Skip to main content

Conducting Polymer Nanocomposites as Gas Sensors

  • Reference work entry
  • First Online:
Functional Polymers

Abstract

The great concerns regarding environmental and living beings protection together with the widespread requirements for highly accurate process monitoring have highlighted the need for the development of new and sensitive sensors. Conducting polymers and their nanocomposites have been used widely as sensing materials owing to their special redox chemistry. The electrical properties can be controlled easily by doping and undoping processes resulting into the generation of conducting and nonconducting states, respectively. The electrical conductivity also depends on the type and amount of filler (nanosize filler in some cases) used which produces the positive or negative carriers responsible for the conduction. Any type of interaction of these polymers that affects the number and movement of charge carriers affects the conductivity and is the main principle behind the gas sensing characteristics. Advances in nanotechnology allows for the fabrication of various conducting polymer nanocomposites using different techniques. Conducting polymer nanocomposites have high surface area, small dimension, and show enhanced properties, making them suitable for various sensor devices. This chapter presents the different types of gas sensors based on the conducting polymer (polyaniline, polypyrrole, and polythiophene)-based nanocomposites, their progress, and future scope of ongoing research in this research area. The factors that affect the performance of the gas sensors and the chemistry of the sensing process are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. (16), 578–580 (1977)

    Google Scholar 

  2. T. Yamamoto, Molecular assembly and properties of polythiophenes. NPG Asia Mater. 2, 54–60 (2010)

    Article  Google Scholar 

  3. H.C. Kang, K.E. Geckeler, Enhanced electrical conductivity of polypyrrole prepared by chemical oxidative polymerization: Effect of the preparation technique and polymer additive. Polymer 41, 6931–6934 (2000)

    Article  CAS  Google Scholar 

  4. A.L. Aldaba, Á. González-Vila, M. Debliquy, M.L. Amo, C. Caucheteur, D. Lahem, Polyaniline-coated tilted fiber Bragg gratings for pH sensing. Sensors Actuators B Chem. 254, 1087–1093 (2018)

    Article  CAS  Google Scholar 

  5. X. Li, Z.-Y. Sui, Y.-N. Sun, P.-W. Xiao, X.-Y. Wang, B.-H. Han, Polyaniline-derived hierarchically porous nitrogen-doped carbons as gas adsorbents for carbon dioxide uptake. Microporous Mesoporous Mater. 257, 85–91 (2018)

    Article  CAS  Google Scholar 

  6. S. Hong, F.S. Cannon, P. Hou, T. Byrne, C. Nieto-Delgado, Adsorptive removal of sulfate from acid mine drainage by polypyrrole modified activated carbons: Effects of polypyrrole deposition protocols and activated carbon source. Chemosphere 184, 429–437 (2017)

    Article  CAS  PubMed  Google Scholar 

  7. A. Ramaprasad, D. Latha, V. Rao, Synthesis and characterization of polypyrrole grafted chitin. J. Phys. Chem. Solids 104, 169–174 (2017)

    Article  CAS  Google Scholar 

  8. M. Khan, G. Brunklaus, S. Ahmad, Probing the molecular orientation of chemically polymerized polythiophene-polyrotaxane via solid state NMR. Arab. J. Chem. 10, 708–714 (2017)

    Article  CAS  Google Scholar 

  9. M.R. Chandra, P.S.P. Reddy, T.S. Rao, S. Pammi, K.S. Kumar, K.V. Babu, C.K. Kumar, K. Hemalatha, Enhanced visible-light photocatalysis and gas sensor properties of polythiophene supported tin doped titanium nanocomposite. J. Phys. Chem. Solids 105, 99–105 (2017)

    Article  CAS  Google Scholar 

  10. N. Parveen, N. Mahato, M.O. Ansari, M.H. Cho, Enhanced electrochemical behavior and hydrophobicity of crystalline polyaniline@graphene nanocomposite synthesized at elevated temperature. Compos. Part B Eng. 87, 281–290 (2016)

    Article  CAS  Google Scholar 

  11. N. Parveen, M.O. Ansari, M.H. Cho, Simple and rapid synthesis of ternary polyaniline/titanium oxide/graphene by simultaneous TiO2 generation and aniline oxidation as hybrid materials for supercapacitor applications. J. Solid State Electrochem. 21, 57 (2016). https://doi.org/10.1007/s10008-016-3310-8

    Article  CAS  Google Scholar 

  12. X. Wu, M. Lian, Highly flexible solid-state supercapacitor based on graphene/polypyrrole hydrogel. J. Power Sources 362, 184–191 (2017)

    Article  CAS  Google Scholar 

  13. C. Kumar, G. Rawat, H. Kumar, Y. Kumar, R. Prakash, S. Jit, Flexible poly (3, 3′′′-dialkylquaterthiophene) based interdigitated metal-semiconductor-metal ammonia gas sensor. Sensors Actuators B Chem. 255, 203–209 (2018)

