Skip to main content

Desalination

  • Reference work entry
  • First Online:
Functional Polymers

Abstract

Polymeric membranes are currently extensively investigated for water purification. Strong motivations behind this are due to their unique structural characteristics such as high mechanical, thermal, and chemical stabilities. They are also flexible in nature in such a way that one can easily fold them into hollow fiber or flat sheet. Based on such features, an excellent pollutant selectivity and permeability of water have been observed; thereby a remarkable separation capacity is expected. This chapter covers a comprehensive discussion on the fabrication of both synthetic and biopolymeric membranes for water desalination. Fundamental knowledge on structures, types, functionalizations, and optimizations of different advanced polymer-based membranes, especially microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO), were discussed in details with their synthesis procedures. MF and UF membranes are suitable to retain larger organic and inorganic molecules, whereas NF and RO are popularly used to purify salty water. MF is usually prepared by cellulose acetate, polysulfone, poly(ether sulfone), and poly(vinylidene fluoride). Secondly, UF membrane is made by polysulfone, poly(ether sulfone), poly(vinylidene fluoride), poly(acrylonitrile), and poly(etherimide). Thirdly, polysulfone, polyamide poly(vinylidene fluoride), chitosan, and aquaporin are the major building blocks for NF membranes. Finally, cellulose acetate, polysulfone, and aromatic polyamides are the major constituents of RO membranes. Carbon nanotube is highlighted as a part of polymers’ composites membrane with respect to improved or novel performance, and the potential implications of those developments for future membrane technology are discussed. Finally, some of the research gaps and future prospects of polymeric membrane technologies are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

°C:

Degree Celsius

ABA:

Triblock copolymer with a hydrophobic B segment flanked by two identical hydrophilic A segments

AQP0:

Mammalian aquaporin 0 isoform

AQP1:

Mammalian aquaporin 1 isoform

AQP3:

Mammalian aquaglyceroporin 3 isoform

AQP4:

Mammalian aquaporin 4 isoform

AqpZ:

Bacterial (E. coli) aquaporin Z isoform

CA:

Cellulose acetate

cm3/cm2/s:

Cubic centemeter per centemeter square per second

CNT:

Carbon nanotube

CNT:

Carbon nanotube

COD:

Chemical oxygen demand

CTA:

Cellulose triacetate

DOPC:

1,2-Dioleoyl-sn-glycero-3-phosphocholine

DOTAP:

2-Dioleoyl-3-trimethylammonium-propane (chloride salt)

g/mol:

Gram per mol

GFD:

Gallons per square foot per day

GO:

Graphene oxide

GS:

Gas separation

kDA:

Kilo Dalton

kg h−1 m−2:

Kilogram per hour per meter sqaure

kg/m3·s:

Kilogram per cubic meter second

L m−2 h:

Liter per meter square hour

L m−2 h−1 bar−1:

Liter per meter square per hour per bar

L m−2 h−1:

Liter per meter square per hour

L/h·m2:

Liter per hour meter square

L/m2h:

Liter per meter square per hour

L/min:

Liter per minute

m/s:

Meter per second

m2 s−1:

Meter square per second

m3 m−2 day−1:

Cubic meter per meter square per day

MF:

Microfiltration

mL/cm2s:

Mililitre per centemeter square per second

mm:

Millimeter

MM:

Mixed matrix

MMCNT:

Mixed matrix carbon nanotube

MPa:

Megapascal

mPa−1 s−1:

Meter per pascal per second

MW:

Molecular weight

MWCNT:

Multiwalled carbon nanotubes

NF:

Nanofiltration

NIPS:

Nonsolvent-induced phase separation

nm:

Nanometer

ppm:

Parts per million

PVDF:

Polyvinylidene di(fluoride)

RO:

Reverse osmosis

SPES:

Sulfonated polyethersulfones

SWCNT:

Single-walled carbon nanotubes

TFC:

Thin film composite

TIPS:

Thermally induced phase separation

UF:

Ultrafiltration

VA:

Vertically aligned

VACNT:

Vertical aligned carbon nanotube

VIPS:

Vapor-induced phase separation

WP:

Water permeation

μm:

Micrometer

References

  1. V.K. Gupta, I. Ali, T.A. Saleh, A. Nayak, S. Agarwal, Chemical treatment technologies for waste-water recycling—An overview. RSC Adv. 2(16), 6380–6388 (2012)

    Article  CAS  Google Scholar 

  2. M.M. Pendergast, E.M. Hoek, A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 4(6), 1946–1971 (2011)

    Article  CAS  Google Scholar 

  3. W. Koros, G. Fleming, Membrane-based gas separation. J. Memb. Sci. 83(1), 1–80 (1993)

    Article  CAS  Google Scholar 

  4. K. Wangnick, IDA Worldwide Desalting Plants Inventory. Report No. 18. Prepared and published by Wangnick Consulting. Wangnick Consulting GmbH Kuhstedtermoor, 19A, D-27442 Gnarrenburg, Germany, 2004

