Skip to main content

Altimeter Surveys, Coastal Tides, and Shelf Circulation

  • Reference work entry
  • First Online:
Encyclopedia of Coastal Science

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 95 Accesses

Definition

A conventional radar altimeter aboard a satellite is a nadir-looking active microwave sensor. Its signal pulse, transmitted vertically downward, reflects from the ocean surface back to an altimeter antenna. The round-trip time and the propagation speed of the electromagnetic waves are used to compute the range between the antenna and the ocean surface.

From the altimeter-measured range, the instantaneous sea surface relative to a reference surface, such as an ellipsoid, can be determined if a satellite orbit relative to the reference surface is known. With the knowledge of the oceanic geoid, the sea surface topography relative to the geoid due to ocean dynamic circulation including the temporal averages can be obtained. Although the geoid is not well determined yet, repeated observations can provide a measurement of the temporal variability of the sea surface height since the geoid can be treated as time-invariant for oceanographic applications.

Oceanographic applications of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Antony C, Testut L, Unnikrishnan AS (2014) Observing storm surges in the Bay of Bengal from satellite altimetry. Estuar Coast Shelf Sci 151:131–140

    Google Scholar 

  • Birol F, Fuller N, Lyard F, Cancet M, Niño F, Delebecque C, Fleury S, Toublanc F, Melet A, Saraceno M, LĂ©ger F (2016) Coastal applications from nadir altimetry: example of the X-TRACK regional products. Adv Space Res. https://doi.org/10.1016/j.asr.2016.11.005

  • Bouffard J, Roblou L, Birol F, Pascual A, Fenoglio-Marc L, Cancet M, Morrow R, Menard Y (2011) Introduction and assessment of improved coastal altimetry strategies: case study over the Northwestern Meditorranean Sea. In: Vignudelli S, Kostianoy A, Cipollini P, Benveniste J (eds) Coastal altimetry. Springer, Berlin, pp 297–330

    Google Scholar 

  • Cartwright DE, Ray RD (1990) Oceanic tides from Geosat altimetry. J Geophys Res 95:3069–3090

    Google Scholar 

  • Chen N, Han G, Yang J, Chen D (2014) Hurricane Sandy storm surge observed by HY-2Asatellite altimetry and tide gauges. J Geophys Res Oceans 119:4542–4548. https://doi.org/10.1002/2013JC009782

    Article  Google Scholar 

  • Egbert GD, Erofeeva SY (2002) Efficient inverse modelling of barotropic ocean tides. J Atmos Ocean Technol 19:183–204

    Google Scholar 

  • Emery WJ, Strub T, Leben R, Oreman M, McWilliams J, Han G, Ladd C, Ueno H (2011) Satellite altimetry applications off the coastals of North America. In: Vignudelli S, Kostianoy A, Cipollini P, Benveniste J (eds) Coastal altimetry. Springer, Berlin, pp 417–452

    Google Scholar 

  • Fenoglio-Marc L, Scharroo R, Annunziato A, Mendoza L, Becker M, Lillibridge J (2015) Cyclone Xaver seen by geodetic observations. Geophys Res Lett 42:9925–9932. https://doi.org/10.1002/2015GL065989

    Article  Google Scholar 

  • Foreman MGG, Crawford WR, Cherniawsky JY, Gower JFR, Cuypers L, Ballantyne VA (1998) Tidal correction of TOPEX/POSEIDON altimetry for seasonal sea surface elevation and current determination of the Pacific coast of Canada. J Geophys Res 103:27979–27998

    Google Scholar 

  • Fu LL, Cazenave A (eds) (2001) Satellite altimetry and earth sciences, a handbook of technique and applications. Academic, San Diego, p 463

    Google Scholar 

  • Ginzburg AI, Kostianoy AG, Shremet NA, Lebedev SA (2011) Satellite altimetry applications I the Black Sea. In: Vignudelli S, Kostianoy A, Cipollini P, Benveniste J (eds) Coastal altimetry. Springer, Berlin, pp 367–388

    Google Scholar 

  • Gommenginger C, Thibaut P, Fenoglio-Marc L, Quartly G, Deng X, Gomez-Enri J, Challenor P, Gao Y (2011) Retracking altimeter waveforms near the coasts. In: Vignudelli S, Kostianoy A, Cipollini P, Benveniste J (eds) Coastal altimetry. Springer, Berlin, pp 61–101

    Google Scholar 

  • Han G (1995) Coastal tides and shelf circulation by altimeter. In: Ikeda M, Dobson FW (eds) Oceanographic application of remote sensing. CRC Press, Boca Raton, pp 45–56

    Google Scholar 

  • Han G, Huang W (2008) Pacific Decadal Oscillation and sea level variability in the Bohai, Yellow and East China Seas. J Phys Oceanogr 38:2772–2783

    Google Scholar 

  • Han G, Tang CL (1999) Velocity and transport of the Labrador current determined from altimetric, hydrographic, and wind data. J Geophys Res 104:18047–18057