    Article  CAS  Google Scholar 

  14. L. Ai, Y. Liu, X. Zhang, X. Ouyang, Z. Ge, A facile and template-free method for preparation of polythiophene microspheres and their dispersion for waterborne corrosion protection coatings. Synth. Met. 191, 41–46 (2014)

    Article  CAS  Google Scholar 

  15. Q. Meng, K. Cai, Y. Chen, L. Chen, Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36, 268–285 (2017)

    Article  CAS  Google Scholar 

  16. M.O. Ansari, F. Mohammad, Thermal stability of HCl-doped-polyaniline and TiO2 nanoparticles-based nanocomposites. J. Appl. Polym. Sci. 124, 4433–4442 (2012)

    CAS  Google Scholar 

  17. T. Anwer, M.O. Ansari, F. Mohammad, Morphology and thermal stability of electrically conducting nanocomposites prepared by sulfosalicylic acid micelles assisted polymerization of aniline in presence of ZrO2 nanoparticles. Polym.-Plast. Technol. Eng. 52, 472–477 (2013)

    Article  CAS  Google Scholar 

  18. R. Kumar, M.O. Ansari, M.A. Barakat, DBSA doped polyaniline/multi-walled carbon nanotubes composite for high efficiency removal of Cr(VI) from aqueous solution. Chem. Eng. J. 228, 748–755 (2013)

    Article  CAS  Google Scholar 

  19. F.H. Lu, M.G. Mohamed, T.F. Liu, C.G. Chao, L. Daic, S.W. Kuo, A quenching method for the preparation of metal oxide–polythiophene composites having fiber structures. RSC Adv. 4, 64525–64534 (2014)

    Article  CAS  Google Scholar 

  20. Y. Wang, X. Qing, Q. Zhou, Y. Zhang, Q. Liu, K. Liu, W. Wang, M. Li, Z. Lu, Y. Chen, The woven fiber organic electrochemical transistors based on polypyrrole nanowires/reduced graphene oxide composites for glucose sensing. Biosens. Bioelectron. 95, 138–145 (2017)

    Article  CAS  PubMed  Google Scholar 

  21. S.-X. Zhou, X.-Y. Tao, J. Ma, C.-H. Qu, Y. Zhou, L.-T. Guo, P.-Z. Feng, Y.-B. Zhu, X.-Y. Wei, Facile synthesis of self-assembled polyaniline nanorods doped with sulphuric acid for high-performance supercapacitors. Vacuum 143, 63–70 (2017)

    Article  CAS  Google Scholar 

  22. E.I. Santiago, E.C. Pereira, L.O.S. Bulhões, Characterization of the redox processes in polyaniline using capacitance-potential curves. Synth. Met. 98, 87–93 (1998)

    Article  CAS  Google Scholar 

  23. V. Tabard-Cossa, M. Godin, P. Grütter, Redox-induced surface stress of polypyrrole-based actuators. J. Phys. Chem. B 109, 17531–17537 (2005)

    Article  CAS  PubMed  Google Scholar 

  24. S. Haraguchi, Y. Tsuchiya, T. Shiraki, K. Sada, S. Shinkai, Control of polythiophene redox potentials based on supramolecular complexation with helical schizophyllan. Chem. Commun. (40), 6086–6088 (2009)

    Google Scholar 

  25. L. Yang, X. Huang, A. Gogoll, M. Strømme, M. Sjödin, Conducting redox polymer based anode materials for high power electrical energy storage. Electrochim. Acta 204, 270–275 (2016)

    Article  CAS  Google Scholar 

  26. A. Nautiyal, M. Qiao, J.E. Cook, X. Zhang, T.-S. Huang, High performance polypyrrole coating for corrosion protection and biocidal applications. Appl. Surf. Sci. 427, 922–930 (2017)

    Article  CAS  Google Scholar 

  27. L. Kumar, I. Rawal, A. Kaur, S. Annapoorni, Flexible room temperature ammonia sensor based on polyaniline. Sensors Actuators B Chem. 240, 408–416 (2017)

    Article  CAS  Google Scholar 

  28. A. Joshi, S.A. Gangal, S.K. Gupta, Ammonia sensing properties of polypyrrole thin films at room temperature. Sensors Actuators B Chem. 156, 938–942 (2011)

    Article  CAS  Google Scholar 

  29. S.T. Navale, A.T. Mane, G.D. Khuspe, M.A. Chougule, V.B. Patil, Room temperature NO2 sensing properties of polythiophene films. Synth. Met. 195, 228–233 (2014)