    Google Scholar 

  5. M. Ulbricht, Advanced functional polymer membranes. Polymer 47(7), 2217–2262 (2006)

    Article  CAS  Google Scholar 

  6. I. Pinnau, B. Freeman, Formation and modification of polymeric membranes: Overview, in Membrane Formation and Modification, vol. 744 (American Chemical Society, Washington, DC, 2000), pp. 1–22

    Google Scholar 

  7. M. C. Porter, Handbook of industrial membrane technology. United States: N. p., (1989). Web

    Google Scholar 

  8. I. Pinnau, W.J. Koros, A qualitative skin layer formation mechanism for membranes made by dry/wet phase inversion. J. Polym. Sci. B Polym. Phys. 31(4), 419–427 (1993)

    Article  CAS  Google Scholar 

  9. J. Ren, R. Wang, Preparation of polymeric membranes, in Membrane and Desalination Technologies (Springer, New York, 2011), pp. 47–100

    Google Scholar 

  10. I. Pinnau, B.D. Freeman, Advanced materials for membrane separations (American Chemical Society, Washington, DC, 2004)

    Book  Google Scholar 

  11. S. Nunes, K. V. Peinemann, Membrane Market, in Membrane Technology: in the Chemical Industry (Wiley, Weinheim, 2001), pp. 4–5

    Google Scholar 

  12. A. Wilkinson, A. McNaught, IUPAC Compendium of Chemical Terminology, (the “Gold Book”) (Blackwell Scientific Publications, Oxford, 1997)

    Google Scholar 

  13. P. Bernardo, E. Drioli, G. Golemme, Membrane gas separation: A review/state of the art. Ind. Eng. Chem. Res. 48(10), 4638–4663 (2009)

    Article  CAS  Google Scholar 

  14. M. Hirose, H. Ito, M. Maeda, K. Tanaka, Highly permeable composite reverse osmosis membrane, method of producing the same, and method of using the same. Google Patents (1997)

    Google Scholar 

  15. M. Paul, H.B. Park, B.D. Freeman, A. Roy, J.E. McGrath, J. Riffle, Synthesis and crosslinking of partially disulfonated poly (arylene ether sulfone) random copolymers as candidates for chlorine resistant reverse osmosis membranes. Polymer 49(9), 2243–2252 (2008)

    Article  CAS  Google Scholar 

  16. P. Singh, P. Ray, P. Kallem, S. Maurya, G. Trivedi, Structure and performance of nanofiltration membrane prepared in a large-scale at CSIR-CSMCRI using indigenous coating unit. Desalination 288, 8–15 (2012)

    Article  CAS  Google Scholar 

  17. J.-M. Laine, J.P. Hagstrom, M.M. Clark, J. Mallevialle, Effects of ultrafiltration membrane composition. J. Am. Water Works Assoc. 81, 61–67 (1989)

    Article  CAS  Google Scholar 

  18. Y. Wang, J.-H. Kim, K.-H. Choo, Y.-S. Lee, C.-H. Lee, Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization. J. Memb. Sci. 169(2), 269–276 (2000)

    Article  CAS  Google Scholar 

  19. R. Kesting, The four tiers of structure in integrally skinned phase inversion membranes and their relevance to the various separation regimes. J. Appl. Polym. Sci. 41(11–12), 2739–2752 (1990)

    Article  CAS  Google Scholar 

  20. G. Guillen, E.M. Hoek, Modeling the impacts of feed spacer geometry on reverse osmosis and nanofiltration processes. Chem. Eng. J. 149(1), 221–231 (2009)

    Article  CAS  Google Scholar 

  21. M. Mondor, C. Moresoli, Experimental verification of the shear-induced hydrodynamic diffusion model of crossflow microfiltration, with consideration of the transmembrane pressure axial variation. J. Memb. Sci. 175(1), 119–137 (2000)

    Article  CAS  Google Scholar 

  22. S. Madaeni, N. Ghaemi, Characterization of self-cleaning RO membranes coated with TiO 2 particles under UV irradiation. J. Memb. Sci. 303(1), 221–233 (2007)

    Article  CAS  Google Scholar 

  23. S. Madaeni, S. Zinadini, V. Vatanpour, Preparation of superhydrophobic nanofiltration membrane by embedding multiwalled carbon nanotube and polydimethylsiloxane in pores of microfiltration membrane. Sep. Purif. Technol. 111, 98–107 (2013)

    Article  CAS  Google Scholar 

  24. L. Liu, M. Son, S. Chakraborty, C. Bhattacharjee, H. Choi, Fabrication of ultra-thin polyelectrolyte/carbon nanotube membrane by spray-assisted layer-by-layer technique: Characterization and its anti-protein fouling properties for water treatment. Desalin. Water Treat. 51(31–33), 6194–6200 (2013)

    Article  CAS  Google Scholar 

  25. G. Song, A. Sengupta, X. Qian, S.R. Wickramasinghe, Investigation on suppression of fouling by magnetically responsive nanofiltration membranes. Separation and Purification Technology. 205, 94–104 (2018)

    Article  CAS  Google Scholar 

  26. P. Wu, M. Imai, Novel biopolymer composite membrane involved with selective mass transfer and excellent water permeability, in Advancing Desalination (INTECH Open Access Publisher, Rijeka, 2012)

