Skip to main content

Anthropologically Disrupted Biogeochemical Cycles and the Effect on Sustainable Human Health and Well-Being

  • Reference work entry
  • First Online:
Good Health and Well-Being

Part of the book series: Encyclopedia of the UN Sustainable Development Goals ((ENUNSDG))

  • 134 Accesses

Definitions

This chapter discusses nitrate cycle disruption and the human health concerns associated with it from a systems perspective. The movement of major nutrients in the environment and human body could be thought of as the anthrogeochemical cycle. The author examines the human health concerns, particularly the unregulated chronic disease concerns, while acknowledging the important biophysiological roles of nitrate and its biochemical derivatives in the human body, the hormesis (low-dose benefit, high-dose toxicity) of nitrate. These issues are discussed relative to multiple UN Sustainable Development Goals (UN-SDGs) that the system intersects with along the planes of health, well-being, environmental disruption, and human agricultural/economic structures.

Nitrogen is part of a biogeochemical cycle that humanity evolved within. It is important to consider this and to consider the physiological norms of nitrogen cycling that evolved along with that larger biogeochemical cycle when...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramson SB (2008) Nitric oxide in inflammation and pain associated with osteoarthritis. Arthritis Res Ther 10(2):1–7

    Google Scholar 

  • Akerblom HK, Knip M (1998) Putative environmental factors in type I diabetes. Diabetes Metab Rev 14:31–67

    Article  CAS  Google Scholar 

  • Ansari FA, Ali SN, Mahmood R (2015) Sodium nitrite-induced oxidative stress causes membrane damage, protein oxidation, lipid peroxidation and alters major metabolic pathways in human erythrocytes. Toxicol In Vitro 29:1878–1886

    Article  CAS  Google Scholar 

  • Arbuckle TE, Sherman GJ, Corey PN, Waiters D, Lo B (1988) Water nitrates and CNS birth defects: a population-based case-control study. Arch Environ Health 43:182–167

    Article  Google Scholar 

  • Avery AA (1999) Infantile methemoglobinemia: re-examining the role of drinking water nitrates. Environ Health Perspect 107(7):583–586

    Article  CAS  Google Scholar 

  • Ayebo A, Kross BC, Vlad M, Sinca A (1997) Infant methemoglobinemia in the Transylvania region of Romania. Int J Occup Environ Health 3(1):20–29

    Article  CAS  Google Scholar 

  • Ayers RV, Widgry RC, Ayres LW, Tarr J (1985) Historical reconstruction of pollutant levels in the Hudson-Raritan basin, 1880–1890. Veriflex Corporation report (#NA 83M-D-00059). National Oceanic and Atmospheric Administration, Washington, DC

    Google Scholar 

  • Baranova M (1993) The transfer of nitrates and nitrites into milk of dairy cows through digestive system. Vet Med 38(10):581–588

    CAS  Google Scholar 

  • Baranowski T (1991) Accuracy of maternal dietary recall for preschool children. J Am Diet Assoc 91(6):669–674

    CAS  Google Scholar 

  • Bartholomew B, Hill MJ (1984) The pharmacology of dietary nitrate and the origin of urinary nitrate. Food Chem Toxicol 22(10):789–795

    Article  CAS  Google Scholar 

  • Bell C, Brownell FW, Case DR (2016) Environmental law handbook, 23rd edn. Bernan Press, Lanham

    Google Scholar 

  • Blaser MJ (2014) Missing microbes: how the overuse of antibiotics is fueling our modern plagues. Harry Holt & Company, New York

    Google Scholar 

  • Bockman OC, Mortensen B, Strand OA, Leone A (1999) Ingestion of nitrate increases blood content of S-nitrosothiols. Acta Physiol Scand 167(Suppl 645): 56, 138

    Google Scholar 

  • Borawska M, Markiewicz R, Omieljaniuk N, Witkowska A, Jurkian A, Kresiewicz J (1996) The nitrate and nitrite contents in a whole day’s hospital diet during the spring season. Rocz Akad Med Bialymst 41(2):202–209