    Article  CAS  Google Scholar 

  30. S. Pandey, Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: A comprehensive review. J. Sci. Adv. Mater. Dev. 1, 431–453 (2016)

    Google Scholar 

  31. C.T.P. da Silva, V.L. Kupfer, G.R. da Silva, M. Pereira, A.W. Rinaldi, One-step electrochemical synthesis of polyaniline/metallic oxide nanoparticle (γ-Fe2O3) thin film. Int. J. Electrochem. Sci. 11, 5380–5394 (2016)

    Article  CAS  Google Scholar 

  32. A.A. Athawale, S. Bhagwat, P.P. Katre, Nanocomposite of Pd–polyaniline as a selective methanol sensor. Sensors Actuators B Chem. 114, 263–267 (2006)

    Article  CAS  Google Scholar 

  33. A. Choudhury, Polyaniline/silver nanocomposites: Dielectric properties and ethanol vapour sensitivity. Sensors Actuators B Chem. 138, 318–325 (2009)

    Article  CAS  Google Scholar 

  34. Z.-F. Li, H. Zhang, Q. Liu, L. Sun, L. Stanciu, J. Xie, Fabrication of high-surface-area graphene/polyaniline nanocomposites and their application in supercapacitors. ACS Appl. Mater. Interfaces 5, 2685–2691 (2013)

    Article  CAS  PubMed  Google Scholar 

  35. S. Maeda, S. Armes, Polypyrrole-tin (IV) oxide colloidal nanocomposites. Synth. Met. 69, 499–500 (1995)

    Article  CAS  Google Scholar 

  36. R.A. Naikoo, S.U. Bhat, M.A. Mir, R. Tomar, Composites of various cation exchanged forms of mesoporous zeolite A with polypyrrole-thermal, spectroscopic and gas sensing studies. Microporous Mesoporous Mater. 243, 229–238 (2017)

    Article  CAS  Google Scholar 

  37. B.-K. Kim, Y.H. Kim, K. Won, H. Chang, Y. Choi, K. Kong, B.W. Rhyu, J. Kim, J.-O. Lee, Electrical properties of polyaniline nanofibre synthesized with biocatalyst. Nanotechnology 16, 1177–1181 (2005)

    Article  CAS  Google Scholar 

  38. K.M. Molapo, P.M. Ndangili, R.F. Ajayi, G. Mbambisa, S.M. Mailu, N. Njomo, M. Masikini, P. Baker, E.I. Iwuoha, Electronics of conjugated polymers (I): polyaniline. Int. J. Electrochem. Sci. 7, 11859–11875 (2012)

    CAS  Google Scholar 

  39. S. Etemad, A.J. Heeger, Polyacetylene, (CH)x: The prototype conducting polymer. Annu. Rev. Phys. Chem. 33, 443–469 (1982)

    Article  CAS  Google Scholar 

  40. J.M.G. Cowie, Chemistry and Physics of Modern Materials, II edn. (Blackie/Chapman and Hall, New York, 1973)

    Google Scholar 

  41. R. Kiebooms, R. Menon, K. Lee, in Handbook of Advance Electronic and Photonic Materials and Devices, ed. by H.S. Nalwa (Academic, San Diego, 2001)

    Google Scholar 

  42. W.-C. Chen, T.-C. Wen, Electrochemical and capacitive properties of polyaniline-implanted porous carbon electrode for supercapacitors. J. Power Sources 117, 273–282 (2003)

    Article  CAS  Google Scholar 

  43. S. Koŝina, V. Skákalová, D. Janĉula, Electrochemical preparation of thick porous polypyrrole layers. Synth. Met. 53, 227–235 (1993)

    Article  Google Scholar 

  44. N. Parveen, M.O. Ansari, M.H. Cho, Route to high surface area, mesoporosity of polyaniline-titanium dioxide nanocomposites via one pot synthesis for energy storage applications. Ind. Eng. Chem. Res. 55, 116–124 (2016)

    Article  CAS  Google Scholar 

  45. H. Bai, G. Shi, Gas sensors based on conducting polymers. Sensors 7, 267–307 (2007)

    Article  CAS  Google Scholar 

  46. N. Kemp, G. Fianagan, A. Kaiser, H. Trodahl, B. Chapman, A. Partridge, R. Buckley, Temperature-dependent conductivity of conducting polymers exposed to gases. Synth. Met. 101, 434–435 (1999)

    Article  CAS  Google Scholar 

  47. S. Krutovertsev, O. Ivanova, S. Sorokin, Sensing properties of polyaniline films doped with Dawson heteropoly compounds. J. Anal. Chem. 56, 1057–1060 (2001)

