Skip to main content

Polymer Functionalization

  • Reference work entry
  • First Online:
Functional Polymers

Abstract

This chapter provides an overview of the many facets of polymer functionalization. To build upon the basic foundation of polymer functionalization, some general considerations are outlined first. This includes various methods to synthesize functional polymers and an overview of reactions frequently employed in postpolymerization modification. Additionally a brief history of polymer functionalization dating back to the vulcanization of rubber in 1840 is discussed. Following the general considerations, the chapter is divided into specific functional groups and modern reactions. The functional groups discussed here include activated esters, anhydrides, isocyanates, and ketenes, oxazolones and epoxides, aldehydes and ketones, azides and alkynes, dienes, and dienophiles, tetrazines, halides, and thiols. To showcase the versatility of the functional groups, side chain modification and end group modification are included within each section. Finally, future prospects in polymer functionalization are briefly mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Hurtgen, A. Debuigne, C.A. Fustin, C. J’erˆome, C. Detrembleur, Organometallic-mediated radical polymerization: Unusual route toward (quasi-) diblock graft copolymers starting from a mixture of monomers of opposed reactivity. Macromolecules 44(12), 4623–4631 (2011)

    Article  CAS  Google Scholar 

  2. J. Bonilla-Cruz, L. Caballero, M. Albores-Velasco, E. Saldlvar-Guerra, J. Percino, V. Chapela, Mechanism and kinetics of the induction period in nitroxide mediated thermal autopolymerizations. Application to the spontaneous copolymerization of styrene and maleic anhydride. Radic. Polymer. Kinet. Mech. 132–140 (2007)

    Article  CAS  Google Scholar 

  3. D.E. Bergbreiter, N. Priyadarshani, Syntheses of terminally functionalized polyisobutylene derivatives using diazonium salts. J. Polym. Sci. A Polym. Chem. 49(8), 1772–1783 (2011)

    Article  CAS  Google Scholar 

  4. R. Godoy Lopez, C. Boisson, F. D’Agosto, R. Spitz, F. Boisson, P. Tordo, Direct syntheses of macroalkoxyamines based on polyethylene. Macromolecules 37, 3540–3542 (2004)

    Article  CAS  Google Scholar 

  5. J. Bonilla-Cruz, C. Guerrero-Sa’nchez, U.S. Schubert, E. Sald’ıvar-Guerra, Controlled grafting-from of poly [styrene-co-maleic anhydride] onto polydienes using nitroxide chemistry. Eur. Polym. J. 46(2), 298–312 (2010)

    Article  CAS  Google Scholar 

  6. S. Qin, D. Qin, W.T. Ford, D.E. Resasco, J.E. Herrera, Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from methods. Macromolecules 37(3), 752–757 (2004)

    Article  CAS  Google Scholar 

  7. J. Bonilla-Cruz, M. Dehonor, E. Saldivar-Guerra, A. Gonzalez-Montiel, in Handbook of Polymer Synthesis, Characterization, and Processing. Polymer modification (Wiley, Hoboken, 2013), pp. 205–223

    Chapter  Google Scholar 

  8. Z. Li, K. Zhang, J. Ma, C. Cheng, K.L. Wooley, Facile syntheses of cylindrical molecular brushes by a sequential RAFT and ROMP grafting-through methodology. J. Polym. Sci. A Polym. Chem. 47(20), 5557–5563 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. D.A. Hucul, S.F. Hahn, Catalytic hydrogenation of polystyrene. Adv. Mater. 12(23), 1855–1858 (2000)

    Article  CAS  Google Scholar 

  10. P.J. Roth, K.T. Wiss, P. Theato, Post-Polymerization Modification, vol 5 (Elsevier B.V., 2012), Amsterdam, pp. 247–267

    Google Scholar 

  11. D. Zuchowska, Polybutadiene modified by epoxidation. 1. Effect of polybutadiene microstructure on the reactivity of double bonds. Polymer 21(5), 514–520 (1980)

    Article  CAS  Google Scholar 

  12. E.M. Cross, T. J. McCarthy, Radical chlorination of polyethylene film: control of surface selectivity. Macromolecules. 25, 2603–2607 (1992)

    Article  CAS  Google Scholar 

  13. E. Klesper, D. Strasilla, M.C. Berg, 1H-NMR of the Esterification of Syndiotacticpoly(methacrylic acid) with CArbodiimides– I Esterification with methanol. Eur. Polym. J. 15, 587–591 (1979)

    Article  CAS  Google Scholar 

  14. T. Heinze, T. Liebert, Unconventional methods in cellulose functionalization. Prog. Polym. Sci. (Oxford) 26(9), 1689–1762 (2001)

    Article  CAS  Google Scholar 

  15. V.V. Korshak, The synthesis of polymers by modification methods the synthesis of polymers by modification methods. Russ. Chem. Rev. 49(12), 1135–1980 (1980)

    Article  Google Scholar 

  16. A. Ueno, C. Schuerch, Racemization of isotactic poly(isopropyl acrylate). J. Polym Sci. Polym. Lett. 3, 53–56 (1965)

    Article  CAS  Google Scholar 

  17. P.E. Dawson, T.W. Muir, I. Clarklewis, S.B.H. Kent, Synthesis of proteins by native chemical ligation. Science 266(5186), 776–779 (1994)

    Article  CAS  PubMed  Google Scholar 

  18. W.A. Cunningham, Sulfur. III. J. Chem. Educ. 12(3), 120–124 (1935)

    Article  Google Scholar 

  19. R.E. Oesper, Christian Friedrich Schönbein Part II. Experimental labors. J. Chem. Educ. 6(4), 677–685 (1929)

    Article  CAS  Google Scholar 

  20. P. Rustemeyer, History of CA and evolution of the markets. Macromol. Symp. 208, 1–6 (2004)

    Article  CAS  Google Scholar 

  21. H. Staudinger, J. Fritschi, Über Isopren und Kautschuk. 5. Mitteilung. Über die Hydrierung des Kautschuks und über seine Konstitution. Helv. Chim. Acta 5(5), 785–806 (1922)

    Article  CAS  Google Scholar 

  22. G.E. Serniuk, F.W. Banes, M.W. Swaney, Study of the reaction of Buna rubbers with aliphatic mercaptans. J. Am. Chem. Soc. 70(5), 1804–1808 (1948)

    Article  CAS  PubMed  Google Scholar 

  23. K. W. Pepper, H. M. Paisley, M. A, Young Properties of ion-exchange resins in relation to their structure. Part VI. Anion-exchange resins derived from styrene-divinyl-benzene copolymers (resumed). J. Am. Chem. Soc. 833, 4097–4105 (1953)

    Google Scholar 

  24. R.B. Merrifield, Solid phase peptide synthesis. I. The synthesis of. J. Am. Chem. Soc. 85(14), 2149 (1963)

    Article  CAS  Google Scholar 

  25. W. Kern, R.C. Schulz, D. Braun, Macro-molecules with groups of high reactivity. J. Polym. Sci. 48, 91–99 (1960)

    Article  CAS  Google Scholar 

  26. P.E. Blatz, O. Xocony, New polyelectrolytes: Synthesis and preliminary characterization. J. Polym. Sci. 58, 755–768 (1962)

    Article  CAS  Google Scholar 

  27. C.J. Hawker, A.W. Bosman, E. Harth, New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev. 101(12), 3661–3688 (2001)

    Article  CAS  PubMed  Google Scholar 

  28. J.S. Wang, K. Matyjaszewski, Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 117(6), 5614–5615 (1995)

    Article  CAS  Google Scholar 

  29. J. Chiefari, Y.K. Bill Chong, F. Ercole, J. Krstina, J. Jeffery, T.P.T. Le, R.T.A. Mayadunne, G.F. Meijs, C.L. Moad, G. Moad, E. Rizzardo, S.H. Thang, Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 31(98), 5559–5562 (1998)

    Article  CAS  Google Scholar 

  30. M.A. Tasdelen, B. Kiskan, Y. Yagci, Externally stimulated click reactions for macromolecular syntheses dedicated to Prof. Krzysztof Matyjaszewski on the occasion of his 65th birthday. Prog. Polym. Sci. 52, 19–78 (2016)

    Article  CAS  Google Scholar 

  31. P. Ferruti, A. Bettelli, A. Fer’e, High polymers of acrylic and methacrylic esters of N-hydroxysuccinimide as polyacrylamide and polymethacrylamide precursors. Polymer 13(10), 462–464 (1972)