    CAS  Google Scholar 

  • Brender J, Ovive J, Felkner M, Suarez L, Hendricks K, Marckwardt W (2004a) Intake of nitrates and nitrites and birth defects in offspring. Epidemiology 15:S184

    Article  Google Scholar 

  • Brender J, Olive JM, Felkner M, Suarez L, Marckwardt W, Hendricks KA (2004b) Dietary nitrites and nitrates, nitrosatable drugs, and neural tube defects. Epidemiology 15:330–336

    Article  Google Scholar 

  • Brender JD et al (2013) Prenatal nitrate intake from drinking water and selected birth defects in offspring of participants in the National Birth Defects Prevention Study. Environ Health Perspect 121(9):1083–1089

    Article  Google Scholar 

  • Bruning-Fann CS, Kaneene JB (1993) The effects of nitrate, nitrite, and N-nitroso compounds on human health – a review. Vet Hum Toxicol 35(6):521–538

    CAS  Google Scholar 

  • Bryan NS, Alexander DD, Coughlin JR, Milkowski AI, Boffetta P (2012) Ingested nitrate and nitrite and stomach cancer risk: an updated review. Food Chem Toxicol 50:3646–3665

    Article  CAS  Google Scholar 

  • Cingi MI, Cingi C, Cingi E (1992) Influence of dietary nitrate on nitrite level of human saliva. Bull Environ Contam Toxicol 48(1):83–88

    Article  CAS  Google Scholar 

  • Clarke DB, Barnes KA, Castle L, Rose M, Wilson LA, Baxter MJ, Price KR, Dupont MS (2003) Analytical, nutritional and clinical methods: levels of phytoestrogens, inorganic trace-elements, natural toxicants and nitrate in vegetarian duplicate diets. Food Chem 81(2):287–300

    Article  CAS  Google Scholar 

  • Comly HH (1945) Cyanosis in infants caused by nitrates in well water. J Am Med Assoc 129:112–116

    Article  CAS  Google Scholar 

  • Cortas NK, Wakid NW (1991) Pharmacokinetic aspects of inorganic nitrate ingestion in man. Pharmacol Toxicol 68:192–195

    Article  CAS  Google Scholar 

  • Craun GF, Greathouse DG, Gunderson DH (1981) Methemoglobin levels in young children consuming high nitrate well water in the United States. Int J Epidemiol 10(4):309–317

    Article  CAS  Google Scholar 

  • Croen L, Todoroff K, Shaw G (2001) Maternal exposure to nitrate from drinking water and diet and risk for neural tube defects. Am J Epidemiol 153:325–331

    Article  CAS  Google Scholar 

  • Cuello C, Correa P, Haenszel W et al (1976) Gastric cancer in Colombia. I. Cancer risk and suspect environmental agents. J Natl Cancer Inst 57:1015–1020

    Article  CAS  Google Scholar 

  • Curry S (1982) Methemoglobinemia. Ann Emerg Med 11(4):214–221

    Article  CAS  Google Scholar 

  • Dean BS, Lopez G, Krenzelok EP (1992) Environmentally-induced methemoglobinemia in an infant. Clin Toxicol 30(1):127–133

    CAS  Google Scholar 

  • DeRoos A, Ward M, Lynch C, Cantor K (2003) Nitrate in public water systems and the risk of colon and rectum cancers. Epidemiology 14:640–649

    Article  Google Scholar 

  • Dorsch M, Scragg R, Bingham S (1984) Congenital malformations and maternal drinking water supply in rural South Australia: a case-control study. Am J Epidemiol 119:473–486

    Article  CAS  Google Scholar 

  • Dusdeiker LB, Getchell JP, Liarakos TM, Hausler WJ, Dungy C (1994) Nitrate in baby foods. Adding to the nitrate mosaic. Arch Pediatr Adolesc Med 148(5): 490–494