    Article  CAS  Google Scholar 

  48. J.-H. Cho, J.-B. Yu, J.-S. Kim, S.-O. Sohn, D.-D. Lee, J.-S. Huh, Sensing behaviors of polypyrrole sensor under humidity condition. Sensors Actuators B Chem. 108, 389–392 (2005)

    Article  CAS  Google Scholar 

  49. N. Kemp, A. Kaiser, H. Trodahl, B. Chapman, R. Buckley, A. Partridge, P. Foot, Effect of ammonia on the temperature-dependent conductivity and thermopower of polypyrrole. J. Polym. Sci. B Polym. Phys. 44, 1331–1338 (2006)

    Article  CAS  Google Scholar 

  50. D. Liu, J. Aguilar-Hernandez, K. Potje-Kamloth, H. Liess, A new carbon monoxide sensor using a polypyrrole film grown on an interdigital-capacitor substrate. Sensors Actuators B Chem. 41, 203–206 (1997)

    Article  CAS  Google Scholar 

  51. S. Christie, E. Scorsone, K. Persaud, F. Kvasnik, Remote detection of gaseous ammonia using the near infrared transmission properties of polyaniline. Sensors Actuators B Chem. 90, 163–169 (2003)

    Article  CAS  Google Scholar 

  52. K. Hosono, I. Matsubara, N. Murayama, W. Shin, N. Izu, The sensitivity of 4-ethylbenzenesulfonic acid-doped plasma polymerized polypyrrole films to volatile organic compounds. Thin Solid Films 484, 396–399 (2005)

    Article  CAS  Google Scholar 

  53. P. Fedorko, V. Skakalova, Low pressure effect in the electrical conductivity of doped polypyrrole. Synth. Met. 94, 279–283 (1998)

    Article  CAS  Google Scholar 

  54. S. Koul, R. Chandra, S.K. Dhawan, Conducting polyaniline composite: A reusable sensor material for aqueous ammonia. Sensors Actuators B Chem. 75, 151–159 (2001)

    Article  CAS  Google Scholar 

  55. M.M. Ayad, G. El-Hefnawey, N.L. Torad, A sensor of alcohol vapours based on thin polyaniline base film and quartz crystal microbalance. J. Hazard. Mater. 168, 85–88 (2009)

    Article  CAS  PubMed  Google Scholar 

  56. N.J. Pinto, I. Ramos, R. Rojas, P.-C. Wang, A.T. Johnson Jr., Electric response of isolated electrospun polyaniline nanofibers to vapors of aliphatic alcohols. Sensors Actuators B Chem. 129, 621–627 (2008)

    Article  CAS  Google Scholar 

  57. H.-K. Jun, Y.-S. Hoh, B.-S. Lee, S.-T. Lee, J.-O. Lim, D.-D. Lee, J.-S. Huh, Electrical properties of polypyrrole gas sensors fabricated under various pretreatment conditions. Sensors Actuators B Chem. 96, 576–581 (2003)

    Article  CAS  Google Scholar 

  58. F. Liao, M.F. Toney, V. Subramanian, Thickness changes in polythiophene gas sensors exposed to vapor. Sensors Actuators B Chem. 148, 74–80 (2010)

    Article  CAS  Google Scholar 

  59. H. Tai, Y. Jiang, G. Xie, J. Yu, X. Chen, Fabrication and gas sensitivity of polyaniline-titanium dioxide nanocomposite thin film. Sensors Actuators B Chem. 125, 644–650 (2007)

    Article  CAS  Google Scholar 

  60. H. Tai, Y. Jiang, G. Xie, J. Yu, X. Chen, Z. Ying, Influence of polymerization temperature on NH3 response of PANI/TiO2 thin film gas sensor. Sensors Actuators B Chem. 129, 319–326 (2008)

    Article  CAS  Google Scholar 

  61. X. Ma, M. Wang, G. Li, H. Chen, R. Bai, Preparation of polyaniline-TiO2 composite film with in situ polymerization approach and its gas-sensitivity at room temperature. Mater. Chem. Phys. 98, 241–247 (2006)

    Article  CAS  Google Scholar 

  62. A.T. Mane, S.T. Navale, S. Sen, D.K. Aswal, S.K. Gupta, V.B. Patil, Nitrogen dioxide (NO2) sensing performance of p-polypyrrole/n-tungsten oxide hybrid nanocomposites at room temperature. Org. Electron. 16, 195–204 (2015)

    Article  CAS  Google Scholar 

  63. T. Sen, S. Mishra, N.G. Shimpi, Synthesis and sensing applications of polyaniline nanocomposites: A review. RSC Adv. 6, 42196–42222 (2016)

    Article  CAS  Google Scholar 

  64. P. Lobotka, P. Kunzo, E. Kovacova, I. Vavra, Z. Krizanova, V. Smatko, J. Stejskal, E.N. Konyushenko, M. Omastova, Z. Spitalsky, M. Micusik, I. Krupa, Thin polyaniline and polyaniline/carbon nanocomposite films for gas sensing. Thin Solid Films 519, 4123–4127 (2011)

