

    Article  CAS  Google Scholar 

  146. T. Svartaas, M. Kelland, L. Dybvik, Experiments related to the performance of gas hydrate kinetic inhibitors. Ann. N. Y. Acad. Sci. 912(1), 744–752 (2000)

    Article  CAS  Google Scholar 

  147. P.C. Chua, M.A. Kelland, Tetra (iso-hexyl) ammonium bromide – the most powerful quaternary ammonium-based tetrahydrofuran crystal growth inhibitor and synergist with polyvinylcaprolactam kinetic gas hydrate inhibitor. Energy Fuel 26(2), 1160–1168 (2012)

    Article  CAS  Google Scholar 

  148. P.C. Chua et al., Kinetic hydrate inhibition of poly (N-isopropylmethacrylamide) s with different tacticities. Energy Fuel 26(6), 3577–3585 (2012)

    Article  CAS  Google Scholar 

  149. K. McNamee, Evaluation of hydrate nucleation trends and kinetic hydrate inhibitor performance by high-pressure differential scanning calorimetry, in Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011) (Edinburgh, 2011)

    Google Scholar 

  150. N. Daraboina, C. Malmos, N. von Solms, Investigation of kinetic hydrate inhibition using a high pressure micro differential scanning calorimeter. Energy Fuel 27(10), 5779–5786 (2013)

    Article  CAS  Google Scholar 

  151. N. Daraboina, C. Malmos, N. Von Solms, Synergistic kinetic inhibition of natural gas hydrate formation. Fuel 108, 749–757 (2013)

    Article  CAS  Google Scholar 

  152. J. Peytavy, J. Monfort, C. Gaillard, Investigation of methane hydrate formation in a recirculating flow loop: Modeling of the kinetics and tests of efficiency of chemical additives on hydrate inhibition. Oil Gas Sci. Technol. 54(3), 365–374 (1999)

    Article  Google Scholar 

  153. M.R. Talaghat, Effect of various types of equations of state for prediction of simple gas hydrate formation with or without the presence of kinetic inhibitors in a flow mini-loop apparatus. Fluid Phase Equilib. 286(1), 33–42 (2009)

    Article  CAS  Google Scholar 

  154. P. Notz, et al., The application of kinetic inhibitors to gas hydrate problems, in Offshore Technology Conference, 1–4 May, Houston, Texas 1995

    Google Scholar 

  155. K.-L. Yan et al., Flow characteristics and rheological properties of natural gas hydrate slurry in the presence of anti-agglomerant in a flow loop apparatus. Chem. Eng. Sci. 106, 99–108 (2014)

    Article  CAS  Google Scholar 

  156. J.-L. Peytavy, P. Glénat, P. Bourg, Qualification of low dose hydrate inhibitors (LDHIs): Field cases studies demonstrate the good reproducibility of the results obtained from flow loops.. Proceedings of the 6th International Conference on Gas hydrates, Vancouver, Canada. Vol. 5499. 2008.

    Google Scholar 

  157. S. Jerbi et al., Characterization of CO 2 hydrate formation and dissociation kinetics in a flow loop. Int. J. Refrig. 33(8), 1625–1631 (2010)

    Article  CAS  Google Scholar 

  158. L. Frostman, Anti-agglomerant hydrate inhibitors for prevention of hydrate plugs in deepwater systems, in SPE Annual Technical Conference and Exhibition, 1–4 October, (Society of Petroleum Engineers, Dallas, Texas 2000)

    Google Scholar 

  159. M.R. Talaghat, F. Esmaeilzadeh, J. Fathikaljahi, Experimental and theoretical investigation of double gas hydrate formation in the presence or absence of kinetic inhibitors in a flow mini-loop apparatus. Chem. Eng. Technol. 32(5), 805–819 (2009)

    Article  CAS  Google Scholar 

  160. H. Ohno et al., Raman studies of methane− ethane hydrate metastability. Chem. Eur. J. 113(9), 1711–1716 (2009)

    CAS  Google Scholar 

  161. J.-W. Lee, J. Lee, S.-P. Kang, 13 C NMR spectroscopies and formation kinetics of gas hydrates in the presence of monoethylene glycol as an inhibitor. Chem. Eng. Sci. 104, 755–759 (2013)

    Article  CAS  Google Scholar 

  162. N. Daraboina et al., Assessing the performance of commercial and biological gas hydrate inhibitors using nuclear magnetic resonance microscopy and a stirred autoclave. Fuel 105, 630–635 (2013)

    Article  CAS  Google Scholar 

  163. J. Yang, B. Tohidi, Characterization of inhibition mechanisms of kinetic hydrate inhibitors using ultrasonic test technique. Chem. Eng. Sci. 66(3), 278–283 (2011)

    Article  CAS  Google Scholar 

  164. M. Karamoddin, F. Varaminian, Performance of hydrate inhibitors in tetrahydrofuran hydrate formation by using measurement of electrical conductivity. J. Ind. Eng. Chem. 20(5), 3815–3820 (2014)

    Article  CAS  Google Scholar 

  165. J. Tse et al., The low frequency vibrations in clathrate hydrates. J. Chem. Phys. 107(21), 9271–9274 (1997)

    Article  CAS  Google Scholar 

  166. R.E. Westacott, P.M. Rodger, A local harmonic study of clusters of water and methane. J. Chem. Soc. Faraday Trans. 94(23), 3421–3426 (1998)

    Article  Google Scholar 

  167. H. Tanaka, Y. Tamai, K. Koga, Large thermal expansivity of clathrate hydrates. J. Phys. Chem. B 101(33), 6560–6565 (1997)

    Article  CAS  Google Scholar 

  168. B. Kvamme, Molecular dynamics simulations as a tool for the selection of candidates for kinetic hydrate inhibitors, in The Eleventh International Offshore and Polar Engineering Conference, 17–22 June, Stavanger, Norway 2001