    Article  Google Scholar 

  • Dusdeiker LB, Stumbo PJ, Kross BC, Dungy C (1996) Does increased nitrate ingestion elevate nitrate levels in human milk? Arch Pediatr Adolesc Med 150(3): 311–314

    Article  Google Scholar 

  • Espejo-Herrera N et al (2015) Nitrate in drinking water and bladder cancer risk in Spain. Environ Res 137:299–307

    Article  CAS  Google Scholar 

  • Fan AM, Steinberg V (1995) Nitrate in drinking water: methemoglobinemia and reproductive/developmental toxicity. Toxicologist 15(1):36

    Google Scholar 

  • Fan AM, Steinberg VE (1996) Health implications of nitrate and nitrite in drinking water: an update on methemoglobinemia occurrence and reproductive and developmental toxicity. Regul Toxicol Pharmacol 23(1):35–43

    Article  CAS  Google Scholar 

  • Fisher AA, Brancaccio RR, Jelinek JE (1981) Facial dermatitis in men due to inhalation of butyl nitrite. Cutis 27:146–153

    CAS  Google Scholar 

  • Food and Drug Administration, FDA (1979) Unpublished report of the nitrate task force, Bureau of Foods, Food and Drug Administration. U.S. Department of Health, Education, and Welfare, Washington, DC

    Google Scholar 

  • Fritsch P, Saint-Blanquat G (1992) Nitrates and nitrites: food intake and fate. Sci Aliment 12:563–578

    CAS  Google Scholar 

  • Gorynski P, Wojtyniak B, Roszkowska H, Szutowicz I, Szaniecki J (1994) Studies of ambient air pollution and selected aspects of health status of children in Poznan: preliminary information. Przegl Epidemiol 48(3):301–305

    CAS  Google Scholar 

  • Govoni M, Jansson EA, Weitzberg E, Lundberg JO (2008) The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash. Nitric Oxide 19:333–337

    Article  CAS  Google Scholar 

  • Griffin JP (1997) Methemoglobinemia. Adverse Drug React Toxicol Rev 16(1):45–63

    CAS  Google Scholar 

  • Gulis G, Czompolyova M, Cerhan JR (2002) An ecologic study of nitrate in municipal drinking water and cancer incidence in Trnava District, Slovakia. Environ Res 88(3):182–187. https://www.ncbi.nlm.nih.gov/pubmed/12051796

  • Gupta S, Gupta R, Gupta A, Seth A, Bassin J, Gupta A (2000) Recurrent acute respiratory infections in areas with high nitrate concentrations in drinking water. Environ Health Perspect 108:363–366

    Article  CAS  Google Scholar 

  • Hall AH, Kulig KW, Rumack BH (1986) Drug- and chemical-induced methemoglobinemia: clinical features and management. Med Toxicol 1(4):253–260

    Article  CAS  Google Scholar 

  • Harris JC, Rumack BH, Peterson RG, McGuire BM (1979) Methemoglobinemia resulting from absorption of nitrates. J Am Med Assoc 242(26):2869–2871

    Article  CAS  Google Scholar 

  • Hernandez-Ramirez RU, Galvan-Portillo MV, Ward MH, Agudo A, Gonzalez CA, Onate-Ocana L, Herrera-Gepfert R, Palma-Coca O, Lopez-Carrillo L (2009) Dietary intake of polyphenols, nitrate and nitrite and gastric cancer risk in Mexico City. Int J Cancer 125:1424–1430

    Article  CAS  Google Scholar 

  • Hoffman RS, Sauter D (1989) Methemoglobinemia resulting from smoke inhalation. Vet Hum Toxicol 31(2):168–170

    CAS  Google Scholar 

  • Hotchkiss JH (1988) Nitrate, nitrite balance and de novo synthesis of nitrate. Am J Clin Nutr 47:161–162

    Article  CAS  Google Scholar 

  • Hsu CD, Aversa KR, Lu LC, Meaddough E, Jones D, Vahado-Singh RO, Copel JA, Lee IS (1999) Nitric oxide: a clinically important amniotic fluid marker to distinguish between intra-amniotic mycoplasma and non-mycoplasma infections. Am J Perinatol 16:161–166