    Article  CAS  Google Scholar 

  65. T. Sen, N.G. Shimpi, S. Mishra, Room temperature CO sensing by polyaniline/Co3O4 nanocomposite. J. Appl. Polym. Sci. (2016). https://doi.org/10.1002/APP.44115

  66. S.S. Joshi, C.D. Lokhande, S.-H. Han, A room temperature liquefied petroleum gas sensor based on all-electrodeposited n-CdSe/p-polyaniline junction. Sensors Actuators B Chem. 123, 240–245 (2007)

    Article  CAS  Google Scholar 

  67. T. Sen, N.G. Shimpi, S. Mishra, R. Sharma, Polyaniline/γ-Fe2O3 nanocomposite for room temperature LPG sensing. Sensors Actuators B Chem. 190, 120–126 (2014)

    Article  CAS  Google Scholar 

  68. M.V. Fuke, A. Vijayan, M. Kulkarni, R. Hawaldar, R.C. Aiyer, Evaluation of Co-polyaniline nanocomposite thin films as humidity sensor. Talanta 76, 1035–1040 (2008)

    Article  CAS  PubMed  Google Scholar 

  69. S. Jain, S. Chakane, A.B.. Samui, V.N. Krishnamurthy, S.V. Bhoraskar, Humidity sensing with weak acid-doped polyaniline and its composites. Sensors Actuators B Chem. 96, 124–129 (2003)

    Article  CAS  Google Scholar 

  70. S.K. Shukla, V. Minakshi, A. Bharadavaja, A. Shekhar, A. Tiwari, Fabrication of electro-chemical humidity sensor based on zinc oxide/polyaniline nanocomposite. Adv. Mater. Lett. 3, 421–425 (2012)

    Article  CAS  Google Scholar 

  71. H. Tai, Y. Jiang, G. Xie, J. Yu, Preparation, characterization and comparative NH3-sensing characteristic studies of PANI/inorganic oxides nanocomposite thin films. J. Mater. Sci. Technol. 26, 605–613 (2010)

    Article  CAS  Google Scholar 

  72. J. Gong, Y. Li, Z. Hu, Z. Zhou, Y. Deng, Ultrasensitive NH3 Gas sensor from polyaniline nanograin enchased TiO2 fibers. J. Phys. Chem. C 114, 9970–9974 (2010)

    Article  CAS  Google Scholar 

  73. D.S. Dhawale, R.R. Salunkhe, U.M. Patil, K.V. Gurav, A.M. More, C.D. Lokhande, Room temperature liquefied petroleum gas (LPG) sensor based on p-polyaniline/n-TiO2 heterojunction. Sensors Actuators B Chem. 134, 988–992 (2008)

    Article  CAS  Google Scholar 

  74. A.A. Athawale, S.V. Bhagwat, P.P. Katre, Nanocomposite of Pd–polyaniline as a selective methanol sensor. Sensors Actuators B Chem. 114, 263–267 (2006)

    Article  CAS  Google Scholar 

  75. M. Song, F. Liu, X. Ma, Study of PANI Preparation and Properties in Gas Sensing, CA ‘14 Proceedings of the 2014 7th International Conference on Control and Automation, IEEE Computer Society Washington, DC, USA ©2014, pp. 37–44. ISBN: 978-1-4799-8206-6

    Google Scholar 

  76. L. Yang, C.S. Zhang, Effect of dopants on microstructure and properties of polyaniline and polypyrrole. Adv. Mater. Res. 328–330, 1576–1579 (2011)

    Google Scholar 

  77. Z. Pang, J. Fu, P. Lv, F. Huang, Q. Wei, Effect of CSA concentration on the ammonia sensing properties of CSA-Doped PA6/PANI composite nanofibers. Sensors 14, 21453–21465 (2014)

    Article  CAS  PubMed  Google Scholar 

  78. S. Koul, R. Chandra, Mixed dopant conducting polyaniline reusable blend for the detection of aqueous ammonia. Sensors Actuators B Chem. 104, 57–67 (2005)

    Article  CAS  Google Scholar 

  79. A.A. Khan, M. Khalid, Synthesis of nano-sized ZnO and polyaniline-zinc oxide composite: Characterization, stability in terms of DC electrical conductivity retention and application in ammonia vapor detection. J. Appl. Polym. Sci. 3, 1601–1607 (2010)

    Google Scholar 

  80. V.V. Chabukswar, S. Pethkar, A.A. Athawale, Acrylic acid doped polyaniline as an ammonia sensor. Sensors Actuators B Chem. 77, 657–663 (2011)

