Skip to main content

Shape-Memory Polymers

  • Reference work entry
  • First Online:
Functional Polymers

Abstract

Shape-memory polymers (SMPs) are stimuli-sensitive materials capable of changing their shape on demand. A shape-memory function is a result of the polymer architecture together with the application of a specific programming procedure. Various possible mechanisms to induce the shape-memory effect (SME) can be realized, which can be based on thermal transitions of switching domains or on reversible molecular switches (e.g., supramolecular interactions, reversible covalent bonds). Netpoints, which connect the switching domains and determine the permanent shape, can be either provided by covalent bonds or by physical intermolecular interactions, such as hydrogen bonds or crystallites. This chapter reviews different ways of implementing the phenomenon of programmable changes in the polymer shape, including the one-way shape-memory effect (1-W SME), triple- and multi-shape effects (TSE/MSE), the temperature-memory effect (TME), and reversible shape-memory effects, which can be realized in constant stress conditions (rSME), or in stress-free conditions (reversible bidirectional shape-memory effect (rbSME)). Furthermore, magnetically actuated SMPs and shape-memory hydrogels (SMHs) are described to show the potential of the SMP technology in biomedical applications and multifunctional approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1-W SME:

One-way shape-memory effect

AD:

Actuator domains

Alg:

Alginate

AMF:

Alternating magnetic field

BA:

n-Butyl acrylate

BD:

1,4-Butanediol

BHECA:

N,N-bis(2-Hydroxyethyl) cinnamamide

BM:

1,1â€Č-(Methylenedi-p-phenylene)bismaleimide

CA:

Cinnamic acid

CAA:

Cynnamylidien acetic acid

CD:

Cyclodextrine

CIE:

Crystallization-induced elongation

CLEG:

Copolymer network from PCL with grafted PEG segments

CMF:

Cavitation-based mechanical force

cPEVA:

Covalently crosslinked poly[ethylene-co-(vinyl acetate)]

CTB:

Carboxyl-terminated polybutadiene

DA:

Diels-Alder reaction

DETA:

Diethylenetriamine

DMPA:

Dimethylolpropionic acid

Gly:

Glycine

H :

Magnetic field strength

H def :

Deformation magnetic field strength

HDI:

Hexamethylene diisocyanate

HEA-CA:

Ethyleneglycol-1-acrylate-2-CA

HEMA:

Hydroxyethyl methacrylate

H high :

High magnetic field strength

H low :

Low magnetic field strength

H-NC:

Hybrid nanocomposite

H sw :

Switching magnetic field strength

H σ,max :

Magnetic field strength at maximum stress generated

IPN:

Interpenetrating polymer network

IR:

Infrared

LU:

Low frequency ultrasound

MACL:

Copolymer of PCL and poly(cyclohexyl methacrylate)

MDI:

4,4â€Č-Diphenylmethane diisocyanate

MIC:

Melting-induced contraction

MME:

Magnetic-memory effect

MNP:

Magnetic nanoparticles

MSE:

Multi-shape effect

PBA:

Poly(butylene adipate)

PCHMA:

Poly(cyclohexyl methacrylate)

PCL:

Poly(Δ-caprolactone)

PDC:

Multiblock copolymer from PPDO and PCL

PEG:

Poly(ethylene glycol)

PEGDA:

Poly(ethylene glycol) diacrylate

PET:

Poly(ethylene terephthalate)

PEU:

Poly(ester-urethane)

PEVA:

Poly[ethylene-co-(vinyl acetate)]

PHEG-Cn:

Poly[N5-(2-hydroxyethyl) L-glutamine] with alkyl side chains -CnH2n+1

PLA:

Polylactide

PLLA:

Poly(L-lactide)

PPDL:

Poly(ω-pentadecalactone)

PPDL-PCL:

Multiblock copolymer from PPDL and PCL

PPDO:

Poly(p-dioxanone)

PPGDMA:

Poly(propylene glycol) dimethacrylate

PS:

Polystyrene

PSVP:

Poly[styrene-co-(4-vinylpyridine)]

PTMG:

Poly(tetramethylene glycol)

PUR:

Polyurethane

PVA:

Poly(vinyl alcohol)

Q ef :

Deformation fixation efficiency

rbSME:

Reversible bidirectional shape-memory effect

r-DA:

Retro-Diels-Alder

R f :

Shape fixity ratio

Rh-PCBs:

Rhodium-phosphine coordination bonds

rmag-SME:

Magnetically controlled rSME

R r :

Shape recovery ratio

rSME:

Reversible shape-memory effect

S/V :

Surface-to-volume ratio

SAXS:

Small-angle X-ray scattering

SGD:

Shape shifting geometry domains

SME:

Shape-memory effect

SMH:

Shape-memory hydrogel

SMP:

Shape-memory polymer

sNP:

Silica-coated iron oxide nanoparticles

T act :

Actuation temperature

T d :

Deformation temperature

T env :

Environmental temperature

TFX:

Polyetherurethane prepared from MDI, BD, and PTMG

T g :

Glass transition temperature

THF:

Tetrahydrofuran

T high :

Highest temperature in the course of shape-memory programming

T low :

Lowest temperature in the course of shape-memory programming

T m :

Melting transition temperature

TME:

Temperature-memory effect

TMPA:

Temperature-memory polymer actuator

T perm :

Highest thermal transition temperature of a thermoplastic material at which the domains acting as physical crosslinks melt

TSE:

Triple-shape effect

TSP:

Triple-shape polymer

TSPC:

Triple-shape polymeric composites

T sw :

Switching temperature

T trans :

Thermal transition temperature

T u :

Unloading temperature

T σ,max :

Temperature determined at the maximum of recovery stress

UPy:

2-Ureido-4-pyrimidinone

UV:

Ultraviolet

ZnCTB:

Zinc salt of carboxyl-terminated polybutadiene

ZnOl:

Zinc oleate

ÎČ-CD:

ÎČ-Cyclodextrin

Δâ€Črev:

Reversible elongation

Δ m :

Maximum deformation

Δ p :

Strain of the sample after recovery to the permanent shape

Δu(N):

Free state deformation after cooling

λ :

Wave length

σ max :

Recovery stress

References

  1. A. Lendlein, S. Kelch, Shape-memory polymers. Angew. Chem. Int. Ed. 41, 2034–2057 (2002)

    Article  CAS  Google Scholar 

  2. K.K. Julich-Gruner, C. Löwenberg, A.T. Neffe, M. Behl, A. Lendlein, Recent trends in the chemistry of shape-memory polymers. Macromol. Chem. Phys. 214, 527–536 (2013)

    Article  CAS  Google Scholar 

  3. C. Wischke, A.T. Neffe, A. Lendlein, Controlled drug release from biodegradable shape-memory polymers. Adv. Polym. Sci. 226, 177–205 (2010)

    Article  CAS  Google Scholar 

  4. C. Wischke, M. Behl, A. Lendlein, Drug-releasing shape-memory polymers – The role of morphology, processing effects, and matrix degradation. Expert Opin. Drug. Deliv. 10, 1193–1205 (2013)

    Article  CAS  PubMed  Google Scholar 

  5. A. Lendlein, M. Behl, B. Hiebl, C. Wischke, Shape-memory polymers as a technology platform for biomedical applications. Expert Rev. Med. Devices 7, 357–379 (2010)

    Article  CAS  PubMed  Google Scholar 

  6. M. Behl, J. Zotzmann, A. Lendlein, Shape-memory polymers and shape-changing polymers. Adv. Polym. Sci. 226, 1–40 (2010)