    Article  CAS  Google Scholar 

  • Ikeda M, Sato I, Matsunaga T, Takahashi M, Yuasa T, Murota S (1995) Cyclic guanosine monophosphate (cGMP) nitrite and nitrate in the cerebrospinal fluid in meningitis, multiple sclerosis and Guillain-Barre syndrome. Intern Med 34:734–737

    Article  CAS  Google Scholar 

  • Inoue-Choi M et al (2015) Nitrate and nitrite ingestion and risk of ovarian cancer among postmenopausal women in Iowa. Int J Cancer 137:173–182

    Article  CAS  Google Scholar 

  • International Agency for Research on Cancer, IARC (2010) Ingested nitrate and nitrite, and cyanobacterial peptide toxins. IARC monographs on the evaluation of carcinogenic risks to humans, vol 94. WHO Press, Geneva

    Google Scholar 

  • Johnson CJ, Bonrud PA, Dosch TL, Kilness AW, Senger KA, Busch DC, Meyer MR (1987) Fatal outcome of methemoglobinemia in an infant. J Am Med Assoc 257(20):2796–2797

    Article  CAS  Google Scholar 

  • Jones C (2004) Nitrate and bacteria in the Raccoon River: historical perspective and 2004 summary. Des Moines Water Works report, Des Moines

    Google Scholar 

  • Kanady JA, Aruni AW, Ninnis JR, Hopper AO, Blood JD, Byrd BL, Holley LR, Staker MR, Hutson S, Fletcher HM, Power GG, Blood AB (2012) Nitrate reductase activity of bacteria in saliva of term and preterm infants. Nitric Oxide 27:193–200

    Article  CAS  Google Scholar 

  • Klaassen CD (ed) (2013) Casarett and Doull’s toxicology, the basic science of poisons, 8th edn. McGraw-Hill, New York

    Google Scholar 

  • Kostraba J, Gay E, Rewers M, Hamman R (1992) Nitrate levels in community drinking waters and risk of IDDM, an ecologic analysis. Diabetes Care 15:1505–1508

    Article  CAS  Google Scholar 

  • Kross BC, Ayebo AD (1991) Nitrate/nitrite toxicity. In: Hall A (Guest ed) Toxic substances and disease registry. pp 1–24

    Google Scholar 

  • Kross BC, Ayebo AD, Fuortes LJ (1992) Methemoglobinemia: nitrate toxicity in rural America. Am Fam Physician 46(1):183–188

    CAS  Google Scholar 

  • L’hirondel J, L’hirondel JL (2002) Nitrate and man: toxic, harmless or beneficial? CABI Publishing, Oxon

    Google Scholar 

  • Lagergren J, Bergstrom R, Lindgren A, Nyren O (1999) Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. N Engl J Med 11(340):825–831

    Article  Google Scholar 

  • Lane NE, Williams EN, Hung YY, Hochberg MC, Cummings SR, Nevitt MC (2003) Association of nitrate use with risk of new radiographic features of hip osteoarthritis in elderly white women: the study of osteoporotic fractures. Arthritis Rheum 49(6): 752–758

    Article  Google Scholar 

  • Ledda C, Fiore M, D’Agati M, Floridia A, Fallico R, Sciacca S, Ferrante M (2012) Stomach cancer and nitrate levels in drinking water in province of Catania, Italy. In: International society for environmental epidemiology, ISEE conference, August 26–30, 2012, Columbia, SC

    Google Scholar 

  • Lundberg JO, Weitzberg E (2010) NO-synthase independent NO generation in mammals. Biochem Biophys Res Commun 396:39–45

    Article  CAS  Google Scholar 

  • Mansouri A, Lurie AA (1993) Concise review: methemoglobinemia. Am J Hematol 42:7–12

    Article  CAS  Google Scholar 

  • McEldowney S, Handman DJ, Waite S (1993) Pollution: ecology and biotreatment. Longman Scientific and Technical, Singapore