    Article  Google Scholar 

  81. P.P. Sengupta, P. Kar, B. Adhikari, Influence of dopant in the synthesis, characteristics and ammonia sensing behavior of processable polyaniline. Thin Solid Films 517, 3770–3775 (2009)

    Article  CAS  Google Scholar 

  82. A.L. Kukla, Y.M. Shirshov, S.A. Piletsky, Ammonia sensors based on sensitive polyaniline films. Sensors Actuators B Chem. 37, 135–140 (1996)

    Article  CAS  Google Scholar 

  83. M.O. Ansari, F. Mohammad, Thermal stability, electrical conductivity and ammonia sensing studies on p-toluenesulfonic acid doped polyaniline:titanium dioxide (pTSA/Pani:TiO2) nanocomposites. Sensors Actuators B Chem. 157, 122–129 (2011)

    Article  CAS  Google Scholar 

  84. L. Geng, Y. Zhao, X. Huang, S. Wang, S. Zhang, W. Huang, S. Wu, The preparation and gas sensitivity study of polypyrrole/zinc oxide. Synth. Met. 156, 1078–1082 (2006)

    Article  CAS  Google Scholar 

  85. S. Abdulla, T.L. Mathew, B. Pullithadathil, Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection. Sensors Actuators B Chem. 221, 1523–1534 (2015)

    Article  CAS  Google Scholar 

  86. L. Geng, Gas sensitivity study of polypyrrole/WO3 hybrid materials to H2S. Synth. Met. 160, 1708–1711 (2010)

    Article  CAS  Google Scholar 

  87. H. Malkeshi, M. Moghaddam, Ammonia gas-sensing based on polythiophene film prepared through electrophoretic deposition method. J. Polym. Res. 23, 108 (2016)

    Article  CAS  Google Scholar 

  88. J.J. Miasik, A. Hooper, B.C. Tofield, Conducting polymer gas sensors. J. Chem. Soc. Faraday Trans. 1(82), 1117–1126 (1986)

    Article  Google Scholar 

  89. P. Topart, M. Josowicz, Transient effects in the interaction between polypyrrole and methanol vapor. J. Phys. Chem. 96, 8662–8666 (1992)

    Article  CAS  Google Scholar 

  90. D. Das, P. Choudhury, L.J. Borthakur, I.R. Kamrupi, U. Gogoi, S.K. Dolui, Methanol vapor sensor based on poly(styrene-co-butylacrylate)/polypyrrole-EG core–shell nanocomposites. Sensors Actuators B Chem. 199, 320–329 (2014)

    Article  CAS  Google Scholar 

  91. J.B. Chang, V. Liu, V. Subramanian, K. Sivula, C. Luscombe, A. Murphy, J. Liu, J.M.J. Fréchet, Printable polythiophene gas sensor array for low-cost electronic noses. J. Appl. Phys. 100, 014506 (2006)

    Article  CAS  Google Scholar 

  92. V.C. Gonçalves, B.M. Nunes, D.T. Balogh, C.A. Olivati, Detection of volatile organic compounds using a polythiophene derivative. Phys. Status Solidi A 207, 1756–1759 (2010)

    Article  CAS  Google Scholar 

  93. Y. Li, L. Hong, M. Yang, Crosslinked and quaternized poly(4-vinylpyridine)/polypyrrole composite as a potential candidate for the detection of low humidity. Talanta 75, 412–417 (2008)

    Article  CAS  PubMed  Google Scholar 

  94. P.-G. Su, Y.-P. Chang, Low-humidity sensor based on a quartz-crystal microbalance coated with polypyrrole/Ag/TiO2 nanoparticles composite thin films. Sensors Actuators B Chem. 129, 915–920 (2008)

    Article  CAS  Google Scholar 

  95. A. Sun, Z. Li, T. Wei, Y. Li, P. Cui, Highly sensitive humidity sensor at low humidity based on the quaternized polypyrrole composite film. Sensors Actuators B Chem. 142, 197–203 (2009)

    Article  CAS  Google Scholar 

  96. W.M. Sears, The effect of humidity on the electrical conductivity of mesoporous polythiophene. Sensors Actuators B Chem. 130, 661–667 (2008)

    Article  CAS  Google Scholar 

  97. S. Hoshino, M. Yoshida, S. Uemura, T. Kodzasa, N. Takada, T. Kamata, K. Yase, Influence of moisture on device characteristics of polythiophene-based field-effect transistors. J. Appl. Phys. 95, 5088 (2004)

    Article  CAS  Google Scholar 

  98. A. Akbarinejad, A. Ghoorchian, M. Kamalabadi, N. Alizadeh, Electrospun soluble conductive polypyrrole nanoparticles for fabrication of highly selective n-butylamine gas sensor. Sensors Actuators B Chem. 236, 99–108 (2016)