    Google Scholar 

  27. R.W. Baker, Membrane technology (Wiley Online Library, 2000)

    Google Scholar 

  28. S. Loeb, S. Sourirajan, High-flow semipermeable membranes for separation of water from saline solutions. Adv. Chem. Ser. 38, 117 (1961)

    Article  Google Scholar 

  29. R. Kesting, S. Sourirajan, in Reverse Osmosis and Synthetic Membranes: Theory-Technology-Engineering, ed. by S. Sourirajan (National Research Council Canada, Ottawa, 1977) pp. 89–110

    Google Scholar 

  30. A. Sagle, B. Freeman, Fundamentals of membranes for water treatment, in The future of desalination in Texas, vol. 2 (Texas Water Development Board, Texas, 2004), pp. 137–154

    Google Scholar 

  31. Y. Wen-E, Y. Pu-Chen, W. Yi-Kuan, Modified cellulose acetate flat membranes for desalination. J. Polym. Sci. A: Polym. Chem. 26(10), 2683–2694 (1988)

    Article  Google Scholar 

  32. M.A. El-Taraboulsi, M.A. Mandil, H.E.-S.M. Ali, Reverse osmosis studies on desalination membranes formed from chemically modified cellulose acetate. Carbohydr. Res. 13(1), 83–88 (1970)

    Article  CAS  Google Scholar 

  33. D. Parker, J. Bussink, H. T. Grampel, G. W. Wheatley, E. U. Dorf, E. Ostlinning, K. Reinking, F. Schubert, O. Jünger, R. Wagener, Polymers, High-Temperature, in Ullmann’s Encyclopedia of Industrial Chemistry (Verlag Chemie, Weinheim, 2002)

    Google Scholar 

  34. H.-G. Yuan, T.-Y. Liu, Y.-Y. Liu, X.-L. Wang, A homogeneous polysulfone nanofiltration membrane with excellent chlorine resistance for removal of Na2SO4 from brine in chloralkali process. Desalination 379, 16–23 (2016)

    Article  CAS  Google Scholar 

  35. M.A. Hickner, H. Ghassemi, Y.S. Kim, B.R. Einsla, J.E. McGrath, Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 104(10), 4587–4612 (2004)

    Article  CAS  PubMed  Google Scholar 

  36. F. Fayyazi, E.A. Feijani, H. Mahdavi, Chemically modified polysulfone membrane containing palladium nanoparticles: Preparation, characterization and application as an efficient catalytic membrane for Suzuki reaction. Chem. Eng. Sci. 134, 549–554 (2015)

    Article  CAS  Google Scholar 

  37. W. Wang, X. Huang, H. Yin, W. Fan, T. Zhang, L. Li, C. Mao, Polyethylene glycol acrylate-grafted polysulphone membrane for artificial lungs: Plasma modification and haemocompatibility improvement. Biomed. Mater. 10(6), 065022 (2015)

    Article  PubMed  CAS  Google Scholar 

  38. Y. Zhang, C. Yu, Z. Lü, S. Yu, Modification of polysulfone ultrafiltration membrane by sequential deposition of cross-linked poly (vinyl alcohol)(PVA) and sodium carboxymethyl cellulose (CMCNa) for nanofiltration. Desalin. Water Treat. 57(38), 1–12 (2015)

    Article  CAS  Google Scholar 

  39. A. Ahmad, A. Abdulkarim, B. Ooi, S. Ismail, Recent development in additives modifications of polyethersulfone membrane for flux enhancement. Chem. Eng. J. 223, 246–267 (2013)

    Article  CAS  Google Scholar 

  40. M.S.A. Rahaman, A.F. Ismail, A. Mustafa, A review of heat treatment on polyacrylonitrile fiber. Polym. Degrad. Stab. 92(8), 1421–1432 (2007)

    Article  CAS  Google Scholar 

  41. B.P. Tripathi, N.C. Dubey, R. Subair, S. Choudhury, M. Stamm, Enhanced hydrophilic and antifouling polyacrylonitrile membrane with polydopamine modified silica nanoparticles. RSC Adv. 6(6), 4448–4457 (2016)

    Article  CAS  Google Scholar 

  42. B. Liang, W. Zhan, G. Qi, S. Lin, Q. Nan, Y. Liu, B. Cao, K. Pan, High performance graphene oxide/polyacrylonitrile composite pervaporation membranes for desalination applications. J. Mater. Chem. A 3(9), 5140–5147 (2015)

    Article  CAS  Google Scholar 

  43. Y. Xiao, X. Liu, D. Wang, Y. Lin, Y. Han, X. Wang, Feasibility of using an innovative PVDF MF membrane prior to RO for reuse of a secondary municipal effluent. Desalination 311, 16–23 (2013)

    Article  CAS  Google Scholar 

  44. Z. Zhao, J. Zheng, M. Wang, H. Zhang, C.C. Han, High performance ultrafiltration membrane based on modified chitosan coating and electrospun nanofibrous PVDF scaffolds. J. Memb. Sci. 394, 209–217 (2012)

    Article  CAS  Google Scholar 

  45. G.-d. Kang, Y.-m. Cao, Application and modification of poly (vinylidene fluoride)(PVDF) membranes–a review. J. Memb. Sci. 463, 145–165 (2014)