    Article  CAS  Google Scholar 

  32. H.-G. Batz, G. Franzmann, H. Ringsdorf, Model reactions for synthesis of pharmacologically active polymers by way of monomeric and polymeric reactive esters. Angew. Chem. Int. Ed. Engl. 11(12), 1103–1104 (1972)

    Article  CAS  PubMed  Google Scholar 

  33. G.W. Cline, S.B. Hanna, Kinetics and mechanisms of the aminolysis of N-hydroxysuccinimide esters in aqueous buffers. J. Org. Chem. 53(15), 3583–3586 (1988)

    Article  CAS  Google Scholar 

  34. D.E. Bergbreiter, R. Hughes, J. Besinaiz, C. Li, P.L. Osburn, Phase-selective solubility of poly ( N-alkylacrylamide ) s. J. Am. Chem. Soc. 125(c), 8244–8249 (2003)

    Article  CAS  PubMed  Google Scholar 

  35. S.R.A. Devenish, J.B. Hill, J.W. Blunt, J.C. Morris, M.H.G. Munro, Dual side-reactions limit the utility of a key polymer therapeutic precursor. Tetrahedron Lett. 47(17), 2875–2878 (2006)

    Article  CAS  Google Scholar 

  36. S.Y. Wong, D. Putnam, Overcoming limiting side rxns associated w NHS-activated precursor polymethacrylamide-based polymer. Bioconjug. Chem. 18(3), 970–982 (2007)

    Article  CAS  PubMed  Google Scholar 

  37. P. Theato, J.-u. Kim, J.-c. Lee, Controlled radical polymerization of active ester monomers: precursor polymers for highly functionalized materials. Macromolecules 37(15), 5475–5478 (2004)

    Article  CAS  Google Scholar 

  38. S.Y. Wong, N. Sood, D. Putnam, Combinatorial evaluation of cations, pH-sensitive and hydrophobic moieties for polymeric vector design. Mol. Ther. 17(3), 480–490 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. C.M. Leon, B.H. Lee, M. Preul, R. McLemore, B.L. Vernon, Synthesis and characterization of radio-opaque thermosensitive poly N-isopropylacrylamide-2,2′- (ethylenedioxy)bis (ethylamine)-2,3,5-triiodobenzamide. Polym. Int. 58(8), 847–850 (2009)

    Article  CAS  Google Scholar 

  40. V. Sˇubr, K. Ulbrich, Synthesis and properties of new N-(2-hydroxypropyl)methacrylamide copolymers containing thiazolidine-2-thione reactive groups. React. Funct. Polym. 66(12), 1525–1538 (2006)

    Article  CAS  Google Scholar 

  41. M. Eberhardt, R. Mruk, R. Zentel, P. Th’eato, Synthesis of pentafluorophenyl(meth)acrylate polymers: new precursor polymers for the synthesis of multifunctional materials. Eur. Polym. J. 41(7), 1569–1575 (2005)

    Article  CAS  Google Scholar 

  42. K. Nilles, P. Theato, Synthesis and polymerization of active ester monomers based on 4-vinylbenzoic acid. Eur. Polym. J. 43(7), 2901–2912 (2007)

    Article  CAS  Google Scholar 

  43. K. Nilles, P. Theato, RAFT polymerization of activated 4-vinylbenzoates. J. Polym. Sci. A: Polim. Chem. 47, 1696–1705 (2009)

    Article  CAS  Google Scholar 

  44. A. Das, P. Theato, Multifaceted synthetic route to functional polyacrylates by transesterification of poly(pentafluorophenyl acrylates). Macromolecules 48(24), 8695–8707 (2015)

    Article  CAS  Google Scholar 

  45. J. Parvole, L. Ahrens, H. Blas, J. Vinas, C. Boissiere, C. Sanchez, M. Save, B. Charleux, Grafting polymer chains bearing an N -succinimidyl activated ester endgroup onto primary amine-coated silica particles and application of a simple, one-step approach via nitroxide-mediated controlled/living free-radical polymerization. J. Polym. Sci. A Polym. Chem. 48(1), 173–185 (2010)

    Article  CAS  Google Scholar 

  46. V. Ladmiral, L. Monaghan, G. Mantovani, D.M. Haddleton, α-Functional glycopolymers: new materials for (poly)peptide conjugation. Polymer 46(19), 8536–8545 (2005)

    Article  CAS  Google Scholar 

  47. J. Vinas, N. Chagneux, D. Gigmes, T. Trimaille, A. Favier, D. Bertin, SG1-based alkoxyamine bearing a N-succinimidyl ester: a versatile tool for advanced polymer synthesis. Polymer 49(17), 3639–3647 (2008)

    Article  CAS  Google Scholar 

  48. D. Samantha, S. McRae, B. Cooper, Y. Hu, T. Emrick, J. Pratt, S.A. Charles, End-functionalized phosphorylcholine methacrylates and their use in protein conjugation. Biomacromolecules 9(10), 2891–2897 (2008)

    Article  CAS  Google Scholar 

  49. A. Lewis, Y. Tang, S. Brocchini, J.W. Choi, A. Godwin, Poly(2-methacryloyloxyethyl phosphoryl-choline) for protein conjugation. Bioconjug. Chem. 19(11), 2144–2155 (2008)

    Article  CAS  PubMed  Google Scholar 

  50. Z. Zarafshani, T. Obata, J.F. Lutz, Smart PEGylation of trypsin. Biomacromolecules 11(8), 2130–2135 (2010)

    Article  CAS  PubMed  Google Scholar 

  51. F. Lecolley, L. Tao, G. Mantovani, I. Durkin, S. Lautru, D.M. Haddleton, A new approach to bioconjugates for proteins and peptides (pegylation) utilising living radical polymerisation. Chem. Commun. 23(18), 2026–2027 (2004)

    Article  Google Scholar 

  52. I. Tan, Z. Zarafshani, J.-F. Lutz, M.-M. Titirici, PEGylated chromatography: efficient bioseparation on silica monoliths grafted with smart biocompatible polymers. ACS Appl. Mater. Interfaces 1(9), 1869–1872 (2009)

    Article  CAS  PubMed  Google Scholar 

  53. J. Nicolas, E. Khoshdel, D.M. Haddleton, Bioconjugation onto biological surfaces with fluorescently labeled polymers. Chem. Commun. (Camb.) 17, 1722–1724 (2007)

    Article  CAS  Google Scholar 

  54. T.J.V. Prazeres, M. Beija, M.-T. Charreyre, J.P.S. Farinha, J.M.G. Martinho, RAFT polymerization and self-assembly of thermoresponsive poly(N-decylacrylamide-b-N,N-diethylacrylamide) block copolymers bearing a phenanthrene fluorescent α-end group. Polymer 51(2), 355–367 (2010)

    Article  CAS  Google Scholar 

  55. M. Bathfield, F. D’Agosto, R. Spitz, M.-T. Charreyre, T. Delair, Versatile precursors of functional RAFT agents. Application to the synthesis of bio-related end-functionalized polymers. J. Am. Chem. Soc. 128(8), 2546–2547 (2006)

    Article  CAS  PubMed  Google Scholar 

  56. K. Godula, D. Rabuka, K.T. Nam, C.R. Bertozzi, Synthesis and microcontact printing of dual endfunctionalized mucin-like glycopolymers for microarray applications. Angew. Chem. Int. Ed. 48(27), 4973–4976 (2009)

    Article  CAS  Google Scholar 

  57. K.T. Wiss, P. Theato, Facilitating polymer conjugation via combination of RAFT polymerization and activated ester chemistry. J. Polym. Sci. A Polym. Chem. 48(21), 4758–4767 (2010)

    Article  CAS  Google Scholar 

  58. K.T. Wiss, O.D. Krishna, P.J. Roth, K.L. Kiick, P. Theato, A versatile grafting-to approach for the bioconjugation of polymers to collagen-like peptides using an activated ester chain transfer agent. Macromolecules 42(12), 3860–3863 (2009)

    Article  CAS  Google Scholar 

  59. O.D. Krishna, K.T. Wiss, T. Luo, D.J. Pochan, P. Theato, K.L. Kiick, Morphological transformations in a dually thermoresponsive coilrod-coil bioconjugate. Soft Matter 8(14), 3832–3840 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. P.J. Roth, K.T. Wiss, R. Zentel, P. Theato, Synthesis of reactive telechelic polymers based on pentafluorophenyl esters. Macromolecules 41(22), 8513–8519 (2008)