    Article  CAS  Google Scholar 

  99. D.B. Kamblea, A.K. Sharma, J.B. Yadav, V.B. Patil, R.S. Devan, A.A. Jatratkar, M.A. Yewale, V.V. Ganbavle, S.D. Pawar, Facile chemical bath deposition method for interconnected nanofibrous polythiophene thin films and their use for highly efficient room temperature NO2 sensor application. Sensors Actuators B Chem. 244, 522–530 (2017)

    Article  CAS  Google Scholar 

  100. V.C. Gonçalves, D.T. Balogh, Optical VOCs detection using poly(3-alkylthiophenes) with different side-chain lengths. Sensors Actuators B Chem. 142, 55–60 (2009)

    Article  CAS  Google Scholar 

  101. J. Cerón Solís, E. De la Rosa, E. Peña Cabrera, Absorption and refractive index changes of poly (3-octylthiophene) under NO2 gas exposure. Opt. Mater. 29, 167–172 (2006)

    Article  CAS  Google Scholar 

  102. J. Janata, M. Josowicz, Conducting polymers in electronic chemical sensors. Nat. Mater. 2, 19–24 (2003)

    Article  CAS  PubMed  Google Scholar 

  103. V.C. Gonçalves, D.T. Balogh, Optical chemical sensors using polythiophene derivatives as active layer for detection of volatile organic compounds. Sensors Actuators B Chem. 162, 307–312 (2012)

    Article  CAS  Google Scholar 

  104. H. Yoon, Current trends in sensors based on conducting polymer nanomaterials. Nanomaterials 3, 524–549 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. M.R. Cavallari, J.E. Izquierdo, G.S. Braga, E.A. Dirani, M.A. Pereira-da-Silva, E.F. Rodríguez, F.J. Fonseca, Enhanced sensitivity of gas sensor based on poly (3-hexylthiophene) thin-film transistors for disease diagnosis and environment monitoring. Sensors 15, 9592–9609 (2015)

    Article  CAS  PubMed  Google Scholar 

  106. T.A. Skotheim, Handbook of Conducting Polymers (CRC Press, Boca Raton, 1997)

    Google Scholar 

  107. K.C. Persaud, Polymers for chemical sensing. Mater. Today 8, 38–44 (2005)

    Article  CAS  Google Scholar 

  108. P.C. Ewbank, R.S. Loewe, L. Zhai, J. Reddinger, G. Sauvé, R.D. McCullough, Regioregular poly (thiophene-3-alkanoic acid)s: Water soluble conducting polymers suitable for chromatic chemosensing in solution and solid state. Tetrahedron 60, 11269–11275 (2004)

    Article  CAS  Google Scholar 

  109. D. Aussawasathien, S. Sahasithiwat, L. Menbangpung, Electrospun camphorsulphonic acid doped poly (o-toluidine)-polystyrene composite fibers: Chemical vapour sensing. Synth. Met. 158, 259–263 (2008)

    Article  CAS  Google Scholar 

  110. D. Patil, K. Kolhe, H.S. Potdar, P. Patil, Investigation of poly(o-anisidine)-SnO2 nanocomposites for fabrication of low temperature operative liquefied petroleum gas sensor. J. Appl. Phys. 110, 124501 (2011). https://doi.org/10.1063/1.3667107

    Article  CAS  Google Scholar 

  111. P.M. Raotole, R.S. Khadayate, Deposition and characterization of poly(O-anisidine)/TiO2 nanocomposite for gas sensing application. Int. J. Polym. Sci. Eng. 1, 1–7 (2105)

    Google Scholar 

  112. L. Valentini, V. Bavastrello, E. Stura, I. Armentano, C. Nicolini, J.M. Kenny, Sensors for inorganic vapor detection based on carbon nanotubes and poly(o-anisidine) nanocomposite material. Chem. Phys. Lett. 383, 617–622 (2004)

    Article  CAS  Google Scholar 

  113. G. Casalbore-Miceli, A. Zanelli, A.W. Rinaldi, N. Camaioni, M.J. Yang, Y. Li, E.M. Girotto, Electric properties of poyelectrolyte films in moist solvents. Sensors Actuators B Chem. 125, 120–125 (2007)

    Article  CAS  Google Scholar 

  114. F. Tanaka, T. Kawai, S. Kojima, K. Yoshino, Electrical and optical properties of poly(3-alkoxythiophene) and their application for gas sensor. Synth. Met. 102, 1358–l359 (1999)

    Article  CAS  Google Scholar 

  115. A.A. Athawale, M.V. Kulkarni, Polyaniline and its substituted derivatives as sensors for aliphatic alcohol. Sensors Actuators B Chem. 67, 173–177 (2000)