    Article  CAS  Google Scholar 

  46. E.-S. Kim, Y.J. Kim, Q. Yu, B. Deng, Preparation and characterization of polyamide thin-film composite (TFC) membranes on plasma-modified polyvinylidene fluoride (PVDF). J. Memb. Sci. 344(1), 71–81 (2009)

    Article  CAS  Google Scholar 

  47. S. Liang, Y. Kang, A. Tiraferri, E.P. Giannelis, X. Huang, M. Elimelech, Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via postfabrication grafting of surface-tailored silica nanoparticles. ACS Appl. Mater. Interfaces 5(14), 6694–6703 (2013)

    Article  CAS  PubMed  Google Scholar 

  48. W.R. Bowen, S.Y. Cheng, T.A. Doneva, D.L. Oatley, Manufacture and characterisation of polyetherimide/sulfonated poly (ether ether ketone) blend membranes. J. Memb. Sci. 250(1), 1–10 (2005)

    Article  CAS  Google Scholar 

  49. Y.L. Thuyavan, N. Anantharaman, G. Arthanareeswaran, A. Ismail, R. Mangalaraja, Preparation and characterization of TiO 2-sulfonated polymer embedded polyetherimide membranes for effective desalination application. Desalination 365, 355–364 (2015)

    Article  CAS  Google Scholar 

  50. Y.-F. Mi, Q. Zhao, Y.-L. Ji, Q.-F. An, C.-J. Gao, A novel route for surface zwitterionic functionalization of polyamide nanofiltration membranes with improved performance. J. Memb. Sci. 490, 311–320 (2015)

    Article  CAS  Google Scholar 

  51. Y. Hu, K. Lu, F. Yan, Y. Shi, P. Yu, S. Yu, S. Li, C. Gao, Enhancing the performance of aromatic polyamide reverse osmosis membrane by surface modification via covalent attachment of polyvinyl alcohol (PVA). J. Memb. Sci. 501, 209–219 (2016)

    Article  CAS  Google Scholar 

  52. X. Li, W. Yang, H. Li, Y. Wang, M.M. Bubakir, Y. Ding, Y. Zhang, Water filtration properties of novel composite membranes combining solution electrospinning and needleless melt electrospinning methods. J. Appl. Polym. Sci. 132(10), 1–8 (2015)

    Google Scholar 

  53. S.A.A.N. Nasreen, S. Sundarrajan, S.A.S. Nizar, R. Balamurugan, S. Ramakrishna, Advancement in electrospun nanofibrous membranes modification and their application in water treatment. Membranes 3(4), 266–284 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. F. Soyekwo, Q.G. Zhang, C. Deng, Y. Gong, A.M. Zhu, Q.L. Liu, Highly permeable cellulose acetate nanofibrous composite membranes by freeze-extraction. J. Memb. Sci. 454, 339–345 (2014)

    Article  CAS  Google Scholar 

  55. T. Sheng, H. Chen, S. Xiong, X. Chen, Y. Wang, Atomic layer deposition of polyimide on microporous polyethersulfone membranes for enhanced and tunable performances. AICHE J. 60(10), 3614–3622 (2014)

    Article  CAS  Google Scholar 

  56. K. Pan, R. Ren, B. Liang, L. Li, H. Li, B. Cao, Synthesis of pH-responsive polyethylene terephthalate track-etched membranes by grafting hydroxyethyl-methacrylate using atom-transfer radical polymerization method. J. Appl. Polym. Sci. 131(20), 40912 (2014)

    Google Scholar 

  57. E. Eren, A. Sarihan, B. Eren, H. Gumus, F.O. Kocak, Preparation, characterization and performance enhancement of polysulfone ultrafiltration membrane using PBI as hydrophilic modifier. J. Memb. Sci. 475, 1–8 (2015)

    Article  CAS  Google Scholar 

  58. X. Fan, Y. Su, X. Zhao, Y. Li, R. Zhang, J. Zhao, Z. Jiang, J. Zhu, Y. Ma, Y. Liu, Fabrication of polyvinyl chloride ultrafiltration membranes with stable antifouling property by exploring the pore formation and surface modification capabilities of polyvinyl formal. J. Memb. Sci. 464, 100–109 (2014)

    Article  CAS  Google Scholar 

  59. T. Mohammadi, E. Saljoughi, Effect of production conditions on morphology and permeability of asymmetric cellulose acetate membranes. Desalination 243(1), 1–7 (2009)

    Article  CAS  Google Scholar 

  60. N. Pezeshk, D. Rana, R. Narbaitz, T. Matsuura, Novel modified PVDF ultrafiltration flat-sheet membranes. J. Memb. Sci. 389, 280–286 (2012)

    Article  CAS  Google Scholar 

  61. T. Shibutani, T. Kitaura, Y. Ohmukai, T. Maruyama, S. Nakatsuka, T. Watabe, H. Matsuyama, Membrane fouling properties of hollow fiber membranes prepared from cellulose acetate derivatives. J. Memb. Sci. 376(1), 102–109 (2011)