    Article  CAS  Google Scholar 

  61. M.A. Gauthier, M.I. Gibson, H.A. Klok, Synthesis of functional polymers by post- polymerization modification. Angew. Chem. Int. Ed. 48(1), 48–58 (2009)

    Article  CAS  Google Scholar 

  62. M.C. Davies, J.V. Dawkins, D.J. Hourston, Radical copolymerization of maleic anhydride and substituted styrenes by reversible addition-fragmentation chain transfer (RAFT) polymerization. Polymer 46(6), 1739–1753 (2005)

    Article  CAS  Google Scholar 

  63. I. Donati, A. Gamini, A. Vetere, C. Campa, S. Paoletti, Synthesis, characterization, and preliminary biological study of glycoconjugates of poly (styrene-co-maleic acid). Biomacromolecules 3(4), 805–812 (2002)

    Article  CAS  PubMed  Google Scholar 

  64. S.M. Henry, M.E.H. El-Sayed, C.M. Pirie, A.S. Hoffman, P.S. Stayton, pH-responsive poly (styrene-alt-maleic anhydride) alkylamide copolymers for intracellular drug delivery. Biomacromolecules 7(8), 2407–2414 (2006)

    Article  CAS  PubMed  Google Scholar 

  65. H. Willcock, R.K. O’Reilly, End group removal and modification of RAFT polymers. Polym. Chem. 1(2), 149–157 (2010)

    Article  CAS  Google Scholar 

  66. H.J. Knlker, T. Braxmeier, G. Schlechtingen, A novel method for the synthesis of isocyanates under mild conditions. Angew. Chem. Int. Ed. Engl. 34(22), 2497–2500 (1995)

    Article  Google Scholar 

  67. M. Drr, R. Zentel, R. Dietrich, K. Meerholz, C. Bruchle, J. Wichern, S. Zippel, P. Boldt, Reactions on vinyl isocyanate/maleimide copolymers: NLO-functionalized polymers with high glass transitions for nonlinear optical applications. Macromolecules 31(5), 1454–1465 (1998)

    Article  Google Scholar 

  68. D. Beyer, W. Paulus, M. Seitz, G. Maxein, H. Ringsdorf, M. Eich, Second harmonic generation in self-assembled alternating multilayers of hemicyanine containing polymers and polyvinylamine. Thin Solid Films 271(1), 73–83 (1995)

    Article  CAS  Google Scholar 

  69. J.D. Flores, J. Shin, C.E. Hoyle, C.L. McCormick, Direct RAFT polymerization of an unprotected isocyanate-containing monomer and subsequent structopendant functionalization using click-type reactions. Polym. Chem. 1(2), 213–220 (2010)

    Article  CAS  Google Scholar 

  70. P. Theato, H.A. Klok, Functional Polymers by Post-Polymerization Modification: Concepts, Guidelines and Applications (Wiley, Weinheim, 2013)

    Google Scholar 

  71. P. Zarras, O. Vogl, Ketenes and bisketenes as polymer intermediates. Prog. Polym. Sci. 16(2), 173–201 (1991)

    Article  CAS  Google Scholar 

  72. T.T. Tidwell, Ketenes (Wiley, Hoboken, 2006)

    Google Scholar 

  73. J.A. Hyatt, P.W. Raynolds, Ketene cycloadditions. Org. React. 45, 159 (1994)

    CAS  Google Scholar 

  74. F.A. Leibfarth, C.J. Hawker, The emerging utility of ketenes in polymer chemistry. J. Polym. Sci. A Polym. Chem. 51(18), 3769–3782 (2013)

    Article  CAS  Google Scholar 

  75. F.A. Leibfarth, M. Kang, M. Ham, J. Kim, L.M. Campos, N. Gupta, B. Moon, C.J. Hawker, A facile route to ketene-functionalized polymers for general materials applications. Nat. Chem. 2(3), 207–212 (2010)

    Article  CAS  PubMed  Google Scholar 

  76. L.D. Taylor, C.K. Chiklis, T.E. Platt, Synthesis and polymerization of 2-vinyl-4,4-dimethyl-5-oxazolone. J. Polym. Sci. Polym. Lett. 9(3), 187–190 (1971)

    Article  CAS  Google Scholar 

  77. D.C. Tully, M.J. Roberts, B.H. Geierstanger, R.B. Grubbs, Synthesis of reactive poly(vinyl oxazolones) via nitroxide-mediated “living” free radical polymerization. Macromolecules 36(12), 4302–4308 (2003)

    Article  CAS  Google Scholar 

  78. V. Lapinte, J.C. Brosse, L. Fontaine, Synthesis and ringopening metathesis polymerization (ROMP) reactivity of endo-and exonorbornenylazlactone using ruthenium catalysts. Macromol. Chem. Phys. 205(6), 824–833 (2004)

    Article  CAS  Google Scholar 

  79. L. Fontaine, T. Lemele, J.C. Brosse, G. Sennyey, J.P. Senet, D. Wattiez, Grafting of 2-vinyl-4,4-dimethylazlactone onto electron-beam activated poly(propylene) films and fabrics. Application to the immobilization of sericin. Macromol. Chem. Phys. 203(10-11), 1377–1384 (2002)

    Article  CAS  Google Scholar 

  80. P.L. Coleman, M.M. Walker, D.S. Milbrath, D.M. Stauffer, J.K. Rasmussen, L.R. Krepski, S.M. Heilmann, Immobilization of Protein A at high density on azlactone-functional polymeric beads and their use in affinity chromatography. J. Chromatogr. A 512, 345–363 (1990)

    Article  CAS  Google Scholar 

  81. S.M. Heilmann, J.K. Rasmussen, L.R. Krepski, Chemistry and technology of 2-alkenyl azalactones. J. Polym. Sci. A Polym. Chem. 39, 3655 (2001)

    Article  CAS  Google Scholar 

  82. M. W. Jones, S. J. Richards, D. M. Haddleton, M. I. Gibson, Poly (azlactone) s: Versatile scaffolds for tandem post-polymerisation modification and glycopolymer synthesis. Polym. Chem. 4(3), 717–723 (2013)

    Article  CAS  Google Scholar 

  83. F.W. Speetjens, M.C.D. Carter, M. Kim, P. Gopalan, M.K. Mahanthappa, D.M. Lynn, Post-fabrication placement of arbitrary chemical functionality on microphase-separated thin films of amine-reactive block copolymers. ACS Macro Lett. 3(11), 1178–1182 (2014)

    Article  CAS  Google Scholar 

  84. B.S. Lokitz, J. Wei, J.P. Hinestrosa, I. Ivanov, J.F. Browning, J.F. Ankner, S.M. Kilbey, J.M. Messman, Manipulating interfaces through surface confinement of poly(glycidyl methacrylate)-block -poly(vinyldimethylazlactone), a dually reactive block copolymer. Macromolecules 45(16), 6438–6449 (2012)

    Article  CAS  Google Scholar 

  85. D.C. Tully, M.J. Roberts, B.H. Geierstanger, R.B. Grubbs, Synthesis of reactive poly(vinyl oxazolones) via nitroxidemediated “living” free radical polymerization. Macromolecules 36(12), 4302–4308 (2003)

    Article  CAS  Google Scholar 

  86. H.T. Ho, M.E. Levere, D. Fournier, V. Montembault, S. Pascual, L. Fontaine, Introducing the azlactone functionality into polymers through controlled radical polymerization: strategies and recent developments. Aust. J. Chem. 65(8), 970–977 (2012)

    Article  CAS  Google Scholar 

  87. C. Gardner, H. Sto’Iver, Reactive polyanions based on poly (4, 4-dimethyl-2-vinyl-2-oxazoline-5-one-co-methacrylic acid). Macromolecules 44, 7115–7123 (2011)

    Article  CAS  Google Scholar 

  88. M.E. Buck, D.M. Lynn, Azlactone-functionalized polymers as reactive platforms for the design of advanced materials: Progress in the last ten years. Polym. Chem. 3(1), 66 (2012)

    Article  CAS  PubMed  Google Scholar 

  89. D. Navarro-Rodriguez, F.J. Rodriguez-Gonzalez, J. Romero-Garcia, E.J. Jimenez-Regalado, D. Guillon, Chemical modification of glycidyl methacrylate polymers with 4-hydroxy-4-methoxybiphenyl groups. Eur. Polym. J. 34(7), 1039–1045 (1998)

    Article  CAS  Google Scholar 

  90. Y. Iwakura, K. Toshikazu, Y. Imai, Reaction between amines and epoxy groups of acrylonitrile-glycidyl acrylate copolymers. Makromol. Chem. 86, 73–79 (1965)