    CAS  Google Scholar 

  7. M. Behl, M.Y. Razzaq, A. Lendlein, Multifunctional shape-memory polymers. Adv. Mater. 22, 3388–3410 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. Q. Zhao, M. Behl, A. Lendlein, Shape-memory polymers with multiple transitions: Complex actively moving polymers. Soft Matter 9, 1744–1755 (2013)

    Article  CAS  Google Scholar 

  9. M. Behl, A. Lendlein, Actively moving polymers. Soft Matter 3, 58–67 (2007)

    Article  CAS  Google Scholar 

  10. M.D. Hager, S. Bode, C. Weber, U.S. Schubert, Shape memory polymers: Past, present and future developments. Prog. Polym. Sci. 49-50, 3–33 (2015)

    Article  CAS  Google Scholar 

  11. P.J. Flory, J. Rehner, Statistical mechanics of cross-linked polymer networks II. Swelling. J. Chem. Phys. 11, 521–526 (1943)

    Article  CAS  Google Scholar 

  12. W. Wagermaier, K. Kratz, M. Heuchel, A. Lendlein, Characterization methods for shape-memory polymers. Adv. Polym. Sci. 226, 97–145 (2010)

    Article  CAS  Google Scholar 

  13. T. Sauter, M. Heuchel, K. Kratz, A. Lendlein, Quantifying the shape-memory effect of polymers by cyclic thermomechanical tests. Polym. Rev. 53, 6–40 (2013)

    Article  CAS  Google Scholar 

  14. M. Heuchel, T. Sauter, K. Kratz, A. Lendlein, Thermally induced shape-memory effects in polymers: Quantification and related modeling approaches. J. Polym. Sci. B Polym. Phys. 51, 621–637 (2013)

    Article  CAS  Google Scholar 

  15. I.S. Kolesov, K. Kratz, A. Lendlein, H.-J. Radusch, Kinetics and dynamics of thermally-induced shape-memory behavior of crosslinked short-chain branched polyethylenes. Polymer 50, 5490–5498 (2009)

    Article  CAS  Google Scholar 

  16. A. Maksimkin, S. Kaloshkin, M. Zadorozhnyy, V. Tcherdyntsev, Comparison of shape memory effect in UHMWPE for bulk and fiber state. J. Alloys Compd. 586, S214–S217 (2014)

    Article  CAS  Google Scholar 

  17. J. Zhao, M. Chen, X. Wang, X. Zhao, Z. Wang, Z.-M. Dang, L. Ma, G.-H. Hu, F. Chen, Triple shape memory effects of cross-linked polyethylene/polypropylene blends with cocontinuous architecture. ACS Appl. Mater. Interfaces 5, 5550–5556 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. A.L. Sisson, D. Ekinci, A. Lendlein, The contemporary role of Δ-caprolactone chemistry to create advanced polymer architectures. Polymer 54, 4333–4350 (2013)

    Article  CAS  Google Scholar 

  19. H.Y. Lee, H.M. Jeong, J.S. Lee, B.K. Kim, Study on the shape memory polyamides. Synthesis and thermomechanical properties of polycaprolactone-polyamide block copolymer. Polym. J. 32, 23–28 (2000)

    Article  CAS  Google Scholar 

  20. G. Rabani, H. Luftmann, A. Kraft, Synthesis and characterization of two shape-memory polymers containing short aramid hard segments and poly(Δ-caprolactone) soft segments. Polymer 47, 4251–4260 (2006)

    Article  CAS  Google Scholar 

  21. H. Zhang, H. Wang, W. Zhong, Q. Du, A novel type of shape memory polymer blend and the shape memory mechanism. Polymer 50, 1596–1601 (2009)

    Article  CAS  Google Scholar 

  22. S.H. Ajili, N.G. Ebrahimi, M. Soleimani, Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants. Acta Biomater. 5, 1519–1530 (2009)

    Article  CAS  PubMed  Google Scholar 

  23. Q. Meng, J. Hu, A review of shape memory polymer composites and blends. Compos. Part A 40, 1661–1672 (2009)

    Article  CAS  Google Scholar 

  24. X. Jing, H.-Y. Mi, H.-X. Huang, L.-S. Turng, Shape memory thermoplastic polyurethane (TPU)/poly(Δ-caprolactone) (PCL) blends as self-knotting sutures. J. Mech. Behav. Biomed. Mater. 64, 94–103 (2016)

    Article  CAS  PubMed  Google Scholar 

  25. I. Navarro-Baena, V. Sessini, F. Dominici, L. Torre, J.M. Kenny, L. Peponi, Design of biodegradable blends based on PLA and PCL: From morphological, thermal and mechanical studies to shape memory behavior. Polym. Degrad. Stab. 132, 97–108 (2016)

    Article  CAS  Google Scholar 

  26. M. Behl, A. Lendlein, Shape-memory polymers. Mater. Today 10, 20–28 (2007)

    Article  CAS  Google Scholar 

  27. J. Hu, Y. Zhu, H. Huang, J. Lu, Recent advances in shape-memory polymers: Structure, mechanism, functionality, modeling and applications. Prog. Polym. Sci. 37, 1720–1763 (2012)

    Article  CAS  Google Scholar 

  28. J.W. Cho, Y.C. Jung, Y.-C. Chung, B.C. Chun, Improved mechanical properties of shape-memory polyurethane block copolymers through the control of the soft-segment arrangement. J. Appl. Polym. Sci. 93, 2410–2415 (2004)

    Article  CAS  Google Scholar 

  29. A. Alteheld, Y. Feng, S. Kelch, A. Lendlein, Biodegradable, amorphous copolyester-urethane networks having shape-memory properties. Angew. Chem. Int. Ed. 44, 1188–1192 (2005)

    Article  CAS  Google Scholar 

  30. T. Xie, Recent advances in polymer shape memory. Polymer 52, 4985–5000 (2011)

    Article  CAS  Google Scholar 

  31. A. Lendlein, J. Zotzmann, Y. Feng, A. Alteheld, S. Kelch, Controlling the switching temperature of biodegradable, amorphous, shape-memory poly(rac-lactide)urethane networks by incorporation of different comonomers. Biomacromolecules 10, 975–982 (2009)

    Article  CAS  PubMed  Google Scholar 

  32. C.P. Buckley, C. Prisacariu, A. Caraculacu, Novel triol-crosslinked polyurethanes and their thermorheological characterization as shape-memory materials. Polymer 48, 1388–1396 (2007)

    Article  CAS  Google Scholar 

  33. Q. Cao, P. Liu, Structure and mechanical properties of shape memory polyurethane based on hyperbranched polyesters. Polym. Bull. 57, 889–899 (2006)

    Article  CAS  Google Scholar 

  34. L. Xue, S. Dai, Z. Li, Synthesis and characterization of three-arm poly(Δ-caprolactone)-based poly(ester−urethanes) with shape-memory effect at body temperature. Macromolecules 42, 964–972 (2009)

    Article  CAS  Google Scholar 

  35. N.-Y. Choi, A. Lendlein, Degradable shape-memory polymer networks from oligo[(l-lactide)-ran-glycolide]dimethacrylates. Soft Matter 3, 901–909 (2007)