    Article  CAS  Google Scholar 

  62. M. Sinha, M. Purkait, Increase in hydrophilicity of polysulfone membrane using polyethylene glycol methyl ether. J. Memb. Sci. 437, 7–16 (2013)

    Article  CAS  Google Scholar 

  63. A. Qin, X. Li, X. Zhao, D. Liu, C. He, Preparation and characterization of nano-chitin whisker reinforced PVDF membrane with excellent antifouling property. J. Memb. Sci. 480, 1–10 (2015)

    Article  CAS  Google Scholar 

  64. N. Derlon, J. Mimoso, T. Klein, S. Koetzsch, E. Morgenroth, Presence of biofilms on ultrafiltration membrane surfaces increases the quality of permeate produced during ultra-low pressure gravity-driven membrane filtration. Water Res. 60, 164–173 (2014)

    Article  CAS  PubMed  Google Scholar 

  65. M. Sinha, M. Purkait, Preparation and characterization of novel pegylated hydrophilic pH responsive polysulfone ultrafiltration membrane. J. Memb. Sci. 464, 20–32 (2014)

    Article  CAS  Google Scholar 

  66. E. Saljoughi, S.M. Mousavi, Preparation and characterization of novel polysulfone nanofiltration membranes for removal of cadmium from contaminated water. Sep. Purif. Technol. 90, 22–30 (2012)

    Article  CAS  Google Scholar 

  67. E.M. Van Wagner, A.C. Sagle, M.M. Sharma, Y.-H. La, B.D. Freeman, Surface modification of commercial polyamide desalination membranes using poly (ethylene glycol) diglycidyl ether to enhance membrane fouling resistance. J. Memb. Sci. 367(1), 273–287 (2011)

    Article  CAS  Google Scholar 

  68. J.O. Abitoye, P. Mukherjee, K. Jones, Ion implantation: Effect on flux and rejection properties of NF membranes. Environ. Sci. Technol. 39(17), 6487–6493 (2005)

    Article  CAS  PubMed  Google Scholar 

  69. A. Ghosh, R. Bindal, S. Prabhakar, P. Tewari, Composite polyamide reverse osmosis (RO) membranes–recent developments and future directions. BARC Newslett. 321, 43–51 (2011)

    CAS  Google Scholar 

  70. S.F. Anis, B.S. Lalia, R. Hashaikeh, Controlling swelling behavior of poly (vinyl) alcohol via networked cellulose and its application as a reverse osmosis membrane. Desalination 336, 138–145 (2014)

    Article  CAS  Google Scholar 

  71. G. Sabad e, S. Waheed, A. Ahmad, S.M. Khan, M. Hussain, T. Jamil, M. Zuber, Synthesis, characterization and permeation performance of cellulose acetate/polyethylene glycol-600 membranes loaded with silver particles for ultra low pressure reverse osmosis. J. Taiwan Inst. Chem. Eng. 57, 129–138 (2015)

    Article  CAS  Google Scholar 

  72. H.I. Kim, S.S. Kim, Plasma treatment of polypropylene and polysulfone supports for thin film composite reverse osmosis membrane. J. Memb. Sci. 286(1), 193–201 (2006)

    Article  CAS  Google Scholar 

  73. A.K. Ghosh, E.M. Hoek, Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes. J. Memb. Sci. 336(1), 140–148 (2009)

    Article  CAS  Google Scholar 

  74. J. Wei, X. Jian, C. Wu, S. Zhang, C. Yan, Influence of polymer structure on thermal stability of composite membranes. J. Memb. Sci. 256(1), 116–121 (2005)

    CAS  Google Scholar 

  75. C. Wu, S. Zhang, D. Yang, X. Jian, Preparation, characterization and application of a novel thermal stable composite nanofiltration membrane. J. Memb. Sci. 326(2), 429–434 (2009)

    Article  CAS  Google Scholar 

  76. A. Sorrentino, G. Gorrasi, V. Vittoria, Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci. Technol. 18(2), 84–95 (2007)

    Article  CAS  Google Scholar 

  77. J. Bajpai, R. Shrivastava, A. Bajpai, Dynamic and equilibrium studies on adsorption of Cr (VI) ions onto binary bio-polymeric beads of cross linked alginate and gelatin. Colloids Surf., A: Physicochem. Eng. Asp. 236(1), 81–90 (2004)

    Article  CAS  Google Scholar 

  78. M.N.R. Kumar, A review of chitin and chitosan applications. React. Funct. Polym. 46(1), 1–27 (2000)

    Article  CAS  Google Scholar 

  79. P.K. Dutta, J. Dutta, V. Tripathi, Chitin and chitosan: Chemistry, properties and applications. J. Sci. Ind. Res. 63(1), 20–31 (2004)

    CAS  Google Scholar 

  80. M. Rinaudo, Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 31(7), 603–632 (2006)

    Article  CAS  Google Scholar 

  81. H.-M. Cauchie, Chitin production by arthropods in the hydrosphere. Hydrobiologia 470(1–3), 63–95 (2002)

    Article  CAS  Google Scholar 

  82. C. Jeuniaux, M.F. Voss-Foucart, Chitin biomass and production in the marine environment. Biochem. Syst. Ecol. 19(5), 347–356 (1991)