    Article  CAS  Google Scholar 

  91. Y. Iwakura, T. Kurosaki, N. Nakabayashi, Reactive fiber. Part I. Copolymerization and copolymer of acrylonitrile with glycidyl methacrylate and with glycidyl acrylate. Makromol. Chem. 44(1956), 570–590 (1961)

    Article  Google Scholar 

  92. Y. Iwakura, T. Kurosaki, N. Ariga, T. Ito, Copolymerization of methyl methacrylat with glycidyl methacrylat and the reaction of the copolymer with amines. Makromol. Chem. 97(2098), 128–138 (1966)

    Article  CAS  Google Scholar 

  93. J. Kalal, F. Sˇvec, V. Marouˇsek, Reactions of epoxide groups of glycidyl methacrylate copolymers. J. Polym. Sci. Polym. Symp. 47(1), 155–166 (1974)

    Article  CAS  Google Scholar 

  94. R. Barbey, H.A. Klok, Room temperature, aqueous post-polymerization modification of glycidyl methacrylate-containing polymer brushes prepared via surface-initiated atom transfer radical polymerization. Langmuir 26(23), 18219–18230 (2010)

    Article  CAS  PubMed  Google Scholar 

  95. V. Tsyalkovsky, V. Klep, K. Ramaratnam, R. Lupitskyy, S. Minko, I. Luzinov, Fluorescent reactive core-shell composite nanoparticles with a high surface concentration of epoxy functionalities. Chem. Mater. 20(1), 317–325 (2008)

    Article  CAS  Google Scholar 

  96. L. Tian, X. Li, P. Zhao, X. Chen, Z. Ali, N. Ali, B. Zhang, H. Zhang, Q. Zhang, Generalized approach for fabricating monodisperse anisotropic microparticles via single-hole swelling PGMA seed particles. Macromolecules 48(20), 7592–7603 (2015)

    Article  CAS  Google Scholar 

  97. E. Soto-Cantu, B.S. Lokitz, J.P. Hinestrosa, C. Deodhar, J.M. Messman, J.F. Ankner, S.M. Kilbey, Versatility of alkyne-modified poly(glycidyl methacrylate) layers for click reactions. Langmuir 27(10), 5986–5996 (2011)

    Article  CAS  PubMed  Google Scholar 

  98. S. Edmondson, W.T.S. Huck, Controlled growth and subsequent chemical modification of poly(glycidyl methacrylate) brushes on silicon wafers. J. Mater. Chem. 14, 730 (2004)

    Article  CAS  Google Scholar 

  99. J. Qin, X. Jiang, L. Gao, Y. Chen, F. Xi, Functional polymeric nanoobjects by cross-linking bulk self-assemblies of poly(tert-butyl acrylate)-block -poly(glycidyl methacrylate). Macromolecules 43(19), 8094–8100 (2010)

    Article  CAS  Google Scholar 

  100. A. Marino-gonza, A. Mairata, I.W.C.E. Arends, R.A. Sheldon, Efficient and selective aerobic oxidation of alcohols into aldehydes and ketones using ruthenium / TEMPO as the catalytic system. J. Am. Chem. Soc. 123(23), 6826–6833 (2001)

    Google Scholar 

  101. A. De Mico, R. Margarita, L. Parlanti, A. Vescovi, G. Piancatelli, A versatile and highly selective hypervalent iodine (III)/2, 2, 6, 6-tetramethyl-1-piperidinyloxyl-mediated oxidation of alcohols to carbonyl compounds. J. Org. Chem. 62(20), 6974–6977 (1997)

    Article  Google Scholar 

  102. J. Einhorn, C. Einhorn, F. Ratajczak, J.L. Pierre, Efficient and highly selective oxidation of primary alcohols to aldehydes by N-chlorosuccinimide mediated by oxoammonium salts. J. Org. Chem. 61(9), 7452–7454 (1996)

    Article  CAS  PubMed  Google Scholar 

  103. A. Kirschning, H. Monenschein, R. Wittenberg, Functionalized polymersemerging versatile tools for solution-phase chemistry and automated parallel synthesis. Angew. Chem. Int. Ed. 40(4), 650–679 (2001)

    Article  CAS  Google Scholar 

  104. C. Einhorn, J. Einhorn, C. Marcadal, J.L. Pierre, Oxidation of organic substrates by molecular oxygen mediated byN-hydroxyphthalimide (NHPI) and acetaldehyde. Chem. Commun. 5, 447–448 (1997)

    Article  Google Scholar 

  105. J. Singh, M. Sharma, G.L. Kad, B.R. Chhabra, Selective oxidation of allylic methyl groups over a solid support under microwave irradiation. J. Chem. Res. 7, 264–265 (1997)

    Article  Google Scholar 

  106. N. Lawrence, Aldehydes and ketones. J. Chem. Soc. Perkin Trans. 1(10), 1739–1750 (1998)

    Article  Google Scholar 

  107. G. Godjoian, B. Singaram, Controlled reduction of tertiary amides to the corresponding aldehydes or amines using dialkylboranes. Tetrahedron Lett. 38(10), 1717–1720 (1997)

    Article  CAS  Google Scholar 

  108. X. Jia, S. Zhang, W. Wang, F. Luo, J. Cheng, Palladium-catalyzed acylation of sp2 C-H bond: direct access to ketones from aldehydes. Org. Lett. 11(14), 3120–3123 (2009)

    Article  CAS  PubMed  Google Scholar 

  109. G.T. Hermanson, Bioconjugate Techniques (Academic Press, Amsterdam, 2013)

    Google Scholar 

  110. G.A. Lemieux, C.R. Bertozzi, Chemoselective ligation reactions with proteins, oligosaccharides and cells. Trends Biotechnol. 16(12), 506–513 (1998)

    Article  CAS  PubMed  Google Scholar 

  111. R.C. Li, R.M. Broyer, H.D. Maynard, Well-defined polymers with acetal side chains as reactive scaffolds synthesized by atom transfer radical polymerization. J. Polym. Sci. A Polym. Chem. 44(17), 5004–5013 (2006)

    Article  CAS  Google Scholar 

  112. J. Hwang, R.C. Li, H.D. Maynard, Well-defined polymers with activated ester and protected aldehyde side chains for biofunctionalization. J. Control. Release 122(3), 279–286 (2007)

    Article  CAS  PubMed  Google Scholar 

  113. K.L. Christman, H.D. Maynard, Protein micropatterns using a pH-responsive polymer and light. Langmuir 21(18), 8389–8393 (2005)

    Article  CAS  PubMed  Google Scholar 

  114. R.H. Wiley, P.H. Hobson, Polymerization of m-and p-formylstyrenes. J. Polym. Sci. 5(4), 483–486 (1950)

    Article  CAS  Google Scholar 

  115. N. Wagner, P. Zimmermann, P. Heisig, F. Klitsche, W. Maison, P. Theato, Investigation of antifouling properties of surfaces featuring zwitterionic α-aminophosphonic acid moieties. Macromol. Biosci. 15(12), 1673–1678 (2015)

    Article  CAS  PubMed  Google Scholar 

  116. A. Hirao, S. Nakahama, Protection and polymerization of functional monomers. 10. Synthesis of well-defined poly (4-vinylbenzaldehyde) by the anionic living polymerization of N-[(4-ethenylphenyl) methylene] cyclohexamine. Macromolecules 20(12), 2968–2972 (1987)

    Article  CAS  Google Scholar 

  117. T. Ishizone, T. Utaka, Y. Ishino, A. Hirao, S. Nakahama, Anionic polymerization of monomers containing functional groups. 10. Anionic polymerizations of N-Aryl-N-(4-vinylbenzylidene) amines 1. Macromolecules 30(21), 6458–6466 (1997)

    Article  CAS  Google Scholar 

  118. G. Sun, C. Cheng, K.L. Wooley, Reversible addition fragmentation chain transfer polymerization of 4-vinylbenzaldehyde. Macromolecules 40(4), 793–795 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. G. Moad, E. Rizzardo, S.H. Thang, Living radical polymerization by the RAFT process. Aust. J. Chem. 58(6), 379–410 (2005)

    Article  CAS  Google Scholar 

  120. Z.P. Xiao, Z.H. Cai, H. Liang, J. Lu, Amphiphilic block copolymers with aldehyde and ferrocene-functionalized hydrophobic block and their redox-responsive micelles. J. Mater. Chem. 20(38), 8375–8381 (2010)