    Google Scholar 

  169. L.A. Baez, P. Clancy, Computer simulation of the crystal growth and dissolution of natural gas hydratesa. Ann. N. Y. Acad. Sci. 715(1), 177–186 (1994)

    Article  CAS  Google Scholar 

  170. B. Kvamme, T. Kuznetsova, K. Aasoldsen, Molecular simulations as a tool for selection of kinetic hydrate inhibitors. Mol. Simul. 31(14–15), 1083–1094 (2005)

    Article  CAS  Google Scholar 

  171. B. Kvamme, T. Kuznetsova, K. Aasoldsen, Molecular dynamics simulations for selection of kinetic hydrate inhibitors. J. Mol. Graph. Model. 23(6), 524–536 (2005)

    Article  CAS  PubMed  Google Scholar 

  172. M.R. Talaghat, Evaluation of various types equations of state on prediction of rate of hydrate formation for binary gas mixtures in the presence or absence of kinetic hydrate inhibitors in a flow mini-loop apparatus. Fluid Phase Equilib. 347, 45–53 (2013)

    Article  CAS  Google Scholar 

  173. B.B. KVAMME, G. Huseby, O.K. Forrisdahl, Molecular dynamics simulations of PVP kinetic inhibitor in liquid water and hydrate/liquid water systems. Mol. Phys. 90(6), 979–992 (1997)

    Article  CAS  Google Scholar 

  174. E. Sloan, F. Fleyfel, A molecular mechanism for gas hydrate nucleation from ice. AICHE J. 37(9), 1281–1292 (1991)

    Article  CAS  Google Scholar 

  175. H. Jiang, K.D. Jordan, C. Taylor, Molecular dynamics simulations of methane hydrate using polarizable force fields. J. Phys. Chem. B 111(23), 6486–6492 (2007)

    Article  CAS  PubMed  Google Scholar 

  176. L.C. Jacobson, W. Hujo, V. Molinero, Amorphous precursors in the nucleation of clathrate hydrates. J. Am. Chem. Soc. 132(33), 11806–11811 (2010)

    Article  CAS  PubMed  Google Scholar 

  177. M. Ota, Y. Qi, Numerical simulation of nucleation process of clathrate hydrates. JSME Int. J. Ser. B, Fluids Therm. Eng. 43(4), 719–726 (2000)

    Article  Google Scholar 

  178. J. Vatamanu, P.G. Kusalik, Molecular insights into the heterogeneous crystal growth of si methane hydrate. J. Phys. Chem. B 110(32), 15896–15904 (2006)

    Article  CAS  PubMed  Google Scholar 

  179. C. Moon, P.C. Taylor, P.M. Rodger, Molecular dynamics study of gas hydrate formation. J. Am. Chem. Soc. 125(16), 4706–4707 (2003)

    Article  CAS  PubMed  Google Scholar 

  180. B.J. Anderson et al., Properties of inhibitors of methane hydrate formation via molecular dynamics simulations. J. Am. Chem. Soc. 127(50), 17852–17862 (2005)

    Article  CAS  PubMed  Google Scholar 

  181. C. Moon, R. Hawtin, P.M. Rodger, Nucleation and control of clathrate hydrates: Insights from simulation. Faraday Discuss. 136, 367–382 (2007)

    Article  CAS  PubMed  Google Scholar 

  182. M.T. Storr et al., Kinetic inhibitor of hydrate crystallization. J. Am. Chem. Soc. 126(5), 1569–1576 (2004)

    Article  CAS  PubMed  Google Scholar 

  183. Z. Zheng, Molecular dynamics simulations on the inhibition of methane hydrates. (2010). Graduate Theses and Dissertations. Iowa State University 11911. https://lib.dr.iastate.edu/etd/11911

  184. S.-P. Kang et al., Experimental measurement of the induction time of natural gas hydrate and its prediction with polymeric kinetic inhibitor. Chem. Eng. Sci. 116, 817–823 (2014)

    Article  CAS  Google Scholar 

  185. R. O’Reilly et al., Crystal growth inhibition of tetrahydrofuran hydrate with poly (N-vinyl piperidone) and other poly (N-vinyl lactam) homopolymers. Chem. Eng. Sci. 66(24), 6555–6560 (2011)

    Article  CAS  Google Scholar 

  186. M.A. Kelland et al., A new class of kinetic hydrate inhibitor. Ann. N. Y. Acad. Sci. 912(1), 281–293 (2000)

    Article  CAS  Google Scholar 

  187. K.S. Colle, R.H. Oelfke, M.A. Kelland, Method for inhibiting hydrate formation, Google Patents. 1999

    Google Scholar 

  188. U. Klomp, Method for inhibiting the pluggins of conduits by gas hydrates, Google Patents. 2003

    Google Scholar 

  189. P. Froehling, Development of DSM’s Hybrane® hyperbranched polyesteramides. J. Polym. Sci. A Polym. Chem. 42(13), 3110–3115 (2004)

    Article  CAS  Google Scholar 

  190. M.F. Mady et al., The first kinetic hydrate inhibition investigation on fluorinated polymers: Poly (fluoroalkylacrylamide)s. Chem. Eng. Sci. 119, 230–235 (2014)

    Article  CAS  Google Scholar 

  191. M.R. Talaghat, Enhancement of the performance of modified starch as a kinetic hydrate inhibitor in the presence of polyoxides for simple gas hydrate formation in a flow mini-loop apparatus. J. Nat. Gas Sci. Eng. 18, 7–12 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah S. Sultan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shahzad Kamal, M., Sultan, A.S. (2019). Enhanced Oil Recovery. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95987-0_29

Download citation

Publish with us

Policies and ethics