    Article  CAS  PubMed  Google Scholar 

  36. C.M. Yakacki, R. Shandas, D. Safranski, A.M. Ortega, K. Sassaman, K. Gall, Strong, tailored, biocompatible shape-memory polymer networks. Adv. Funct. Mater. 18, 2428–2435 (2008)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. S. Kelch, S. Steuer, A.M. Schmidt, A. Lendlein, Shape-memory polymer networks from oligo[(Δ-hydroxycaproate)-co-glycolate]dimethacrylates and butyl acrylate with adjustable hydrolytic degradation rate. Biomacromolecules 8, 1018–1027 (2007)

    Article  CAS  PubMed  Google Scholar 

  38. K.M. Lee, P.T. Knight, T. Chung, P.T. Mather, Polycaprolactone−POSS chemical/physical double networks. Macromolecules 41, 4730–4738 (2008)

    Article  CAS  Google Scholar 

  39. S. Kelch, N.Y. Choi, Z. Wang, A. Lendlein, Amorphous, elastic AB copolymer networks from acrylates and poly[(l-lactide)-ran-glycolide]dimethacrylates. Adv. Eng. Mater. 10, 494–502 (2008)

    Article  CAS  Google Scholar 

  40. S. Chen, J. Hu, C.-W. Yuen, L. Chan, Fourier transform infrared study of supramolecular polyurethane networks containing pyridine moieties for shape memory materials. Polym. Int. 59, 529–538 (2010)

    Article  CAS  Google Scholar 

  41. S. Chen, J. Hu, H. Zhuo, S. Chen, Effect of MDI–BDO hard segment on pyridine-containing shape memory polyurethanes. J. Mater. Sci. 46, 5294–5304 (2011)

    Article  CAS  Google Scholar 

  42. S. Chen, J. Hu, H. Zhuo, C. Yuen, L. Chan, Study on the thermal-induced shape memory effect of pyridine containing supramolecular polyurethane. Polymer 51, 240–248 (2010)

    Article  CAS  Google Scholar 

  43. S. Chen, J. Hu, C.-w. Yuen, L. Chan, Novel moisture-sensitive shape memory polyurethanes containing pyridine moieties. Polymer 50, 4424–4428 (2009)

    Article  CAS  Google Scholar 

  44. S. Chen, H. Yuan, S. Chen, H. Yang, Z. Ge, H. Zhuo, J. Liu, Development of supramolecular liquid-crystalline polyurethane complexes exhibiting triple-shape functionality using a one-step programming process. J. Mater. Chem. A 2, 10169–10181 (2014)

    Article  CAS  Google Scholar 

  45. R.P. Sijbesma, F.H. Beijer, L. Brunsveld, B.J. Folmer, J.H. Hirschberg, R.F. Lange, J.K. Lowe, E.W. Meijer, Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278, 1601–1604 (1997)

    Article  CAS  PubMed  Google Scholar 

  46. K.E. Feldman, M.J. Kade, E.W. Meijer, C.J. Hawker, E.J. Kramer, Model transient networks from strongly hydrogen-bonded polymers. Macromolecules 42, 9072–9081 (2009)

    Article  CAS  Google Scholar 

  47. A. Gooch, N.S. Murphy, N.H. Thomson, A.J. Wilson, Side-chain supramolecular polymers employing conformer independent triple hydrogen bonding arrays. Macromolecules 46, 9634–9641 (2013)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. J. Li, J.A. Viveros, M.H. Wrue, M. Anthamatten, Shape-memory effects in polymer networks containing reversibly associating side-groups. Adv. Mater. 19, 2851–2855 (2007)

    Article  CAS  Google Scholar 

  49. J. Li, C.L. Lewis, D.L. Chen, M. Anthamatten, Dynamic mechanical behavior of photo-cross-linked shape-memory elastomers. Macromolecules 44, 5336–5343 (2011)

    Article  CAS  Google Scholar 

  50. H. Chen, Y. Li, G. Tao, L. Wang, S. Zhou, Thermo- and water-induced shape memory poly(vinyl alcohol) supramolecular networks crosslinked by self-complementary quadruple hydrogen bonding. Polym. Chem. 7, 6637–6644 (2016)

    Article  CAS  Google Scholar 

  51. Y. Wu, L. Wang, X. Zhao, S. Hou, B. Guo, P.X. Ma, Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly. Biomaterials 104, 18–31 (2016)

    Article  CAS  PubMed  Google Scholar 

  52. Y. Pan, T. Liu, J. Li, Z. Zheng, X. Ding, Y. Peng, High modulus ratio shape-memory polymers achieved by combining hydrogen bonding with controlled crosslinking. J. Polym. Sci. B Polym. Phys. 49, 1241–1245 (2011)

    Article  CAS  Google Scholar 

  53. Y. Chen, A.M. Kushner, G.A. Williams, Z. Guan, Multiphase design of autonomic self-healing thermoplastic elastomers. Nat. Chem. 4, 467–472 (2012)

    Article  CAS  PubMed  Google Scholar 

  54. L. Xiao, M. Wei, M. Zhan, J. Zhang, H. Xie, X. Deng, K. Yang, Y. Wang, Novel triple-shape PCU/PPDO interpenetrating polymer networks constructed by self-complementary quadruple hydrogen bonding and covalent bonding. Polym. Chem. 5, 2231–2241 (2014)

    Article  CAS  Google Scholar 

  55. G. Liu, C. Guan, H. Xia, F. Guo, X. Ding, Y. Peng, Novel shape-memory polymer based on hydrogen bonding. Macromol. Rapid Commun. 27, 1100–1104 (2006)

    Article  CAS  Google Scholar 

  56. G. Liu, W. He, Y. Peng, H. Xia, Shape-memory behavior of poly(methyl methacrylate-co-N-vinyl-2-pyrrolidone)/poly(ethylene glycol) semi-interpenetrating polymer networks based on hydrogen bonding. J. Polym. Res. 18, 2109–2117 (2011)

    Article  CAS  Google Scholar 

  57. H. Chen, Y. Li, Y. Liu, T. Gong, L. Wang, S. Zhou, Highly pH-sensitive polyurethane exhibiting shape memory and drug release. Polym. Chem. 5, 5168–5174 (2014)

    Article  CAS  Google Scholar 

  58. G. Liu, X. Ding, Y. Cao, Z. Zheng, Y. Peng, Shape memory of hydrogen-bonded polymer network/poly(ethylene glycol) complexes. Macromolecules 37, 2228–2232 (2004)

    Article  CAS  Google Scholar 

  59. J.D. Merline, C.P.R. Nair, C. Gouri, T. Shrisudha, K.N. Ninan, Shape memory characterization of polytetra methylene oxide/poly (acrylic acid-co-acrylonitrile) complexed gel. J. Mater. Sci. 42, 5897–5902 (2007)

    Article  CAS  Google Scholar 

  60. J. Dong, R.A. Weiss, Effect of crosslinking on shape-memory behavior of zinc stearate/ionomer compounds. Macromol. Chem. Phys. 214, 1238–1246 (2013)

    Article  CAS  Google Scholar 

  61. R.A. Weiss, E. Izzo, S. Mandelbaum, New design of shape memory polymers: Mixtures of an elastomeric ionomer and low molar mass fatty acids and their salts. Macromolecules 41, 2978–2980 (2008)

    Article  CAS  Google Scholar 

  62. J. Dong, R.A. Weiss, Shape memory behavior of zinc oleate-filled elastomeric ionomers. Macromolecules 44, 8871–8879 (2011)

    Article  CAS  Google Scholar 

  63. S.-I. Han, B.H. Gu, K.H. Nam, S.J. Im, S.C. Kim, S.S. Im, Novel copolyester-based ionomer for a shape-memory biodegradable material. Polymer 48, 1830–1834 (2007)