    Article  CAS  Google Scholar 

  121. C.S. Marvel, C.L. Levesque, The structure of vinyl polymers: the polymer from methyl vinyl ketone. J. Am. Chem. Soc. 60(2), 280–284 (1938)

    Article  CAS  Google Scholar 

  122. C. Cheng, G. Sun, E. Khoshdel, K.L. Wooley, Well-defined vinyl ketone-based polymers by reversible addition-fragmentation chain transfer polymerization. J. Am. Chem. Soc. 129(33), 10086–10087 (2007)

    Article  CAS  PubMed  Google Scholar 

  123. A. Mittal, S. Sivaram, D. Baskaran, Unfavorable coordination of copper with methyl vinyl ketone in atom transfer radical polymerization. Macromolecules 39(16), 5555–5558 (2006)

    Article  CAS  Google Scholar 

  124. S.K. Yang, M. Weck, Covalent and orthogonal multi-functionalization of terpolymers. Soft Matter 5(3), 582–585 (2009)

    Article  CAS  Google Scholar 

  125. S.K. Yang, M. Weck, Modular covalent multifunctionalization of copolymers. Macromolecules 41(2), 346–351 (2008)

    Article  CAS  Google Scholar 

  126. C. Scholz, M. Iijima, Y. Nagasaki, K. Kataoka, A novel reactive polymeric micelle with aldehyde groups on its surface. Macromolecules 28(21), 7295–7297 (1995)

    Article  CAS  Google Scholar 

  127. Y. Nagasaki, T. Okada, C. Scholz, M. Iijima, M. Kato, K. Kataoka, The reactive polymeric micelle based on an aldehyde-ended poly (ethylene glycol)/poly (lactide) block copolymer. Macromolecules 31(5), 1473–1479 (1998)

    Article  CAS  Google Scholar 

  128. Y. Nagasaki, R. Ogawa, S. Yamamoto, M. Kato, K. Kataoka, Synthesis of heterotelechelic poly (ethylene glycol) macromonomers. Preparation of poly (ethylene glycol) possessing a methacryloyl group at one end and a formyl group at the other end. Macromolecules 30(21), 6489–6493 (1997)

    Article  CAS  Google Scholar 

  129. L. Tao, G. Mantovani, F. Lecolley, D.M. Haddleton, α-Aldehyde terminally functional methacrylic polymers from living radical polymerization: application in protein conjugation pegylation. J. Am. Chem. Soc. 126(41), 13220–13221 (2004)

    Article  CAS  PubMed  Google Scholar 

  130. J.M. Notestein, L.W. Lee, R.A. Register, Well-defined diblock copolymers via termination of living ROMP with anionically polymerized macromolecular aldehydes. Macromolecules 35(6), 1985–1987 (2002)

    Article  CAS  Google Scholar 

  131. A.W. Jackson, D.A. Fulton, Dynamic covalent diblock copolymers prepared from RAFT generated aldehyde and alkoxyamine end-functionalized polymers. Macromolecules 43(2), 1069–1075 (2009)

    Article  CAS  Google Scholar 

  132. S. Coca, H. Paik, K. Matyjaszewski, Block copolymers by transformation of living ring-opening metathesis polymerization into controlled/living atom transfer radical polymerization. Macromolecules 30(21), 6513–6516 (1997)

    Article  CAS  Google Scholar 

  133. R. Huisgen, 1,3-Dipolar cycloadditions. Past and future. Angew. Chem. Int. Ed. Engl. 2(10), 565–598 (1963)

    Article  Google Scholar 

  134. R. Huisgen, Kinetics and mechanism of 1,3-dipolar cycloadditions. Angew. Chem. Int. Ed. Engl. 2(11), 633–645 (1963)

    Article  Google Scholar 

  135. Y. Li, J. Yang, B.C. Beniceqicz, Well-controlled polymerization of 2-azodoethyl methacrylate at near room temperature and click functionalization. J. Polym. Sci. Part A: Polym Chem. 45, 4300–4306 (2007)

    Article  CAS  Google Scholar 

  136. M.H.B. Stowell, T.M. McPhillips, D.C. Rees, S.M. Soltis, E. Abresch, G. Feher, Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron-proton transfer. Science 276, 812–816 (1997)

    Article  CAS  PubMed  Google Scholar 

  137. S.C. Ritter, B. Konig, Signal amplification and transduction by photo-activated catalysis. Chem. Commun. 45, 4694–4696 (2006)

    Article  Google Scholar 

  138. V. Hong, A.K. Udit, R.A. Evans, G. Finn, Electrochemically protected copper(I)-catalyzed azide-alkyne cycloaddition. ChemBioChem 9(9), 1481–1486 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. G. Molteni, C.L. Bianchi, G. Marinoni, N. Santo, A. Ponti, Cu/Cu-oxide nanoparticles as catalyst in the “click” azide-alkyne cycloaddition. New J. Chem. 30, 1137 (2006)

    Article  CAS  Google Scholar 

  140. H.C. Kolb, M.G. Finn, K.B. Sharpless, Click chemistry: diverse chemical function from a few good reactions. Ange-wandte Chem. Int. Ed. 40(11), 2004–2021 (2001)

    Article  CAS  Google Scholar 

  141. W.H. Binder, R. Sachsenhofer, ‘Click’ chemistry in polymer and materials science. Macromol. Rapid Commun. 28(1), 15–54 (2007)

    Article  CAS  Google Scholar 

  142. S.S. Brent, V.T. Nicolay, Highly efficient click functionalization of poly(3-azidopropyl methacrylate) prepared by ATRP. Macromolecules 38, 7540–7545 (2005)

    Article  CAS  Google Scholar 

  143. T. Ishizone, J. Tsuchiya, A. Hirao, S. Nakahama, Anionic polymerization of monomers containing functional groups. 4. Anionic living polymerization of N,N-dialkyl-4-vinylbenzenesulfonamides. Macromolecules 25(19), 4840–4847 (1992)

    Article  CAS  Google Scholar 

  144. V. Ladmiral, T.M. Legge, Y. Zhao, S. Perrier, “Click” chemistry and radical polymerization: potential loss of orthogonality. Macromolecules 41(18), 6728–6732 (2008)

    Article  CAS  Google Scholar 

  145. M.Y. Sen, J.E. Puskas, Green polymer chemistry: telechelic poly(ethylene glycol)s via enzymatic catalysis. Am. Chem. Soc. Polym. Prepr. Div. Polym. Chem. 49(1), 487–488 (2008)

    CAS  Google Scholar 

  146. T.R. Chan, R. Hilgraf, K.B. Sharpless, V.V. Fokin, Polytriazoles as copper (I) -stabilizing ligands in catalysis. Org. Lett. 6(27), 2853–2855 (2004)

    Article  CAS  PubMed  Google Scholar 

  147. B. Parrish, R.B. Breitenkamp, T. Emrick, PEG- and peptide-grafted aliphatic polyesters by click chemistry. J. Am. Chem. Soc. 127(20), 7404–7410 (2005)

    Article  CAS  PubMed  Google Scholar 

  148. R. Riva, S. Schmeits, F. Stoffelbach, C. Jérôme, R. Jérôme, P. Lecomte, Combination of ring-opening polymerization and “click” chemistry towards functionalization of aliphatic polyesters. Chem. Commun. (Camb.) 42, 5334–5336 (2005)

    Article  CAS  Google Scholar 

  149. J.A. Link, M.K.S. Vink, D.A. Tirrell, Presentation and detection of azide functionality in bacterial cell surface proteins presentation and detection of azide functionality in bacterial. J. Am. Chem. Soc. 2(126), 10598–10602 (2004)

    Article  CAS  Google Scholar 

  150. J. Lutz, H.G. Börner, K. Weichenhan, Combining ATRP and “click” chemistry: a promising platform toward functional biocompatible polymers and polymer bioconjugates. Macromolecules 39(19), 6376–6383 (2006)

    Article  CAS  Google Scholar 

  151. J. Lutz, H.G. Börner, K. Weichenhan, Combining atom transfer radical polymerization and click chemistry: a versatile method for the preparation of end-functional polymers. Macromol. Rapid Commun. 26(7), 514–518 (2005)

    Article  CAS  Google Scholar 

  152. K. Matyjaszewski, Y. Nakagawa, S.G. Gaynor, Synthesis of well-defined azido and amino end-functionalized polystyrene by atom transfer radical polymerization. Macromol. Rapid Commun. 18(12), 1057–1066 (1997)