    Article  CAS  Google Scholar 

  116. S.P. Surwade, S.R. Agnihotra, V. Dua, S.K. Manohar, Nitrogen dioxide vapor detection using poly-o-toluidine. Sensors Actuators B Chem. 143, 454–457 (2009)

    Article  CAS  Google Scholar 

  117. X. Li, Y. Wang, X. Yang, J. Chen, H. Fu, T. Cheng, Y. Wang, Conducting polymers in environmental analysis. Trends Anal. Chem. 39, 163–179 (2012)

    Article  CAS  Google Scholar 

  118. P.N. Barret, S.K. Ling-Chung, Conducting polymers gas sensors part III: Results for four different polymers and five different vapours. Sensors Actuators 20, 287–292 (1989)

    Article  Google Scholar 

  119. B.P.J.D.L. Castelo, N.M. Ratcliff, P.S. Sivanand, The synthesis of novel 3-substitutedpyrrole monomers processing chiral side groups: A study of their chiral discrimination properties. Synth. Met. 139, 43–55 (2003)

    Article  CAS  Google Scholar 

  120. S. Paul, N.N. Chavan, S. Radhakrishnan, Polypyrrole functionalized with ferrocenyl derivative as a rapid carbon monoxide sensor. Synth. Met. 159, 415–418 (2009)

    Article  CAS  Google Scholar 

  121. K.H. Lee, M.L. Kennedy, M. Buchalova, D.R. Benson, Thermodynamics of carbon monoxide binding by helical hemoprotein models: The effect of a competing intermolecular ligand. Tetrahedron 56, 9725–9731 (2000)

    Article  CAS  Google Scholar 

  122. S. Paul, M. Joseph, Polypyrrole functionalized with FePcTSA for NO2 sensor application. Sensors Actuators B Chem. 140, 439–444 (2009)

    Article  CAS  Google Scholar 

  123. K. Thuwachaowsoan, D. Chotpattananont, A. Sirivat, R. Rujiravanit, J.W. Schwank, Electrical conductivity responses and interactions of poly(3-thiopheneacetic acid)/zeolites L, mordenite, beta and H2. Mater. Sci. Eng. B 140, 23–30 (2007)

    Article  CAS  Google Scholar 

  124. M. Krondak, G. Broncová, S. Anikin, A. Merz, V.M. Mirsky, Chemosensitive properties of poly-4, 4′-dialkoxy-2, 2′-bipyrroles. J. Solid State Electrochem. 10, 185–191 (2006)

    Article  CAS  Google Scholar 

  125. U. Lange, N.V. Roznyatovskaya, V.M. Mirsky, Conducting polymers in chemical sensors and arrays. Anal. Chim. Acta 614, 1–26 (2008)

    Article  CAS  Google Scholar 

  126. L. Torsi, A. Tafuri, N. Cioffi, M. Gallazzi, A. Sassella, L. Sabbatini, P. Zambonin, Regioregular polythiophene field-effect transistors employed as chemical sensors. Sensors Actuators B Chem. 93, 257–262 (2003)

    Article  CAS  Google Scholar 

  127. L. Torsi, M.C. Tanese, N. Cioffi, M.C. Gallazzi, L. Sabbatini, P.G. Zambonin, Alkoxy-substituted polyterthiophene thin-film-transistors as alcohol sensors. Sensors Actuators B Chem. 98, 204–207 (2004)

    Article  CAS  Google Scholar 

  128. M. Xu, J. Zhang, S. Wang, X. Guo, H. Xia, Y. Wang, S. Zhang, W. Huang, S. Wu, Gas sensing properties of SnO2 hollow spheres/polythiophene inorganic–organic hybrids. Sensors Actuators B Chem. 146, 8–13 (2010)

    Article  CAS  Google Scholar 

  129. S. Pirsa, N. Alizadeh, A selective DMSO gas sensor based on nanostructured conducting polypyrrole doped with sulfonate anion. Sensors Actuators B Chem. 168, 303–309 (2012)

    Article  CAS  Google Scholar 

  130. R.S. Dudhe, S. Tiwari, H.N. Raval, M.A. Khaderbad, R. Singh, J. Sinha, M. Yedukondalu, M. Ravikanth, A. Kumar, V.R. Rao, Explosive vapor sensor using poly (3-hexylthiophene) and Cu II tetraphenylporphyrin composite based organic field effect transistors. Appl. Phys. Lett. 93, 263306 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Omaish Ansari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ansari, M.O., Ansari, S.A., Cho, M.H., Ansari, S.P., Abdel-wahab, M.S., Alshahrie, A. (2019). Conducting Polymer Nanocomposites as Gas Sensors. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95987-0_25

Download citation

Publish with us

Policies and ethics