    Article  CAS  Google Scholar 

  64. Z. Wang, W. Fan, R. Tong, X. Lu, H. Xia, Thermal-healable and shape memory metallosupramolecular poly(n-butyl acrylate-co-methyl methacrylate) materials. RSC Adv. 4, 25486–25493 (2014)

    Article  CAS  Google Scholar 

  65. J.R. Kumpfer, S.J. Rowan, Thermo-, photo-, and chemo-responsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers. J. Am. Chem. Soc. 133, 12866 (2011)

    Article  CAS  PubMed  Google Scholar 

  66. F. Xie, C. Huang, F. Wang, L. Huang, R.A. Weiss, J. Leng, Y. Liu, Carboxyl-terminated polybutadiene–poly(styrene-co-4-vinylpyridine) supramolecular thermoplastic elastomers and their shape memory behavior. Macromolecules 49, 7322–7330 (2016)

    Article  CAS  Google Scholar 

  67. P. Zhang, M. Behl, X. Peng, M.Y. Razzaq, A. Lendlein, Ultrasonic cavitation induced shape-memory effect in porous polymer networks. Macromol. Rapid Commun. 37, 1897–1903 (2016)

    Article  CAS  PubMed  Google Scholar 

  68. Q. Zhao, H.J. Qi, T. Xie, Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 49–50, 79–120 (2015)

    Article  CAS  Google Scholar 

  69. G. Zhang, Q. Zhao, L. Yang, W. Zou, X. Xi, T. Xie, Exploring dynamic equilibrium of Diels–Alder reaction for solid state plasticity in remoldable shape memory polymer network. ACS Macro Lett. 5, 805–808 (2016)

    Article  CAS  Google Scholar 

  70. M. Yamashiro, K. Inoue, M. Iji, Recyclable shape-memory and mechanical strength of poly(lactic acid) compounds cross-linked by thermo-reversible Diels-Alder reaction. Polym. J. 40, 657–662 (2008)

    Article  CAS  Google Scholar 

  71. K. Inoue, M. Yamashiro, M. Iji, Recyclable shape-memory polymer: Poly(lactic acid) crosslinked by a thermoreversible Diels–Alder reaction. J. Appl. Polym. Sci. 112, 876–885 (2009)

    Article  CAS  Google Scholar 

  72. J.-M. Raquez, S. Vanderstappen, F. Meyer, P. Verge, M. Alexandre, J.-M. Thomassin, C. JĂ©rĂŽme, P. Dubois, Design of cross-linked semicrystalline poly(Δ-caprolactone)-based networks with one-way and two-way shape-memory properties through Diels–Alder reactions. Chem. Eur. J. 17, 10135–10143 (2011)

    Article  CAS  PubMed  Google Scholar 

  73. T. Defize, R. Riva, C. JĂ©rĂŽme, M. Alexandre, Multifunctional poly(Ï”-caprolactone)-forming networks by Diels–Alder cycloaddition: Effect of the adduct on the shape-memory properties. Macromol. Chem. Phys. 213, 187–197 (2012)

    Article  CAS  Google Scholar 

  74. T. Defize, R. Riva, J.M. Raquez, P. Dubois, C. Jerome, M. Alexandre, Thermoreversibly crosslinked poly(epsilon-caprolactone) as recyclable shape-memory polymer network. Macromol. Rapid Commun. 32, 1264–1269 (2011)

    Article  CAS  PubMed  Google Scholar 

  75. J. Zhang, Y. Niu, C. Huang, L. Xiao, Z. Chen, K. Yang, Y. Wang, Self-healable and recyclable triple-shape PPDO-PTMEG co-network constructed through thermoreversible Diels-Alder reaction. Polym. Chem. 3, 1390–1393 (2012)

    Article  CAS  Google Scholar 

  76. T. Defize, R. Riva, J.-M. Thomassin, C. JĂ©rĂŽme, M. Alexandre, Thermo-reversible reactions for the preparation of smart materials: Recyclable covalently-crosslinked shape memory polymers. Macromol. Symp. 309–310, 154–161 (2011)

    Article  CAS  Google Scholar 

  77. G. Rivero, L.-T.T. Nguyen, X.K.D. Hillewaere, F.E. Du Prez, One-pot thermo-remendable shape memory polyurethanes. Macromolecules 47, 2010–2018 (2014)

    Article  CAS  Google Scholar 

  78. C. Toncelli, D.C. De Reus, F. Picchioni, A.A. Broekhuis, Properties of reversible Diels–Alder furan/maleimide polymer networks as function of crosslink density. Macromol. Chem. Phys. 213, 157–165 (2012)

    Article  CAS  Google Scholar 

  79. C. Zeng, H. Seino, J. Ren, K. Hatanaka, N. Yoshie, Bio-based furan polymers with self-healing ability. Macromolecules 46, 1794–1802 (2013)

    Article  CAS  Google Scholar 

  80. C. Zeng, H. Seino, J. Ren, N. Yoshie, Polymers with multishape memory controlled by local glass transition temperature. ACS Appl. Mater. Interfaces 6, 2753–2758 (2014)

    Article  CAS  PubMed  Google Scholar 

  81. D. Aoki, Y. Teramoto, Y. Nishio, SH-containing cellulose acetate derivatives: Preparation and characterization as a shape memory-recovery material. Biomacromolecules 8, 3749–3757 (2007)

    Article  CAS  PubMed  Google Scholar 

  82. B.T. Michal, C.A. Jaye, E.J. Spencer, S.J. Rowan, Inherently photohealable and thermal shape-memory polydisulfide networks. ACS Macro Lett. 2, 694–699 (2013)

    Article  CAS  Google Scholar 

  83. A. Lendlein, H.Y. Jiang, O. Junger, R. Langer, Light-induced shape-memory polymers. Nature 434, 879–882 (2005)

    Article  CAS  PubMed  Google Scholar 

  84. M. Nagata, Y. Sato, Synthesis and properties of photocurable biodegradable multiblock copolymers based on poly(Δ-caprolactone) and poly(L-lactide) segments. J. Polym. Sci. Part A: Polym. Chem. 43, 2426–2439 (2005)

    Article  CAS  Google Scholar 

  85. L. Wu, C. Jin, X. Sun, Synthesis, properties, and light-induced shape memory effect of multiblock polyesterurethanes containing biodegradable segments and pendant cinnamamide groups. Biomacromolecules 12, 235–241 (2011)

    Article  CAS  PubMed  Google Scholar 

  86. J.M. Rochette, V.S. Ashby, Photoresponsive polyesters for tailorable shape memory biomaterials. Macromolecules 46, 2134–2140 (2013)

    Article  CAS  Google Scholar 

  87. M. Nagata, Y. Yamamoto, Synthesis and characterization of photocrosslinked poly(Δ-caprolactone)s showing shape-memory properties. J. Polym. Sci. Part A: Polm. Chem. 47, 2422–2433 (2009)

    Article  CAS  Google Scholar 

  88. M. Nagata, Y. Yamamoto, Photocurable shape-memory copolymers of Δ-caprolactone and L-lactide. Macromol. Chem. Phys. 211, 1826–1835 (2010)

    Article  CAS  Google Scholar 

  89. J. He, Y. Zhao, Y. Zhao, Photoinduced bending of a coumarin-containing supramolecular polymer. Soft Matter 5, 308–310 (2009)