    Google Scholar 

  • McKinney PA, Parslow R, Dodansky HJ (1999) Nitrate exposure and childhood diabetes. In: Wilson WS, Ball AS, Hinton RH (eds) Managing risks of nitrates to humans and the environment. Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  • Meadows DH, Wright D (2008) Thinking in systems: a primer. Chelsea Green Publishing, White River Junction

    Google Scholar 

  • Morales-Suarez-Varela MM, Llopis-Gonzalez A, Tejerizo-Perez ML (1995) Impact of nitrates in drinking water on cancer mortality in Valencia, Spain. Eur J Epidemiol 11:15–21

    Article  CAS  Google Scholar 

  • Moshage H, Kok B, Huizenga JR, Jansen PLM (1995) Nitrite and nitrate determinations in plasma: a critical evaluation. Clin Chem 41:892–896

    CAS  Google Scholar 

  • Mueller B, Newton K, Holly E, Preston-Martin S (2001) Residential water source and the risk of childhood brain tumors. Environ Health Perspect 109:551–556

    Article  CAS  Google Scholar 

  • Nathan DG, Oski FA (1981) Hematology of infancy and childhood, vol 1, 2nd edn. W. B. Saunders, Philadelphia

    Google Scholar 

  • National Research Council, NRC (1978) Nitrates: an environmental assessment: a report. (Panel on nitrates). National Academy of Sciences, Washington, DC

    Google Scholar 

  • National Research Council, NRC (1987) Biological markers in environmental health research. Environ Health Perspect 74:3–9

    Google Scholar 

  • National Research Council, NRC (1995) Nitrate and nitrite in drinking water (Subcommittee on nitrate and nitrite in drinking water). National Academy Press, Washington, DC

    Google Scholar 

  • Organization for Economic Co-Operation and Development, OECD (1986) Water pollution by fertilizers and pesticides. Organization for Economic Co-Operation and Development, Paris

    Google Scholar 

  • Osoata GO, Yamamura S, Ito M, Vuppusetyy C, Adcock IM, Barnes PJ, Ito K (2009) Nitration of distinct tyrosine residues causes inactivation of histone deacetylase 2. Biochem Biophys Res Commun 384: 366–371

    Article  CAS  Google Scholar 

  • Park B, Shin A, Park S, Ko K, Ma S, Lee E, Gwack J, Jung E, Cho L, Yang J, Yoo K (2011) Ecological study for refrigerator use, salt, vegetable and fruit intakes and gastric cancer. Cancer Causes Control 22:1497–1502

    Article  Google Scholar 

  • Parslow R, McKinney P, Law G, Staines A, Williams R, Bodansky H (1997) Incidence of childhood diabetes mellitus in Yorkshire, northern England, is associated with nitrate in drinking water: an ecologic analysis. Diabetologia 40:550–556

    Article  CAS  Google Scholar 

  • Pepper TJ, Goss MJ, Howse KR, Christian DG, Catt JA (1998) Nitrate leaching: modifying the loss from mineralized organic matter. Eur J Soil Sci 49(4):649–659

    Article  Google Scholar 

  • Pomeranz A, Korzets Z, Vanunu D, Krystal H (2000) Elevated salt and nitrate levels in drinking water cause an increase of blood pressure in schoolchildren. Kidney Blood Press Res 23:400–403

    Article  CAS  Google Scholar 

  • Sandor J, Kiss I, Farkas O, Ember I (2001) Association between gastric cancer mortality and nitrate content of drinking water: ecological study on small area inequalities. Eur J Epidemiol 17:443–447

    Article  CAS  Google Scholar 

  • Scicinski J, Oronsky B, Ning S, Knox S, Peehl D, Kim MM, Langecker P, Fanger G (2015) NO to cancer: the complex and multifaceted role of nitric oxide and the epigenetic nitric oxide donor, RRx-001. Redox Biol 6:1–8

    Article  CAS  Google Scholar 

  • Shuval HI, Gruener N (1972) Epidemiological and toxicological aspects of nitrates and nitrites in the environment. Am J Public Health 62(8):1045–1052