    Article  CAS  Google Scholar 

  153. S.O. Kyeremateng, E. Amado, A. Blume, J. Kressler, Synthesis of ABC and CABAC triphilic block copolymers by ATRP combined with ‘Click’ chemistry. Macromol. Rapid Commun. 29(12-13), 1140–1146 (2008)

    Article  CAS  Google Scholar 

  154. W. Van Camp, V. Germonpr’e, L. Mespouille, P. Dubois, E.J. Goethals, F.E. Du Prez, New poly(acrylic acid) containing segmented copolymer structures by combination of “click” chemistry and atom transfer radical polymerization. React. Funct. Polym. 67(11), 1168–1180 (2007)

    Article  CAS  Google Scholar 

  155. J.A. Opsteen, J.C.M. van Hest, Modular synthesis of block copolymers via cycloaddition of terminal azide and alkyne functionalized polymers. Chem. Rev. 109(11), 5620–5686 (2009)

    Article  CAS  Google Scholar 

  156. G. Mantovani, V. Ladmiral, L. Tao, D.M. Haddleton, One-pot tandem living radical polymerisation-Huisgens cycloaddition process (“click”) catalysed by N-alkyl-2- pyridylmethanimine/Cu(I)Br complexes. Chem. Commun. (Camb.) 16, 2089–2091 (2005)

    Article  Google Scholar 

  157. C. Boyer, J. Liu, V. Bulmus, T.P. Davis, C. Barner-Kowollik, M.H. Stenzel, Direct synthesis of well-defined heterotelechelic polymers for bioconjugations. Macromolecules 41(15), 5641–5650 (2008)

    Article  CAS  Google Scholar 

  158. A. Otto Diels, Synthesen in der hydroaromatischeii. Leibigs Ann. Chem 460(1906), 98–122 (1928)

    Article  Google Scholar 

  159. A. Dag, H. Durmaz, G. Hizal, Umit Tunca: preparation of 3-arm star polymers (A3) via Diels-Alder click reaction. J. Polym. Sci. A Polym. Chem. 46(1), 302–313 (2008)

    Article  CAS  Google Scholar 

  160. J. Sauer, Diels-Alder reactions. I. New preparative aspects. Angew. Chem. Int. Ed. 5(2), 211–230 (1966)

    Article  CAS  Google Scholar 

  161. S.M. Ryan, X. Wang, G. Mantovani, C.T. Sayers, D.M. Haddleton, D.J. Brayden, Conjugation of salmon calcitonin to a combed-shaped end functionalized poly(poly(ethylene glycol) methyl ether methacrylate) yields a bioactive stable conjugate. J. Control. Release 135(1), 51–59 (2009)

    Article  CAS  PubMed  Google Scholar 

  162. Y. Chujo, K. Sada, T. Saegusa, Reversible gelation of polyoxazoline by means of Diels-Alder reaction. Macromolecules 23, 2636–2641 (1990)

    Article  CAS  Google Scholar 

  163. J.R. Jones, C.L. Liotta, D.M. Collard, D.A. Schiraldi, Cross-linking and modification of poly(ethylene terephthalate-co-2,6-anthracenedicarboxylate) by Diels-Alder reactions with maleimides. Macromolecules 32(18), 5786–5792 (1999)

    Article  CAS  Google Scholar 

  164. I. Kosif, E.J. Park, R. Sanyal, A. Sanyal, Fabrication of maleimide containing thiol reactive hydrogels via diels-alder/retro-diels-alder strategy. Macromolecules 43(9), 4140–4148 (2010)

    Article  CAS  Google Scholar 

  165. M. M. Kose, G. Yesibag, A. Sanyal, Segment block dendrimers via Diels – Alder cycloaddition. Org. Lett. 10(12), 2353–2356 (2008)

    Article  CAS  PubMed  Google Scholar 

  166. B. Gacal, H. Durmaz, M.A. Tasdelen, G. Hizal, U. Tunca, Y. Yagci, A.L. Demirel, Anthracene-maleimide-based Diels-Alder “click chemistry” as a novel route to graft copolymers. Macromolecules 39(16), 5330–5336 (2006)

    Article  CAS  Google Scholar 

  167. M.A. Tasdelen, DielsAlder click reactions: recent applications in polymer and material science. Polym. Chem. 2(10), 2133 (2011)

    Article  CAS  Google Scholar 

  168. T. Dispinar, R. Sanyal, A. Sanyal, A Diels-Alder/retro Diels-Alder strategy to synthesize polymers bearing maleimide side chains. J. Polym. Sci. A Polym. Chem. 45(20), 4545–4551 (2007)

    Article  CAS  Google Scholar 

  169. G. Mantovani, F. Lecolley, L. Tao, D.M. Haddleton, J. Clerx, J.J.L.M. Cornelissen, K. Velonia, Design and synthesis of N-maleimido-functionalized hydrophilic polymers via copper-mediated living radical polymerization: a suitable alternative to pegylation chemistry. J. Am. Chem. Soc. 127(9), 2966–2973 (2005)

    Article  CAS  PubMed  Google Scholar 

  170. H. Durmaz, A. Dag, C. Onen, O. Gok, A. Sanyal, G. Hizal, U. Tunca, Multiarm star polymers with peripheral dendritic PMMA arms through Diels-Alder click reaction. J. Polym. Sci. A Polym. Chem. 48(21), 4842–4846 (2010)

    Article  CAS  Google Scholar 

  171. H. Durmaz, A. Dag, O. Altintas, T. Erdogan, G. Hizal, U. Tunca, One-pot synthesis of ABC type triblock copolymers via in situ Click [3 + 2] and Diels-Alder [4 + 2] reactions. Macromolecules 40(2), 191–198 (2007)

    Article  CAS  Google Scholar 

  172. Z. Shi, J. Luo, S. Huang, Y.J. Cheng, T.D. Kim, B.M. Polishak, X.H. Zhou, Y. Tian, S.H. Jang, D.B. Knorr, R.M. Overney, T.R. Younkin, A.K.Y. Jen, Controlled Diels Alder reactions used to incorporate highly efficient polyenic chromophores into maleimide-containing sidechain polymers for electro-optics. Macromolecules 42(7), 2438–2445 (2009)

    Article  CAS  Google Scholar 

  173. C. Gouss’e, A. Gandini, P. Hodge, Application of the DielsAlder reaction to polymers bearing furan moieties. 2. DielsAlder and Retro-DielsAlder reactions involving furan rings in some styrene copolymers. Macromolecules 31(97), 314–321 (1998)

    Article  Google Scholar 

  174. H.L. Wei, Z. Yang, L.M. Zheng, Y.M. Shen, Thermosensitive hydrogels synthesized by fast Diels-Alder reaction in water. Polymer 50(13), 2836–2840 (2009)

    Article  CAS  Google Scholar 

  175. S. Magana, A. Zerroukhi, C. Jegat, N. Mignard, Thermally reversible crosslinked polyethylene using Diels-Alder reaction in molten state. React. Funct. Polym. 70(7), 442–448 (2010)

    Article  CAS  Google Scholar 

  176. A.S. Goldmann, M. Glassner, A.J. Inglis, C. Barner-Kowollik, Post-functionalization of polymers via orthogonal ligation chemistry. Macromol. Rapid Commun. 34(10), 810–849 (2013)

    Article  CAS  PubMed  Google Scholar 

  177. C. F. Hansell, P. Espeel, M. M. Stamenovic, I.A. Barker, P. Andrew, F. E. Du Prez, R. K.O. Reilly, Additive-free clicking for polymer functionalization and coupling by tetrazine–norbornene chemistry. J. Am. Chem. Soc. 133(35), 13828–13831 (2011)

    Article  CAS  PubMed  Google Scholar 

  178. K. De Bruycker, S. Billiet, H.A. Houck, S. Chattopadhyay, J.M. Winne, F.E. Du Prez, Triazolinediones as highly enabling synthetic tools. Chem. Rev. 116(6), 3919–3974 (2016)

    Article  PubMed  CAS  Google Scholar 

  179. Y.-C. Lai, G.B. Butler, Synthesis and polymerization of some new bis-triazolinediones: a stability study of 4-substituted triazolinediones. J. Macromol. Sci. A Chem. 22(10), 1443–1461 (1985)

    Article  Google Scholar 

  180. G.B. Butler, Modification of diene polymers and polymer synthesis by reaction of triazolinediones with olefinic bonds. Polym. Sci. U.S.S.R. 23(11), 2587–2622 (1981)