    Article  CAS  Google Scholar 

  90. H. Jiang, S. Kelch, A. Lendlein, Polymers move in response to light. Adv. Mater. 18, 1471–1475 (2006)

    Article  CAS  Google Scholar 

  91. Y. Li, O. Rios, J.K. Keum, J. Chen, M.R. Kessler, Photoresponsive liquid crystalline epoxy networks with shape memory behavior and dynamic ester bonds. ACS Appl. Mater. Interfaces 8, 15750–15757 (2016)

    Article  CAS  PubMed  Google Scholar 

  92. K.M. Lee, H. Koerner, R.A. Vaia, T.J. Bunning, T.J. White, Light-activated shape memory of glassy, azobenzene liquid crystalline polymer networks. Soft Matter 7, 4318–4324 (2011)

    Article  CAS  Google Scholar 

  93. T. Yoshino, M. Kondo, J.-i. Mamiya, M. Kinoshita, Y. Yu, T. Ikeda, Three-dimensional photomobility of crosslinked azobenzene liquid-crystalline polymer fibers. Adv. Mater. 22, 1361–1363 (2010)

    Article  CAS  PubMed  Google Scholar 

  94. M. Yamada, M. Kondo, J.-i. Mamiya, Y. Yu, M. Kinoshita, C.J. Barrett, T. Ikeda, Photomobile polymer materials: Towards light-driven plastic motors. Angew. Chem. Int. Ed. 47, 4986–4988 (2008)

    Article  CAS  Google Scholar 

  95. Y. Naka, J.-i. Mamiya, A. Shishido, M. Washio, T. Ikeda, Direct fabrication of photomobile polymer materials with an adhesive-free bilayer structure by electron-beam irradiation. J. Mater. Chem. 21, 1681–1683 (2011)

    Article  CAS  Google Scholar 

  96. O.M. Tanchak, C.J. Barrett, Light-induced reversible volume changes in thin films of azo polymers: The photomechanical effect. Macromolecules 38, 10566–10570 (2005)

    Article  CAS  Google Scholar 

  97. M. Irie, D. Kunwatchakun, Photoresponsive polymers. 8. Reversible photostimulated dilation of polyacrylamide gels having triphenylmethane leuco derivatives. Macromolecules 19, 2476–2480 (1986)

    Article  CAS  Google Scholar 

  98. A. Mamada, T. Tanaka, D. Kungwatchakun, M. Irie, Photoinduced phase transition of gels. Macromolecules 23, 1517–1519 (1990)

    Article  CAS  Google Scholar 

  99. X. Zhang, Q. Zhou, H. Liu, H. Liu, UV light induced plasticization and light activated shape memory of spiropyran doped ethylene-vinyl acetate copolymers. Soft Matter 10, 3748–3754 (2014)

    Article  CAS  PubMed  Google Scholar 

  100. M.-Q. Zhu, L. Zhu, J.J. Han, W. Wu, J.K. Hurst, A.D.Q. Li, Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence. J. Am. Chem. Soc. 128, 4303–4309 (2006)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. I. Bellin, S. Kelch, A. Lendlein, Dual-shape properties of triple-shape polymer networks with crystallizable network segments and grafted side chains. J. Mater. Chem. 17, 2885–2891 (2007)

    Article  CAS  Google Scholar 

  102. M. Behl, I. Bellin, S. Kelch, W. Wagermaier, A. Lendlein, One-step process for creating triple-shape capability of AB polymer networks. Adv. Funct. Mater. 19, 102–108 (2009)

    Article  CAS  Google Scholar 

  103. S. Chen, J. Hu, C.-W. Yuen, L. Chan, H. Zhuo, Triple shape memory effect in multiple crystalline polyurethanes. Polym. Adv. Technol. 21, 377–380 (2010)

    CAS  Google Scholar 

  104. A. Lendlein, T. Sauter, Shape-memory effect in polymers. Macromol. Chem. Phys. 214, 1175–1177 (2013)

    Article  CAS  Google Scholar 

  105. I. Bellin, S. Kelch, R. Langer, A. Lendlein, Polymeric triple-shape materials. Proc. Natl. Acad. Sci. U. S. A. 103, 18043–18047 (2006)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. S.-K. Ahn, R.M. Kasi, Exploiting microphase-separated morphologies of side-chain liquid crystalline polymer networks for triple shape memory properties. Adv. Funct. Mater. 21, 4543 (2011)

    Article  CAS  Google Scholar 

  107. T. Ware, K. Hearon, A. Lonnecker, K.L. Wooley, D.J. Maitland, W. Voit, Triple-shape memory polymers based on self-complementary hydrogen bonding. Macromolecules 45, 1062–1069 (2012)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. M. Behl, A. Lendlein, Triple-shape polymers. J. Mater. Chem. 20, 3335–3345 (2010)

    Article  CAS  Google Scholar 

  109. M. Behl, I. Bellin, S. Kelch, W. Wagermaier, A. Lendlein, Dual and triple shape capability of AB polymer networks based on poly(Δ-caprolactone)dimethacrylates. Mater. Res. Soc. Symp. Proc. 1140, 3–8 (2009)

    Google Scholar 

  110. K. Suchao-in, S. Chirachanchai, “Grafting to” as a novel and simple approach for triple-shape memory polymers. ACS Appl. Mater. Interfaces 5, 6850–6853 (2013)

    Article  CAS  PubMed  Google Scholar 

  111. H. Qin, P.T. Mather, Combined one-way and two-way shape memory in a glass-forming nematic network. Macromolecules 42, 273–280 (2009)

    Article  CAS  Google Scholar 

  112. S.-K. Ahn, P. Deshmukh, R.M. Kasi, Shape memory behavior of side-chain liquid crystalline polymer networks triggered by dual transition temperatures. Macromolecules 43, 7330–7340 (2010)

    Article  CAS  Google Scholar 

  113. T. Xie, X. Xiao, Y.-T. Cheng, Revealing triple-shape memory effect by polymer bilayers. Macromol. Rapid Commun. 30, 1823–1827 (2009)

    Article  CAS  PubMed  Google Scholar 

  114. C.Y. Bae, J.H. Park, E.Y. Kim, Y.S. Kang, B.K. Kim, Organic-inorganic nanocomposite bilayers with triple shape memory effect. J. Mater. Chem. 21, 11288–11295 (2011)

    Article  CAS  Google Scholar 

  115. X. Luo, P.T. Mather, Triple-shape polymeric composites (TSPCs). Adv. Funct. Mater. 20, 2649–2656 (2010)

    Article  CAS  Google Scholar 

  116. H. Chen, Y. Liu, T. Gong, L. Wang, K. Zhao, S. Zhou, Use of intermolecular hydrogen bonding to synthesize triple-shape memory supermolecular composites. RSC Adv. 3, 7048–7056 (2013)

    Article  CAS  Google Scholar 

  117. S. Chen, H. Yuan, Z. Ge, S. Chen, H. Zhuo, J. Liu, Insights into liquid-crystalline shape-memory polyurethane composites based on an amorphous reversible phase and hexadecyloxybenzoic acid. J. Mater. Chem. C 2, 1041–1049 (2014)

    Article  CAS  Google Scholar 

  118. T. Xie, Tunable polymer multi-shape memory effect. Nature 464, 267–270 (2010)

    Article  CAS  PubMed  Google Scholar 

  119. R. Dolog, R.A. Weiss, Shape memory behavior of a polyethylene-based carboxylate ionomer. Macromolecules 46, 7845–7852 (2013)

    Article  CAS  Google Scholar 

  120. Q. Zhang, S. Song, J. Feng, P. Wu, A new strategy to prepare polymer composites with versatile shape memory properties. J. Mater. Chem. 22, 24776–24782 (2012)