    Article  CAS  Google Scholar 

  83. M.S. Rao, W.F. Stevens, Fermentation of shrimp biowaste under different salt concentrations with amylolytic and non-amylolytic lactobacillus strains for chitin production. Food Technol. Biotechnol. 44(1), 83–87 (2006)

    CAS  Google Scholar 

  84. S. Arai, F. Akiya, Desalination reverse osmotic membranes and their preparation. Google Patents (1978)

    Google Scholar 

  85. E. Brychcy, M. Malik, P. Drożdżewski, Ż. Król, A. Jarmoluk, Physicochemical and antibacterial properties of carrageenan and Gelatine hydrosols and hydrogels incorporated with acidic electrolyzed water. Polymers 7(12), 2638–2649 (2015)

    Article  CAS  Google Scholar 

  86. A.V. Briones, T. Sato, U.G. Bigol, Antibacterial activity of polyethylenimine/carrageenan multilayer against pathogenic bacteria. Adv. Chem. Eng. Sci. 4(2), 233–241 (2014)

    Article  CAS  Google Scholar 

  87. L.A. Cira, S. Huerta, G.M. Hall, K. Shirai, Pilot scale lactic acid fermentation of shrimp wastes for chitin recovery. Process Biochem. 37(12), 1359–1366 (2002)

    Article  CAS  Google Scholar 

  88. T.D. Leathers, Biotechnological production and applications of pullulan. Appl. Microbiol. Biotechnol. 62(5–6), 468–473 (2003)

    Article  CAS  PubMed  Google Scholar 

  89. S. Yuen, Pullulan and its applications. Process Biochem. 22, 7–9 (1974)

    Google Scholar 

  90. S. Kasapis, I.M. Al-Marhoobi, Bridging the divide between the high-and low-solid analyses in the gelatin/κ-carrageenan mixture. Biomacromolecules 6(1), 14–23 (2005)

    Article  CAS  PubMed  Google Scholar 

  91. C. Viebke, P. Williams, Determination of molecular mass distribution of κ-carrageenan and xanthan using asymmetrical flow field-flow fractionation. Food Hydrocoll. 14(3), 265–270 (2000)

    Article  CAS  Google Scholar 

  92. P. Wu, M. Imai, Outstanding molecular size recognition and regulation of water permeability on K-carrageenan-pullulan membrane involved in synergistic Design of Composite Polysaccharides–Structure. Procedia Eng. 42, 1313–1325 (2012)

    Article  CAS  Google Scholar 

  93. K.Y. Lee, D.J. Mooney, Alginate: Properties and biomedical applications. Prog. Polym. Sci. 37(1), 106–126 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. J.-S. Yang, Y.-J. Xie, W. He, Research progress on chemical modification of alginate: A review. Carbohydr. Polym. 84(1), 33–39 (2011)

    Article  CAS  Google Scholar 

  95. G.M. Preston, T.P. Carroll, W.B. Guggino, P. Agre, Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256(5055), 385–387 (1992)

    Article  CAS  PubMed  Google Scholar 

  96. K. Ishibashi, S. Hara, S. Kondo, Aquaporin water channels in mammals. Clin. Exp. Nephrol. 13(2), 107–117 (2009)

    Article  CAS  PubMed  Google Scholar 

  97. A. Engel, Y. Fujiyoshi, T. Gonen, T. Walz, Junction-forming aquaporins. Curr. Opin. Struct. Biol. 18(2), 229–235 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. M.J. Borgnia, D. Kozono, G. Calamita, P.C. Maloney, P. Agre, Functional reconstitution and characterization of AqpZ, the E. coli water channel protein. J. Mol. Biol. 291(5), 1169–1179 (1999)

    Article  CAS  PubMed  Google Scholar 

  99. D. Kozono, M. Yasui, L.S. King, P. Agre, Aquaporin water channels: Atomic structure molecular dynamics meet clinical medicine. J. Clin. Invest. 109(11), 1395–1399 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. B.L. de Groot, H. Grubmüller, Water permeation across biological membranes: Mechanism and dynamics of aquaporin-1 and GlpF. Science 294(5550), 2353–2357 (2001)

    Article  PubMed  Google Scholar 

  101. K. Murata, K. Mitsuoka, T. Hirai, T. Walz, P. Agre, J.B. Heymann, A. Engel, Y. Fujiyoshi, Structural determinants of water permeation through aquaporin-1. Nature 407(6804), 599–605 (2000)

    Article  CAS  PubMed  Google Scholar 

  102. M. Amiry-Moghaddam, O.P. Ottersen, The molecular basis of water transport in the brain. Nat. Rev. Neurosci. 4(12), 991–1001 (2003)

    Article  CAS  PubMed  Google Scholar 

  103. H. Yabu, Y. Hirai, M. Shimomura, Electroless plating of honeycomb and pincushion polymer films prepared by self-organization. Langmuir 22(23), 9760–9764 (2006)

    Article  CAS  PubMed  Google Scholar 

  104. G.M. Whitesides, B. Grzybowski, Self-assembly at all scales. Science 295(5564), 2418–2421 (2002)

    Article  CAS  PubMed  Google Scholar 

  105. D. Fierro, K. Buhr, C. Abetz, A. Boschetti-de-Fierro, V. Abetz, New insights into the control of self-assembly of block copolymer membranes. Aust. J. Chem. 62(8), 885–890 (2009)