    Article  CAS  Google Scholar 

  • Smil V (1997) Global population and the nitrogen cycle. Sci Am 277:76–81

    Article  CAS  Google Scholar 

  • Smith RP (1991) Toxic responses of the blood. In: Amdur MO (ed) Casarett and Douil’s toxicology, the basic science of poisons, 4th edn. Pergamon Press, New York, pp 257–281

    Google Scholar 

  • Smith MA, Shah NR, Lobel JS, Hamilton W (1988) Methemoglobinemia and hemolytic anemia associated with Campylobacter jejuni enteritis. Am J Pediatr Hematol Oncol 10(1):35–38

    Article  CAS  Google Scholar 

  • Spiro TG, Purvis-Roberts K, Stigliani WM (2011) Chemistry of the environment, 3rd edn. Viva India, New Delhi

    Google Scholar 

  • Stephany RW, Schuller PL (1980) Daily dietary intakes of nitrate, nitrite, and volatile N-nitrosamines in the Netherlands using the duplicate portion sampling technique. Oncology 37(4):203–210

    Article  CAS  Google Scholar 

  • Tiso M, Schechter AN (2015) Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions. PLoS One 10(5):e0127490. https://doi.org/10.1371/journal.pone.0127490. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0119712

  • Townsend MA, Macko SA, Young DP (2001) Distribution and sources of nitrate-nitrogen in Kansas groundwater. In Optimizing nitrogen management in food and energy production and environmental protection: proceedings of the 2nd international nitrogen conference on science and policy. Sci World 1(S2):216–222

    Article  CAS  Google Scholar 

  • Tsezou A, Kitsiou-Tzeli S, Galla A, Gourgiotis D, Papageorgiou J, Mitrou S, Molybdas PA, Sinaniotis C (1996) High nitrate content in drinking water cytogenetic effects in exposed children. Arch Environ Health 51:458–461

    Article  CAS  Google Scholar 

  • Uibu J, Tauts O, Levin A, Shimanovskaya N, Matto R (1996) N-nitrosodimethylamine, nitrate and nitrate-reducing micro-organisms in human milk. Acta Paediatr 85:1140–1142

    Article  CAS  Google Scholar 

  • Ustyugova IV, Zeman CL, Dhanwada K, Beltz LA (2002) Nitrates/nitrites alter lymphocyte proliferation and cytokine production. Arch Environ Contam Toxicol 43:270–276

    Google Scholar 

  • Van Den Brandt PA, Willet WC, Tannenbaum SR (1989) Assessment of dietary nitrate intake by a self-administered questionnaire and by overnight urinary measurement. Int J Epidemiol 18(4):852–857

    Article  Google Scholar 

  • van Maanen J, van Dijk A, Mulder K, de Baets M, Menheere P, van der Heide D et al (1994) Consumption of drinking water with high nitrate levels causes hypertrophy of the thyroid. Toxicol Lett 72:365–374

    Article  Google Scholar 

  • van Maanen J, Welle I, Hageman G, Dallinga G, Mertens P, Kleinjans J (1996) Nitrate contamination of drinking water: relationship with HPRT variant frequency in lymphocyte DNA and urinary excretion of N-nitrosamines. Environ Health Perspect 104(5):522–528. https://www.ncbi.nlm.nih.gov/pubmed/8743440

  • van Maanen J, Albering H, de Kok T, van Breda S, Cuffs D, Vermeer I et al (2000) Does the risk of childhood diabetes mellitus require revision of the guideline values for nitrate in drinking water? Environ Health Perspect 108:457–461

    Article  Google Scholar 

  • vanLoon GW, Duffy SJ (2011) Environmental chemistry: a global perspective. Oxford University Press, New York

    Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle sources and consequences. Ecol Appl 7(3):737–750

    Google Scholar 

  • Vitozzi L (1992) Toxicology of nitrates and nitrites. Food Addit Contam 9(5):579–585