    Article  CAS  Google Scholar 

  121. J. Li, T. Xie, Significant impact of thermo-mechanical conditions on polymer triple-shape memory effect. Macromolecules 44, 175–180 (2011)

    Article  CAS  Google Scholar 

  122. X. Qi, Y. Guo, Y. Wei, P. Dong, Q. Fu, Multishape and temperature memory effects by strong physical confinement in poly(propylene carbonate)/graphene oxide nanocomposites. J. Phys. Chem. B 120, 11064–11073 (2016)

    Article  CAS  PubMed  Google Scholar 

  123. Q. Song, H. Chen, S. Zhou, K. Zhao, B. Wang, P. Hu, Thermo- and pH-sensitive shape memory polyurethane containing carboxyl groups. Polym. Chem. 7, 1739–1746 (2016)

    Article  CAS  Google Scholar 

  124. S.-Q. Wang, D. Kaneko, M. Okajima, K. Yasaki, S. Tateyama, T. Kaneko, Hyperbranched polycoumarates with photofunctional multiple shape memory. Angew. Chem. Int. Ed. 52, 11143–11148 (2013)

    Article  CAS  Google Scholar 

  125. K. Kratz, S.A. Madbouly, W. Wagermaier, A. Lendlein, Temperature-memory polymer networks with crystallizable controlling units. Adv. Mater. 23, 4058–4062 (2011)

    Article  CAS  PubMed  Google Scholar 

  126. K. Yu, H.J. Qi, Temperature memory effect in amorphous shape memory polymers. Soft Matter 10, 9423–9432 (2014)

    Article  CAS  PubMed  Google Scholar 

  127. M. Behl, K. Kratz, U. Noechel, T. Sauter, A. Lendlein, Temperature-memory polymer actuators. Proc. Natl. Acad. Sci. U. S. A. 110, 12555–12559 (2013)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. L. Wang, S. Di, W. Wang, H. Chen, X. Yang, T. Gong, S. Zhou, Tunable temperature memory effect of photo-cross-linked star PCL–PEG networks. Macromolecules 47, 1828–1836 (2014)

    Article  CAS  Google Scholar 

  129. K. Kratz, U. Voigt, A. Lendlein, Temperature-memory effect of copolyesterurethanes and their application potential in minimally invasive medical technologies. Adv. Funct. Mater. 22, 3057–3065 (2012)

    Article  CAS  Google Scholar 

  130. L. Viry, C. Mercader, P. Miaudet, C. Zakri, A. Derre, A. Kuhn, M. Maugey, P. Poulin, Nanotube fibers for electromechanical and shape memory actuators. J. Mater. Chem. 20, 3487–3495 (2010)

    Article  CAS  Google Scholar 

  131. P. Miaudet, A. DerrĂ©, M. Maugey, C. Zakri, P.M. Piccione, R. Inoubli, P. Poulin, Shape and temperature memory of nanocomposites with broadened glass transition. Science 318, 1294–1296 (2007)

    Article  CAS  PubMed  Google Scholar 

  132. N. Fritzsche, T. Pretsch, Programming of temperature-memory onsets in a semicrystalline polyurethane elastomer. Macromolecules 47, 5952–5959 (2014)

    Article  CAS  Google Scholar 

  133. N. Mirtschin, T. Pretsch, Designing temperature-memory effects in semicrystalline polyurethane. RSC Adv. 5, 46307–46315 (2015)

    Article  CAS  Google Scholar 

  134. S. Pandini, F. Baldi, K. Paderni, M. Messori, M. Toselli, F. Pilati, A. Gianoncelli, M. Brisotto, E. Bontempi, T. RiccĂČ, One-way and two-way shape memory behaviour of semi-crystalline networks based on sol–gel cross-linked poly(Δ-caprolactone). Polymer 54, 4253–4265 (2013)

    Article  CAS  Google Scholar 

  135. T. Chung, A. Romo-Uribe, P.T. Mather, Two-way reversible shape memory in a semicrystalline network. Macromolecules 41, 184–192 (2008)

    Article  CAS  Google Scholar 

  136. M. Behl, K. Kratz, J. Zotzmann, U. Nöchel, A. Lendlein, Reversible bidirectional shape-memory polymers. Adv. Mater. 25, 4466–4469 (2013)

    Article  CAS  PubMed  Google Scholar 

  137. H. Seok Jin, Y. Woong-Ryeol, Y. Ji Ho, Two-way shape memory behavior of shape memory polyurethanes with a bias load. Smart Mater. Struct. 19, 035022 (2010)

    Article  CAS  Google Scholar 

  138. J. Zotzmann, M. Behl, D. Hofmann, A. Lendlein, Reversible triple-shape effect of polymer networks containing polypentadecalactone- and poly(Δ-caprolactone)-segments. Adv. Mater. 22, 3424–3429 (2010)

    Article  CAS  PubMed  Google Scholar 

  139. J. Li, W.R. Rodgers, T. Xie, Semi-crystalline two-way shape memory elastomer. Polymer 52, 5320–5325 (2011)

    Article  CAS  Google Scholar 

  140. S. Pandini, S. Passera, M. Messori, K. Paderni, M. Toselli, A. Gianoncelli, E. Bontempi, T. RiccĂČ, Two-way reversible shape memory behaviour of crosslinked poly(Δ-caprolactone). Polymer 53, 1915–1924 (2012)

    Article  CAS  Google Scholar 

  141. M.Y. Razzaq, M. Behl, K. Kratz, A. Lendlein, Multifunctional hybrid nanocomposites with magnetically controlled reversible shape-memory effect. Adv. Mater. 25, 5730–5733 (2013)

    Article  CAS  PubMed  Google Scholar 

  142. M. Behl, J. Zotzmann, A. Lendlein, One-way and reversible dual-shape effect of polymer networks based on polypentadecalactone segments. Int. J. Artif. Organs 34, 231–237 (2011)

    Article  CAS  PubMed  Google Scholar 

  143. T. Gong, K. Zhao, W. Wang, H. Chen, L. Wang, S. Zhou, Thermally activated reversible shape switch of polymer particles. J. Mater. Chem. B 2, 6855–6866 (2014)

    Article  CAS  PubMed  Google Scholar 

  144. A. Biswas, V.K. Aswal, P.U. Sastry, D. Rana, P. Maiti, Reversible bidirectional shape memory effect in polyurethanes through molecular flipping. Macromolecules 49, 4889–4897 (2016)

    Article  CAS  Google Scholar 

  145. F. Zhang, T. Zhou, Y. Liu, J. Leng, Microwave synthesis and actuation of shape memory polycaprolactone foams with high speed. Sci. Rep. 5, 11152 (2015)

    Article  PubMed Central  PubMed  Google Scholar 

  146. M.Y. Razzaq, M. Anhalt, L. Frormann, B. Weidenfeller, Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers. Mater. Sci. Eng. A 444, 227–235 (2007)

    Article  CAS  Google Scholar 

  147. H. Koerner, G. Price, N.A. Pearce, M. Alexander, R.A. Vaia, Remotely actuated polymer nanocomposites[mdash]stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat. Mater. 3, 115–120 (2004)

    Article  CAS  PubMed  Google Scholar 

  148. K.C. Hribar, R.B. Metter, J.L. Ifkovits, T. Troxler, J.A. Burdick, Light-induced temperature transitions in biodegradable polymer and nanorod composites. Small 5, 1830–1834 (2009)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  149. H. Zhang, H. Xia, Y. Zhao, Optically triggered and spatially controllable shape-memory polymer-gold nanoparticle composite materials. J. Mater. Chem. 22, 845–849 (2012)