    Article  Google Scholar 

  181. R. Lusignan, United States Patent [19], 54–55 (1986)

    Google Scholar 

  182. H. Ban, M. Nagano, J. Gavrilyuk, W. Hakamata, T. Inokuma, C.F. Barbas, Facile and stabile linkages through tyrosine: bioconjugation strategies with the tyrosine-click reaction. Bioconjug. Chem. 24(4), 520–532 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. H.A. Houck, K. De Bruycker, S. Billiet, B. Dhanis, H. Goossens, S. Catak, V. Van Speybroeck, J.M. Winne, F.E. Du Prez, Design of a thermally controlled sequence of triazolinedione-based click and transclick reactions. Chem. Sci. 8(4), 3098–3108 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. P. Wilke, T. Kunde, S. Chattopadhyay, N. Ten Brummelhuis, F.E. Du Prez, H.G. Börner, Easy access to triazolinedione-endcapped peptides for chemical ligation. Chem. Commun. 53(3), 593–596 (2017)

    Article  CAS  Google Scholar 

  185. E. Shirakawa, T. Hayashi, Transitionmetal-free coupling reactions of aryl halides. Chem. Lett. 41(2), 130–134 (2012)

    Article  CAS  Google Scholar 

  186. T. Hosokawa, S.I. Murahashi, in Handbook of Organopalladium Chemistry for Organic Synthesis, vol. 2, ed. by E.-i. Negishi (Wiley, New York, 2002), pp. 2141–2159

    Google Scholar 

  187. G. Cahiez, F. Lepifre, P. Ramiandrasoa, Manganese-catalyzed substitution of activated aryl halides (X= Cl, Br and F) and aryl ethers by organomagnesium reagents. Synthesis 1999(12), 2138–2144 (1999)

    Article  Google Scholar 

  188. A. Suzuki, Organoboron compounds in new synthetic reactions. Pure Appl. Chem. 57(12), 1749–1758 (1985)

    Article  CAS  Google Scholar 

  189. O. Vechorkin, V. Proust, X. Hu, Functional group tolerant Kumada- Corriu- Tamao coupling of nonactivated alkyl halides with aryl and heteroaryl nucleophiles: catalysis by a nickel pincer complex permits the coupling of functionalized Grignard reagents. J. Am. Chem. Soc. 131(28), 9756–9766 (2009)

    Article  CAS  PubMed  Google Scholar 

  190. W. Dohle, D.M. Lindsay, P. Knochel, Copper-mediated cross-coupling of functionalized arylmagnesium reagents with functionalized alkyl and benzylic halides. Org. Lett. 3(18), 2871–2873 (2001)

    Article  CAS  PubMed  Google Scholar 

  191. V. Bonnet, F. Mongin, Q. Trcourt, P. Knochel, Syntheses of substituted pyridines, quinolines and diazines via palladium-catalyzed crosscoupling of aryl grignard reagents. Tetrahedron 58(22), 4429–4438 (2002)

    Article  CAS  Google Scholar 

  192. G. Manolikakes, P. Knochel, Radical catalysis of kumada cross-coupling reactions using functionalized grignard reagents. Angew. Chem. Int. Ed. 48(1), 205–209 (2009)

    Article  CAS  Google Scholar 

  193. V. Coessens, T. Pintauer, K. Matyjaszewski, Functional polymers by atom transfer radical polymerization. Prog. Polym. Sci. 26(3), 337–377 (2001)

    Article  CAS  Google Scholar 

  194. J.S. Wang, K. Matyjaszewski, Controlled/“ living” radical polymerization. Halogen atom transfer radical polymerization promoted by a Cu (I)/Cu (II) redox process. Macromolecules 28(23), 7901–7910 (1995)

    Article  CAS  Google Scholar 

  195. V. Percec, B. Barboiu, A. Neumann, J.C. Ronda, M. Zhao, Metal-catalyzed living radical polymerization of styrene initiated with arenesulfonyl chlorides. From heterogeneous to homogeneous catalysis. Macromolecules 29(10), 3665–3668 (1996)

    Article  CAS  Google Scholar 

  196. S. Ji, T.R. Hoye, C.W. Macosko, Controlled synthesis of high molecular weight telechelic polybutadienes by ring-opening metathesis polymerization. Macromolecules 37(15), 5485–5489 (2004)

    Article  CAS  Google Scholar 

  197. M. Ito, K. Koyakumaru, T. Ohta, H. Takaya, A simple and convenient synthesis of Alkyl Azides under mild conditions. Synthesis 4, 376–378 (1995)

    Article  Google Scholar 

  198. C.E. Hoyle, A.B.. Lowe, C.N. Bowman, Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chem. Soc. Rev. 39(4), 1355–1387 (2010)

    Article  CAS  PubMed  Google Scholar 

  199. F. Fringuelli, F. Pizzo, S. Tortoioli, L. Vaccaro, Thiolysis of 1,2-epoxides by thiophenol catalyzed under solvent-free conditions. Tetrahedron Lett. 44(35), 6785–6787 (2003)

    Article  CAS  Google Scholar 

  200. M. Van Dijk, D.T.S. Rijkers, R.M.J. Liskamp, C.F. Van Nostrum, W.E. Hennink, Synthesis and applications of biomedical and pharmaceutical polymers via click chemistry methodologies. Bioconjug. Chem. 20(11), 2001–2016 (2009)

    Article  PubMed  CAS  Google Scholar 

  201. M. Jemal, D.J. Hawthorne, Quantitative determination of BMS186716, a thiol compound, in dog plasma by high-performance liquid chromatography-positive ion electrospray mass spectrometry after formation of the methyl acrylate adduct. J. Chromatogr. B Biomed. Appl. 693(1), 109–116 (1997)

    Article  CAS  Google Scholar 

  202. M.S. Masri, M. Friedman, Protein reactions with methyl and ethyl vinyl sulfones. J. Protein Chem. 7(1), 49–54 (1988)

    Article  CAS  PubMed  Google Scholar 

  203. M. Morpurgo, F.M. Veronese, D. Kachensky, J.M. Harris, S. Farmaceutiche, Preparation and characterization of poly ( ethylene glycol ) vinyl sulfone. Bioconjug. Chem. 7(96), 363–368 (1996)

    Article  CAS  PubMed  Google Scholar 

  204. R.J. Pounder, M.J. Stanford, P. Brooks, S.P. Richards, A.P. Dove, Metal free thiol-maleimide ‘Click’ reaction as a mild functionalisation strategy for degradable polymers. Chem. Commun. (Camb.) 41, 5158–5160 (2008)

    Article  CAS  Google Scholar 

  205. Y. Geng, D.E. Discher, H. Justynska, J. Schlaad, Grafting short peptides onto polybutadiene-block-poly(ethylene oxide): a platform for self-assembling hybrid amphiphiles. Angew. Chem. Int. Ed. 45(45), 7578–7581 (2006)

    Article  CAS  Google Scholar 

  206. Z. Hordyjewicz-Baran, L. You, B. Smarsly, R. Sigel, H. Schlaad, Bioinspired polymer vesicles based on hydrophilically modified polybutadienes. Macromolecules 40(11), 3901–3903 (2007)

    Article  CAS  Google Scholar 

  207. R.P. Sijbesma, Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278(5343), 1601–1604 (1997)

    Article  CAS  PubMed  Google Scholar 

  208. C.E. Hoyle, T.Y. Lee, T. Roper, Thiolenes: chemistry of the past with promise for the future. J. Polym. Sci. A Polym. Chem. 42(21), 5301–5338 (2004)

    Article  CAS  Google Scholar 

  209. P. Jonkheijm, D. Weinrich, M. Koehn, H. Engelkamp, P.C.M. Christianen, J. Kuhlmann, J.C. Maan, D. Nuesse, H. Schroeder, R. Wacker, R. Breinbauer, C.M. Niemeyer, H. Waldmann, Photochemical surface patterning by the thiolene reaction. Angew. Chem. Int. Ed. 47(23), 4421–4424 (2008)

    Article  CAS  Google Scholar 

  210. P. Vana, L. Albertin, L. Barner, T.P. Davis, C. Barner-Kowollik, Reversible addition-fragmentation chain-transfer polymerization: unambiguous end-group assignment via electrospray ionization mass spectrometry. J. Polym. Sci. A Polym. Chem. 40(22), 4032–4037 (2002)