    Article  Google Scholar 

  • Wagner DA, Schultz DS, Deen WD, Young VR, Tannenbaum SR (1983) Metabolic fate of an oral dose of 15N-labeled nitrate in humans’: effect of diet supplementation with ascorbic acid. Cancer Res 43:1921–1925

    CAS  Google Scholar 

  • Walker R (1990) Nitrates, nitrites and N-nitroso compounds: a review of the occurrence in food and diet and the toxicological implications. Food Addit Contam 7(6):717–768

    Article  CAS  Google Scholar 

  • Walton G (1951) Survey of literature relating to infant methemoglobinemia due to nitrate-contaminated water. Am J Public Health 41:986–996

    Article  CAS  Google Scholar 

  • Wang WW, Jenkinson CP, Griscavage JM, Kern RM, Arabolos NS, Byrns RE, Cederbaum SD, Ignarro LJ (1995) Co-induction of arginase and nitric oxide synthase in murine macrophages activated by lipopolysaccharide. Biochem Biophys Res Commun 210(3): 1009–1015

    Article  CAS  Google Scholar 

  • Ward M, Mark S, Cantor K, Weisenburger D, Correa A, Zahm S (1996) Drinking water nitrate and risk of non-Hodgkin’s lymphoma. Epidemiology 7:465–471

    Article  CAS  Google Scholar 

  • Ward MH, Kilfoy BA, Weyer PJ, Anderson KE, Folsom AR, Cerhan JR (2010) Nitrate intake and the risk of thyroid cancer and thyroid disease. Epidemiology 21(3):389–395

    Article  Google Scholar 

  • Weyer P, Cerhan J, Kross B, Hallberg G, Kantamneni J, Breuer G (2001) Municipal drinking water nitrate level and cancer risk in older women: the Iowa Women’s Health Study. Epidemiology 12:327–338

    Article  CAS  Google Scholar 

  • White JW (1975) Relative significance of dietary sources of nitrate and nitrite. J Agric Food Chem 23(5): 886–891

    Article  CAS  Google Scholar 

  • Wolfson JA, Bleich SN (2015) Fruit and vegetable consumption and food values: national patterns in the United State by Supplemental Nutrition Assistance Program eligibility and cooking frequency. Prev Med 76:1–7

    Article  Google Scholar 

  • Xu J, Xu X, Verstraete W (2001) Quantitative measurement of the nitrate reductase activity in the human oral cavity. Food Chem Toxicol 39:393–400

    Article  CAS  Google Scholar 

  • Zeman C (2005) Infant methemoglobinemia: causative factors. Environ Health Perspect 113(12):A805–A806. https://doi.org/10.1289/ehp.113-a805b

  • Zeman CL, Kross B, Vlad M (2002a) A nested case control study of methemoglobinemia risk factors in children of Transylvania, Romania. Environ Health Perspect 110(8):817–822

    Article  Google Scholar 

  • Zeman CL, Vlad ML, Kross B (2002b) Exposure methodology and findings for dietary nitrate exposures in children of Transylvania, Romania. J Expo Anal Environ Epidemiol 12:54–63

    Article  CAS  Google Scholar 

  • Zeman CL, Kross B, Vlad M (2003) Methemoglobinemia risk factors: response to Avery and L’hirondel, Correspondence. Environ Health Perspect 111(3):A15

    Article  Google Scholar 

  • Zeman CL, Beltz L, Orr J, Theran P, Maddux J, Depken D, Linda M (2011) New questions and insights into nitrate/nitrite and human health effects: a retrospective cohort study of private well users’ immunological and wellness status. J Environ Health 74(4):8–18

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Zeman .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zeman, C. (2020). Anthropologically Disrupted Biogeochemical Cycles and the Effect on Sustainable Human Health and Well-Being. In: Leal Filho, W., Wall, T., Azul, A.M., Brandli, L., Özuyar, P.G. (eds) Good Health and Well-Being. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. https://doi.org/10.1007/978-3-319-95681-7_76

Download citation

Publish with us

Policies and ethics