    Article  CAS  Google Scholar 

  150. Y. Hu, W. Chen, Externally induced thermal actuation of polymer nanocomposites. Macromol. Chem. Phys. 212, 992–998 (2011)

    Article  CAS  Google Scholar 

  151. L. Hsu, C. Weder, S.J. Rowan, Stimuli-responsive, mechanically-adaptive polymer nanocomposites. J. Mater. Chem. 21, 2812–2822 (2011)

    Article  CAS  Google Scholar 

  152. S.A. Madbouly, A. Lendlein, Shape-memory polymer composites. Adv. Polym. Sci. 226, 41–95 (2010)

    Article  CAS  Google Scholar 

  153. M.Y. Razzaq, M. Behl, A. Lendlein, Memory-effects of magnetic nanocomposites. Nanoscale 4, 6181–6195 (2012)

    Article  CAS  PubMed  Google Scholar 

  154. C.S. Hazelton, S.C. Arzberger, M.S. Lake, N.A. Munshi, RF actuation of a thermoset shape memory polymer with embedded magnetoelectroelastic particles. J Adv Mater (Covina, CA, US) 39, 35–39 (2007)

    CAS  Google Scholar 

  155. P.R. Buckley, G.H. McKinley, T.S. Wilson, W. Small, W.J. Benett, J.P. Bearinger, M.W. McElfresh, D.J. Maitland, Inductively heated shape memory polymer for the magnetic actuation of medical devices. I.E.E.E. Trans. Biomed. Eng. 53, 2075–2083 (2006)

    Google Scholar 

  156. U.N. Kumar, K. Kratz, W. Wagermaier, M. Behl, A. Lendlein, Non-contact actuation of triple-shape effect in multiphase polymer network nanocomposites in alternating magnetic field. J. Mater. Chem. 20, 3404–3415 (2010)

    Article  CAS  Google Scholar 

  157. M.Y. Razzaq, M. Behl, K. Kratz, A. Lendlein, Triple-shape effect in polymer-based composites by cleverly matching geometry of active component with heating method. Adv. Mater. 25, 5514–5518 (2013)

    Article  CAS  PubMed  Google Scholar 

  158. M.Y. Razzaq, M. Behl, A. Lendlein, Magnetic memory effect of nanocomposites. Adv. Funct. Mater. 22, 184–191 (2012)

    Article  CAS  Google Scholar 

  159. M.Y. Razzaq, M. Behl, U. Nöchel, A. Lendlein, Magnetically controlled shape-memory effects of hybrid nanocomposites from oligo(omega-pentadecalactone) and covalently integrated magnetite nanoparticles. Polymer 55, 5953–5960 (2014)

    Article  CAS  Google Scholar 

  160. P.J. Skrzeszewska, L.N. Jong, F.A. de Wolf, M.A. Cohen Stuart, J. van der Gucht, Shape-memory efects in biopolymer networks with collagen-like transient nodes. Biomacromolecules 12, 2285–2292 (2011)

    Article  CAS  PubMed  Google Scholar 

  161. J. Hao, R.A. Weiss, Mechanically tough, thermally activated shape memory hydrogels. ACS Nano. Lett. 2, 86–89 (2013)

    CAS  Google Scholar 

  162. U. Nöchel, C.S. Reddy, N.K. Uttamchand, K. Kratz, M. Behl, A. Lendlein, Shape-memory properties of hydrogels having a poly(Δ-caprolactone) crosslinker and switching segment in an aqueous environment. Eur. Polym. J. 49, 2457–2466 (2013)

    Article  CAS  Google Scholar 

  163. G. Li, Q. Yan, H. Xia, Y. Zhao, Therapeutic-ultrasound-triggered shape memory of a melamine-enhanced poly(vinyl alcohol) physical hydrogel. ACS Appl. Mater. Interfaces 7, 12067–12073 (2015)

    Article  CAS  PubMed  Google Scholar 

  164. M. Guo, L.M. Pitet, H.M. Wyss, M. Vos, P.Y.W. Dankers, E.W. Meijer, Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions. J. Am. Chem. Soc. 136, 6969–6977 (2014)

    Article  CAS  PubMed  Google Scholar 

  165. W. Guo, C.-H. Lu, R. Orbach, F. Wang, X.-J. Qi, A. Cecconello, D. Seliktar, I. Willner, pH-stimulated DNA hydrogels exhibiting shape-memory properties. Adv. Mater. 27, 73–78 (2015)

    Article  CAS  PubMed  Google Scholar 

  166. V. Kozlovskaya, J. Chen, C. Tedjo, X. Liang, J. Campos-Gomez, J.W. Oh, pH-responsive hydrogel cubes for release of doxorubicin in cancer cells. J. Mater. Chem. B 2, 2494–2507 (2014)

    Article  CAS  PubMed  Google Scholar 

  167. X.-J. Han, Z.-Q. Dong, M.-M. Fan, Y. Liu, J.-H. Li, Y.-F. Wang, Q.-J. Yuan, B.-J. Li, S. Zhang, pH-Induced shape-memory polymers. Macromol. Rapid Commun. 33, 1055–1060 (2012)

    Article  CAS  PubMed  Google Scholar 

  168. H. Meng, J. Zheng, X. Wen, Z. Cai, J. Zhang, T. Chen, pH- and sugar-induced shape memory hydrogel based on reversible phenylboronic acid–diol ester bonds. Macromol. Rapid Commun. 36, 533–537 (2015)

    Article  CAS  PubMed  Google Scholar 

  169. A. Yasin, H. Li, Z. Lu, S.U. Rehman, M. Siddiq, H. Yang, A shape memory hydrogel induced by the interactions between metal ions and phosphate. Soft Matter 10, 972–977 (2014)

    Article  CAS  PubMed  Google Scholar 

  170. C.-H. Lu, W. Guo, Y. Hu, X.-J. Qi, I. Willner, Multitriggered shape-memory acrylamide–DNA hydrogels. J. Am. Chem. Soc. 137, 15723–15731 (2015)

    Article  CAS  PubMed  Google Scholar 

  171. R.D. Harris, J.T. Auletta, S.A.M. Motlagh, M.J. Lawless, N.M. Perri, S. Saxena, L.M. Weiland, D.H. Waldeck, W.W. Clark, T.Y. Meyer, Chemical and electrochemical manipulation of mechanical properties in stimuli-responsive copper-cross-linked hydrogels. ACS Macro Lett. 2, 1095–1099 (2013)

    Article  CAS  Google Scholar 

  172. Y. Han, T. Bai, Y. Liu, X. Zhai, W. Liu, Zinc ion uniquely induced triple shape memory effect of dipole-dipole reinforced ultra-high strength hydrogels. Macromol. Rapid Commun. 33, 225–231 (2012)

    Article  CAS  PubMed  Google Scholar 

  173. Y. Kagami, J.P. Gong, Y. Osada, Shape memory behaviors of crosslinked copolymers containing stearyl acrylate. Macromol. Rapid Commun. 17, 539–543 (1996)

    Article  CAS  Google Scholar 

  174. Y. Osada, A. Matsuda, Shape-memory in hydrogels. Nature 376, 219–219 (1995)

    Article  CAS  PubMed  Google Scholar 

  175. C. Liu, H. Qin, P.T. Mather, Review of progress in shape-memory polymers. J. Mater. Chem. 17, 1543–1558 (2007)

    Article  CAS  Google Scholar 

  176. K. Inomata, T. Terahama, R. Sekoguchi, T. Ito, H. Sugimoto, E. Nakanishi, Shape memory properties of polypeptide hydrogels having hydrophobic alkyl side chains. Polymer 53, 3281–3286 (2012)