    Article  CAS  Google Scholar 

  211. A. Postma, T.P. Davis, G. Li, G. Moad, M.S. O’Shea, RAFT polymerization with phthalimidomethyl trithiocarbonates or xanthates. On the origin of bimodal molecular weight distributions in living radical polymerization. Macromolecules 39(16), 5307–5318 (2006)

    Article  CAS  Google Scholar 

  212. A. Postma, T.P. Davis, G. Moad, M.S. O’Shea, Thermolysis of RAFT-synthesized polymers. A convenient method for trithiocarbonate group elimination. Macromolecules 38(13), 5371–5374 (2005)

    Article  CAS  Google Scholar 

  213. C. Boyer, A. Granville, T.P. Davis, V. Bulmus, Modification of RAFT-polymers via thiol-ene reactions: a general route to functional polymers and new architectures. J. Polym. Sci. A Polym. Chem. 47, 3773–3794 (2009)

    Article  CAS  Google Scholar 

  214. J.W. Chan, B. Yu, C. Hoyle, A.B.. Lowe, Convergent synthesis of 3-arm star polymers from RAFT-prepared poly(N,N-diethylacrylamide) via a thiol-ene click reaction. Chem. Commun. (Camb.) 40, 4959–4961 (2008)

    Google Scholar 

  215. J. Xu, L. Tao, C. Boyer, A.B.. Lowe, T.P. Davis, Combining thio-bromo click chemistry and raft polymerization: a powerful tool for preparing functionalized multiblock and hyperbranched polymers. Macromolecules 43(1), 20–24 (2010)

    Article  CAS  Google Scholar 

  216. C. Boyer, V. Bulmus, T.P. Davis, Efficient usage of thiocarbonates for both the production and the biofunctionalization of polymers. Macromol. Rapid Commun. 30(7), 493–497 (2009)

    Article  CAS  PubMed  Google Scholar 

  217. A. Bernkop-Schnürch, A. Greimel, Thiomers: the next generation of mucoadhesive polymers. Am. J. Drug Deliv. 3(3), 141–154 (2005)

    Article  Google Scholar 

  218. N.T. Brummelhuis, C. Diehl, H. Schlaad, Thiol ene modification of 1, 2-polybutadiene using UV light or sunlight. Macromolecules 41, 9946–9947 (2008)

    Article  CAS  Google Scholar 

  219. N. Murthy, J. Campbell, N. Fausto, A.S. Hoffman, P.S. Stayton, Bioinspired pH-responsive polymers for the intracellular delivery of biomolecular drugs. Bioconjug. Chem. 14(2), 412–419 (2003)

    Article  CAS  PubMed  Google Scholar 

  220. J. Dong, L. Krasnova, M.G. Finn, K. Barry Sharpless, Sulfur(VI) fluoride exchange (SuFEx): another good reaction for click chemistry. Angew. Chem. Int. Ed. 53(36), 9430–9448 (2014)

    Article  CAS  Google Scholar 

  221. J. Yatvin, K. Brooks, J. Locklin, SuFEx on the surface: a flexible platform for postpolymerization modification of polymer brushes. Angew. Chem. Int. Ed. 54(45), 13370–13373 (2015)

    Article  CAS  Google Scholar 

  222. C.G. Wang, Y. Koyama, S. Uchida, T. Takata, Synthesis of highly reactive polymer nitrile N -oxides for effective solvent-free grafting. ACS Macro Lett. 3(3), 286–290 (2014)

    Article  CAS  Google Scholar 

  223. H. Feuer, K. Torssell, Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis, 2nd edn. (Wiley-Interscience, Hoboken, 2008)

    Google Scholar 

  224. I. Singh, Z. Zarafshani, F. Heaney, J.-F. Lutz, Orthogonal modification of polymer chain-ends via sequential nitrile oxidealkyne and azidealkyne Huisgen cycloadditions. Polym. Chem. 2(2), 372 (2011)

    Article  CAS  Google Scholar 

  225. T. Kanbara, T. Ishii, K. Hasegawa, T. Yamamoto, Preparation of soluble and fluorescent poly(arylene)s by 1, 3-dipolar polycycloaddition and properties. Polym. Bull. 679, 673–679 (1996)

    Google Scholar 

  226. I. Ugi, A. Dömling, W. Hörl, Multicomponent reactions in organic chemistry. Endeavour 18(3), 115–122 (1994)

    Article  CAS  Google Scholar 

  227. Q. Zhang, Y. Zhang, Y. Zhao, B. Yang, C. Fu, Y. Wei, L. Tao, Multicomponent polymerization system combining Hantzsch reaction and reversible addition – fragmentation chain transfer to efficiently synthesize well-defined poly(1,4-dihydropyridine)s. ACS Macro Lett. 4(1), 128–132 (2015)

    Article  CAS  Google Scholar 

  228. F. Moldenhauer, P. Theato, Sequential reactions for post-polymerization. Modifications 269, 133–162 (2015)

    CAS  Google Scholar 

  229. A. Domling, W. Wang, K. Wang, Chemistry and biology of multicomponent reactions. Chem. Rev. 112(6), 3083–3135 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. R.C. Li, J. Hwang, H.D. Maynard, Reactive block copolymer scaffolds. Chem. Commun. 35, 3631–3633 (2007)

    Article  CAS  Google Scholar 

  231. M. Li, P. De, S.R. Gondi, B.S. Sumerlin, End group transformations of RAFT-generated polymers with bismaleimides: functional telechelics and modular block copolymers. J. Polym. Sci. A Polym. Chem. 46(15), 5093–5100 (2008)

    Article  CAS  Google Scholar 

  232. F. Moldenhauer, R. Kakuchi, P. Theato, Synthesis of polymers via kabachnik-fields polycondensation. ACS Macro Lett. 5(1), 10–13 (2016)

    Article  CAS  Google Scholar 

  233. K. Nakatani, Y. Ogura, Y. Koda, T. Terashima, M. Sawamoto, Sequence-regulated copolymers via tandem catalysis of living radical polymerization and in situ transesterification. J. Am. Chem. Soc. 134(9), 4373–4383 (2012)

    Article  CAS  PubMed  Google Scholar 

  234. Y. Ogura, T. Terashima, M. Sawamoto, Synchronized tandem catalysis of living radical polymerization and transesterification: methacrylate gradient copolymers with extremely broad glass transition temperature. ACS Macro Lett. 2(11), 985–989 (2013)

    Article  CAS  Google Scholar 

  235. Y. Ogura, T. Terashima, M. Sawamoto, Terminal-selective transesterification of chlorine- capped poly (methyl methacrylate) s : a modular approach to telechelic and pinpoint-functionalized polymers poly (methyl methacrylate) s : a modular approach to telechelic and pinpoint-functionalized. J. Am. Chem. Soc. 138(15), 5012–5015 (2016)

    Article  CAS  PubMed  Google Scholar 

  236. C. Fu, J. Xu, L. Tao, C. Boyer, Combining enzymatic monomer transformation with photoinduced electron transfer – reversible addition-fragmentation chain transfer for the synthesis of complex multiblock copolymers. ACS Macro Lett. 3(7), 633–638 (2014)

    Article  CAS  Google Scholar 

  237. M.E.B. Smith, F.F. Schumacher, C.P. Ryan, L.M. Tedaldi, D. Papaioannou, G. Waksman, S. Caddick, J.R. Baker, Protein modification, bioconjugation, and disulfide bridging using bromomaleimides. J. Am. Chem. Soc. 132(6), 1960–1965 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Y. Cui, Y. Yan, Y. Chen, Z. Wang, Dibromomaleimide derivative as an efficient polymer coupling agent for building topological polymers. Macromol. Chem. Phys. 214(4), 470–477 (2013)

    Article  CAS  Google Scholar 

  239. P. Espeel, F.E. Du Prez, One-pot multi-step reactions based on thiolactone chemistry: a powerful synthetic tool in polymer science. Eur. Polym. J. 62, 247–272 (2015)

    Article  CAS  Google Scholar 

  240. F. Driessen, S. Martens, B. De Meyer, F.E. Du Prez, P. Espeel, Double Modification of Polymer End Groups through thiolactone chemistry. Macromol. Rapid Commun. 37, 947–951 (2016)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

X. Huang kindly acknowledges the financial support of The China Scholarship Council (CSC, Grant 201506240019). D. D. Brauer kindly acknowledges the support of the German American Fulbright Commission through a Fulbright grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Theato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bultema, L.A., Huang, X., Brauer, D.D., Theato, P. (2019). Polymer Functionalization. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95987-0_2

Download citation

Publish with us

Policies and ethics