    Google Scholar 

  • Han G, Tang CL (2001) Interannual variation of volume transport in the western Labrador Sea based on TOPEX/Poseidon and WOCE data. J Phys Oceanogr 31:199–211

    Google Scholar 

  • Han G, Ikeda M, Smith PC (1993) Annual variation of sea surface slopes on the Scotian Shelf and Grand Banks from geosat altimetry. Atmosphere-Ocean 31:591–615

    Google Scholar 

  • Han G, Ikeda M, Smith PC (1996) Oceanic tides derived from TOPEX/Poseidon altimetry over the Scotian and Newfoundland shelves. Atmosphere-Ocean 34:589–604

    Google Scholar 

  • Han G, Hendry R, Ikeda M (2000) Assimilating TOPEX/Poseidon derived M2 tides in a primitive equation model over the Newfoundland Shelf. Cont Shelf Res 20:83–108

    Google Scholar 

  • Han G, Ohashi K, Chen N, Myers PG, Nunes N, Fischer J (2010) Decline and partial rebound of the Labrador current 1993–2004: monitoring ocean currents from altimetric and CTD data. J Geophys Res 115:C12012. https://doi.org/10.1029/2009JC006091

    Article  Google Scholar 

  • Han G, Ma Z, Chen D, deYoung B, Chen N (2012) Observing storm surges from space: hurricane Igor off Newfoundland. Sci Rep 2:1010. https://doi.org/10.1038/srep01010

    Article  Google Scholar 

  • Han G, Ma Z, Chen N, Chen N, Yang J, Chen D (2017) Hurricane Isaac storm surges off Florida observed by Jason-1 and Jason-2 satellite altimeters. Remote Sens Environ 198:244–253. https://doi.org/10.1016/j.rse.2017.06.005

  • Kouraev AV, Cretaux J-F, Lebedev SA, Kostianoy AG, Ginzburg AI, Sheremet NA, Mamedov R, Zakharova EA, Roblou L, Lyard F, Calmant S, Berge-Nguyen M (2011) Satellite altimetry applications in the Caspian Sea. In: Vignudelli S, Kostianoy A, Cipollini P, Benveniste J (eds) Coastal altimetry. Springer, Berlin, pp 331–366

    Google Scholar 

  • Lebedev SA, Kostianoy AG, Ginzburg AI, Medvedev DP, Sheremet NA, Shauro SN (2011) Satellite altimetry applications in the Barents and White Seas. In: Vignudelli S, Kostianoy A, Cipollini P, Benveniste J (eds) Coastal altimetry. Springer, Berlin, pp 389–418

    Google Scholar 

  • Lillibridge J, Lin M, Shum CK (2013) Hurricane Sandy storm surge measured by satellite altimetry. Oceanography 26:8–9

    Google Scholar 

  • Mercier F, Rosmorduc V, Carrere L, Thibaut P (2010) Coastal and hydrology altimetry product (PISTACH) handbook, CLS-DOS-NT-10-246, AVISO. 58pp

    Google Scholar 

  • Minster JF, Genco ML, Brossier C (1995) Variations of the sea level in the Amazon estuary. Cont Shelf Res 15:1287–1302

    Google Scholar 

  • Ray RD, Egbert GD, Erofeeva SY (2011) Tide predictions in shelf and coastal waters: status and prospects. In: Vignudelli S, Kostianoy A, Cipollini P, Benveniste J (eds) Coastal altimetry. Springer, Berlin, pp 389–418

    Google Scholar 

  • Scharroo R, Smith WHF, Lillibridge JL (2005) Satellite altimetry and the intensification of Hurricane Katrina. Eos 80:366

    Google Scholar 

  • Stammer D, Ray RD, Andersen OB, Arbic BK, Bosch W, Carrere L, Yi Y (2014) Accuracy assessment of global barotropic ocean tide models. Rev Geophys 52(3):243–282

    Google Scholar 

  • Turki I, Laignel B, Chevalier L, Costa S, Massei N (2015) On the investigation of the sea level variability in coastal zones using SWOT satellite mission: example of the eastern English Channel (western France). J Sel Top Appl Earth Obs Remote Sens 8:1564–1569. https://doi.org/10.1109/JSTARS.2015.2419693

    Article  Google Scholar 

  • Vignudelli S, Kostianoy A, Cipollini P, Benveniste J (2011) Coastal altimetry. Springer, Berlin. 565 pp

    Google Scholar 

  • Woodworth PL, Thomas JP (1990) Determination of the major semidiurnal tides of the northwest European Continental Shelf from Geosat altimetry. J Geophys Res 95:3061–3068

    Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Surface Water and Ocean Topography – Canada (SWOT-C) Program, Canadian Space Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqi Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Han, G. (2019). Altimeter Surveys, Coastal Tides, and Shelf Circulation. In: Finkl, C.W., Makowski, C. (eds) Encyclopedia of Coastal Science. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-93806-6_7

Download citation

Publish with us

Policies and ethics