    Article  CAS  Google Scholar 

  106. T. Smart, H. Lomas, M. Massignani, M.V. Flores-Merino, L.R. Perez, G. Battaglia, Block copolymer nanostructures. Nano Today 3(3), 38–46 (2008)

    Article  CAS  Google Scholar 

  107. M. Kumar, M.M. Payne, S.K. Poust, J.L. Zilles, Polymer-based biomimetic membranes for desalination, in Biomimetic Membranes for Sensor and Separation Applications, (Springer, Dordrecht, 2012), pp. 43–62

    Google Scholar 

  108. H. Shimizu, T. Fujita, New short interfering RNA-based therapies for glomerulonephritis. Nat. Rev. Nephrol. 7(7), 407–415 (2011)

    Article  CAS  PubMed  Google Scholar 

  109. K. Yoon, K. Kim, X. Wang, D. Fang, B.S. Hsiao, B. Chu, High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer 47(7), 2434–2441 (2006)

    Article  CAS  Google Scholar 

  110. Y.-L. Liu, Y.-H. Su, K.-R. Lee, J.-Y. Lai, Crosslinked organic–inorganic hybrid chitosan membranes for pervaporation dehydration of isopropanol–water mixtures with a long-term stability. J. Memb. Sci. 251(1–2), 233–238 (2005)

    Article  CAS  Google Scholar 

  111. T. Yang, R. Zall, Chitosan membranes for reverse osmosis application. J. Food Sci. 49(1), 91–93 (1984)

    Article  CAS  Google Scholar 

  112. A.G. Boricha, Z.V.P. Murthy, Preparation of N,O-carboxymethyl chitosan/cellulose acetate blend nanofiltration membrane and testing its performance in treating industrial wastewater. Chem. Eng. J. 157(2–3), 393–400 (2010)

    Article  CAS  Google Scholar 

  113. R. Huang, G. Chen, M. Sun, Y. Hu, C. Gao, Studies on nanofiltration membrane formed by diisocyanate cross-linking of quaternized chitosan on poly (acrylonitrile)(PAN) support. J. Memb. Sci. 286(1), 237–244 (2006)

    Article  CAS  Google Scholar 

  114. A.G. Boricha, Z. Murthy, Preparation and performance of N, O-carboxymethyl chitosan-polyether sulfone composite nanofiltration membrane in the separation of nickel ions from aqueous solutions. J. Appl. Polym. Sci. 110(6), 3596–3605 (2008)

    Article  CAS  Google Scholar 

  115. R. Huang, G. Chen, M. Sun, C. Gao, A novel composite nanofiltration (NF) membrane prepared from graft copolymer of trimethylallyl ammonium chloride onto chitosan (GCTACC)/poly (acrylonitrile)(PAN) by epichlorohydrin cross-linking. Carbohydr. Res. 341(17), 2777–2784 (2006)

    Article  CAS  PubMed  Google Scholar 

  116. P. Wu, M. Imai, Excellent dyes removal and remarkable molecular size rejection of novel biopolymer composite membrane. Desalin. Water Treat. 51(25–27), 5237–5247 (2013)

    Article  CAS  Google Scholar 

  117. P.S. Zhong, T.-S. Chung, K. Jeyaseelan, A. Armugam, Aquaporin-embedded biomimetic membranes for nanofiltration. J. Memb. Sci. 407–408, 27–33 (2012)

    Article  CAS  Google Scholar 

  118. M. Kamachi, M. Kurihara, J. Stille, Synthesis of block polymers for desalination membranes. Preparation of block copolymers of 2-vinylpyridine and methacrylic acid or acrylic acid. Macromolecules 5(2), 161–167 (1972)

    Article  CAS  Google Scholar 

  119. J.S. Louie, I. Pinnau, I. Ciobanu, K.P. Ishida, A. Ng, M. Reinhard, Effects of polyether–polyamide block copolymer coating on performance and fouling of reverse osmosis membranes. J. Memb. Sci. 280(1), 762–770 (2006)

    Article  CAS  Google Scholar 

  120. R.M. Dorin, W.A. Phillip, H. Sai, J. Werner, M. Elimelech, U. Wiesner, Designing block copolymer architectures for targeted membrane performance. Polymer 55(1), 347–353 (2014)

    Article  CAS  Google Scholar 

  121. X. Li, R. Wang, C. Tang, A. Vararattanavech, Y. Zhao, J. Torres, T. Fane, Preparation of supported lipid membranes for aquaporin Z incorporation. Colloids Surf. B. Biointerfaces 94, 333–340 (2012)

    Article  CAS  PubMed  Google Scholar 

  122. P.S. Zhong, T.-S. Chung, K. Jeyaseelan, A. Armugam, Aquaporin-embedded biomimetic membranes for nanofiltration. J. Memb. Sci. 407, 27–33 (2012)