    Article  CAS  Google Scholar 

  177. M.H. Kabir, T. Hazama, Y. Watanabe, J. Gong, K. Murase, T. Sunada, H. Furukawa, Smart hydrogel with shape memory for biomedical applications. J. Taiwan Inst. Chem. Eng. 45, 3134–3138 (2014)

    Article  CAS  Google Scholar 

  178. J.L. Zhang, W.M. Huang, G. Gao, J. Fu, Y. Zhou, A.V. Salvekar, S.S. Venkatraman, Y.S. Wong, K.H. Tay, W.R. Birch, Shape memory/change effect in a double network nanocomposite tough hydrogel. Eur. Polym. J. 58, 41–51 (2014)

    Article  CAS  Google Scholar 

  179. M. Balk, M. Behl, U. Nöchel, A. Lendlein, Shape-memory hydrogels with switching segments based on oligo(omega-pentadecalactone). Macromol. Mater. Eng. 297, 1184–1192 (2012)

    Article  CAS  Google Scholar 

  180. M. Balk, M. Behl, U. Nöchel, A. Lendlein, Shape-memory hydrogels with crystallizable oligotetrahydrofuran side chains. Macromol. Symp. 345, 8–13 (2014)

    Article  CAS  Google Scholar 

  181. U. Nöchel, M. Behl, M. Balk, A. Lendlein, Thermally-induced triple-shape hydrogels: Soft materials enabling complex movements. ACS Appl. Mater. Interfaces 8, 28068–28076 (2016)

    Article  CAS  PubMed  Google Scholar 

  182. K. Miyamae, M. Nakahata, Y. Takashima, A. Harada, Self-healing, expansion-contraction, and shape-memory properties of a preorganized supramolecular hydrogel through host–guest interactions. Angew. Chem. Int. Ed. 54, 8984–8987 (2015)

    Article  CAS  Google Scholar 

  183. G.F. Li, J. Wu, B. Wang, S.F. Yan, K.X. Zhang, J.X. Ding, J.B. Yin, Self-healing supramolecular self-assembled hydrogels based on poly(L-glutamic acid). Biomacromolecules 16, 3508–3518 (2015)

    Article  CAS  PubMed  Google Scholar 

  184. N.M. Sangeetha, U. Maitra, Supramolecular gels: Functions and uses. Chem. Soc. Rev. 34, 821–836 (2005)

    Article  CAS  PubMed  Google Scholar 

  185. X. Yan, F. Wang, B. Zheng, F. Huang, Stimuli-responsive supramolecular polymeric materials. Chem. Soc. Rev. 41, 6042–6065 (2012)

    Article  CAS  PubMed  Google Scholar 

  186. B.Q.Y. Chan, Z.W.K. Low, S.J.W. Heng, S.Y. Chan, C. Owh, X.J. Loh, Recent advances in shape memory soft materials for biomedical applications. ACS Appl. Mater. Interfaces 8, 10070–10087 (2016)

    Article  CAS  PubMed  Google Scholar 

  187. T. Bai, Y. Han, P. Zhang, W. Wang, W. Liu, Zinc ion-triggered two-way macro−/microscopic shape changing and memory effects in high strength hydrogels with pre-programmed unilateral patterned surfaces. Soft Matter 8, 6846–6852 (2012)

    Article  CAS  Google Scholar 

  188. B. Xu, Y. Li, F. Gao, X. Zhai, M. Sun, W. Lu, Z. Cao, W. Liu, High strength multifunctional multiwalled hydrogel tubes: Ion-triggered shape memory, antibacterial, and anti-inflammatory efficacies. ACS Appl. Mater. Interfaces 7, 16865–16872 (2015)

    Article  CAS  PubMed  Google Scholar 

  189. W. Nan, W. Wang, H. Gao, W. Liu, Fabrication of a shape memory hydrogel based on imidazole-zinc ion coordination for potential cell-encapsulating tubular scaffold application. Soft Matter 9, 132–137 (2013)

    Article  CAS  Google Scholar 

  190. X. Le, W. Lu, J. Zheng, D. Tong, N. Zhao, C. Ma, H. Xiao, J. Zhang, Y. Huang, T. Chen, Stretchable supramolecular hydrogels with triple shape memory effect. Chem. Sci. 7, 6715–6720 (2016)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  191. O. Peters, H. Ritter, Supramolecular controlled water uptake of macroscopic materials by a cyclodextrin-induced hydrophobic-to-hydrophilic transition. Angew. Chem. Int. Ed. 52, 8961–8963 (2013)

    Article  CAS  Google Scholar 

  192. Y.-N. Chen, L. Peng, T. Liu, Y. Wang, S. Shi, H. Wang, Poly(vinyl alcohol)–tannic acid hydrogels with excellent mechanical properties and shape memory behaviors. ACS Appl. Mater. Interfaces 8, 27199–27206 (2016)

    Article  CAS  PubMed  Google Scholar 

  193. C.L. Lewis, E.M. Dell, A review of shape memory polymers bearing reversible binding groups. J. Polym. Sci. B Polym. Phys. 54, 1340–1364 (2016)

    Article  CAS  Google Scholar 

  194. L. Qin, F. Xie, P. Duan, M. Liu, A peptide dendron-based shrinkable metallo-hydrogel for charged species separation and stepwise release of drugs. Chem. Eur. J. 20, 15419–15425 (2014)

    Article  CAS  PubMed  Google Scholar 

  195. M. Hacker, H. Nawaz, Multi-functional macromers for hydrogel design in biomedical engineering and regenerative medicine. Int. J. Mol. Sci. 16, 26056 (2015)

    Article  CAS  Google Scholar 

  196. J.L. Hu, J. Lu, Shape memory polymers in textiles. Adv. Sci. Technol. 80, 30–38 (2013)

    Article  CAS  Google Scholar 

  197. A. Lendlein, R. Langer, Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296, 1673 (2002)

    Article  PubMed  Google Scholar 

  198. F. El Feninat, G. Laroche, M. Fiset, D. Mantovani, Shape memory materials for biomedical applications. Adv. Eng. Mater. 4, 91–104 (2002)

    Article  Google Scholar 

  199. D.J. Maitland, M.F. Metzger, D. Schumann, A. Lee, T.S. Wilson, Photothermal properties of shape memory polymer micro-actuators for treating stroke. Lasers Surg. Med. 30, 1–11 (2002)

    Article  PubMed  Google Scholar 

  200. W. Small IV, T. Wilson, W. Benett, J. Loge, D. Maitland, Laser-activated shape memory polymer intravascular thrombectomy device. Opt. Express 13, 8204–8213 (2005)

    Article  Google Scholar 

  201. S. Shih-Horng, Mini review of the fully bioabsorbable polymeric stents. Recent Pat. Eng. 1, 244–250 (2007)

    Article  Google Scholar 

  202. F. Jung, C. Wischke, A. Lendlein, Degradable, multifunctional cardiovascular implants: Challenges and hurdles. MRS Bull. 35, 607–613 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Helmholtz-Association through programme-oriented funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Lendlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mazurek-BudzyƄska, M., Razzaq, M.Y., Behl, M., Lendlein, A. (2019). Shape-Memory Polymers. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95987-0_18

Download citation

Publish with us

Policies and ethics