    Article  CAS  Google Scholar 

  123. P.H. Duong, T.-S. Chung, K. Jeyaseelan, A. Armugam, Z. Chen, J. Yang, M. Hong, Planar biomimetic aquaporin-incorporated triblock copolymer membranes on porous alumina supports for nanofiltration. J. Memb. Sci. 409, 34–43 (2012)

    Article  CAS  Google Scholar 

  124. M. Wang, Z. Wang, X. Wang, S. Wang, W. Ding, C. Gao, Layer-by-layer assembly of aquaporin Z-incorporated biomimetic membranes for water purification. Environ. Sci. Technol. 49(6), 3761–3768 (2015)

    Article  CAS  PubMed  Google Scholar 

  125. Y. Zhao, C. Qiu, X. Li, A. Vararattanavech, W. Shen, J. Torres, C. Hélix-Nielsen, R. Wang, X. Hu, A.G. Fane, C.Y. Tang, Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization. J. Memb. Sci. 423–424, 422–428 (2012)

    Google Scholar 

  126. S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)

    Article  CAS  Google Scholar 

  127. S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430), 603–605 (1993)

    Article  CAS  Google Scholar 

  128. Y.L. Zhao, J.F. Stoddart, Noncovalent functionalization of single-walled carbon nanotubes. Acc. Chem. Res. 42(8), 1161–1171 (2009)

    Article  CAS  PubMed  Google Scholar 

  129. C.H. Ahn, Y. Baek, C. Lee, S.O. Kim, S. Kim, S. Lee, S.-H. Kim, S.S. Bae, J. Park, J. Yoon, Carbon nanotube-based membranes: Fabrication and application to desalination. J. Ind. Eng. Chem. 18(5), 1551–1559 (2012)

    Article  CAS  Google Scholar 

  130. B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L.G. Bachas, Aligned multiwalled carbon nanotube membranes. Science 303(5654), 62–65 (2004)

    Article  CAS  PubMed  Google Scholar 

  131. J.-H. Choi, J. Jegal, W.-N. Kim, Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes. J. Memb. Sci. 284(1), 406–415 (2006)

    Article  CAS  Google Scholar 

  132. L. Brunet, D. Lyon, K. Zodrow, J.-C. Rouch, B. Caussat, P. Serp, J.-C. Remigy, M. Wiesner, P. Alvarez, Properties of membranes containing semi-dispersed carbon nanotubes. Environ. Eng. Sci. 25(4), 565–576 (2008)

    Article  CAS  Google Scholar 

  133. A.S. Brady-Estévez, S. Kang, M. Elimelech, A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens. Small 4(4), 481–484 (2008)

    Article  PubMed  CAS  Google Scholar 

  134. A. Tiraferri, C.D. Vecitis, M. Elimelech, Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties. ACS Appl. Mater. Interfaces 3(8), 2869–2877 (2011)

    Article  CAS  PubMed  Google Scholar 

  135. P. Daraei, S.S. Madaeni, N. Ghaemi, M.A. Khadivi, B. Astinchap, R. Moradian, Enhancing antifouling capability of PES membrane via mixing with various types of polymer modified multi-walled carbon nanotube. J. Memb. Sci. 444, 184–191 (2013)

    Article  CAS  Google Scholar 

  136. J. nan Shen, C. chao Yu, H. min Ruan, C. jie Gao, B. Van der Bruggen, Preparation and characterization of thin-film nanocomposite membranes embedded with poly (methyl methacrylate) hydrophobic modified multiwalled carbon nanotubes by interfacial polymerization. J. Memb. Sci. 442, 18–26 (2013)

    Article  CAS  Google Scholar 

  137. F. Ahmed, C.M. Santos, J. Mangadlao, R. Advincula, D.F. Rodrigues, Antimicrobial PVK: SWNT nanocomposite coated membrane for water purification: Performance and toxicity testing. Water Res. 47(12), 3966–3975 (2013)

    Article  CAS  PubMed  Google Scholar 

  138. S. Kar, M. Subramanian, A. Pal, A. Ghosh, R. Bindal, S. Prabhakar, J. Nuwad, C. Pillai, S. Chattopadhyay, P. Tewari, Preparation, characterisation and performance evaluation of anti-biofouling property of carbon nanotube-polysulfone nanocomposite membranes, in CARBON MATERIALS 2012 (CCM12): Carbon Materials for Energy Harvesting, Environment, Nanoscience and Technology, vol. 1 (AIP Publishing, New York, 2013), pp. 181–185

    Google Scholar 

  139. J. Yin, G. Zhu, B. Deng, Multi-walled carbon nanotubes (MWNTs)/polysulfone (PSU) mixed matrix hollow fiber membranes for enhanced water treatment. J. Memb. Sci. 437, 237–248 (2013)

    Article  CAS  Google Scholar 

  140. P. Shah, C. Murthy, Studies on the porosity control of MWCNT/polysulfone composite membrane and its effect on metal removal. J. Memb. Sci. 437, 90–98 (2013)

    Article  CAS  Google Scholar 

  141. M. Amini, M. Jahanshahi, A. Rahimpour, Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes. J. Memb. Sci. 435, 233–241 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasel Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Das, R., Zaidi, S.M.J., Tuhi, S.D. (2019). Desalination. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95987-0_28

Download citation

Publish with us

Policies and ethics