Skip to main content

Beach and Nearshore Instrumentation

  • Reference work entry
  • First Online:
Book cover Encyclopedia of Coastal Science

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 48 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Alport MJ, Basson J, Mocke G, Naicker J, Saltau C (2001) Discrimination and analysis of video imaged shorelines and nearshore processes. In Proceedings coastal dynamics’ 01. American Society of Civil Engineers, New York, pp. 989–997

    Google Scholar 

  • Amos CL, Daborn GR, Christian HA, Atkinson A, Robertson A (1992) In situ erosion measurements on fine-grained sediments from the bay of Fundy. Mar Geol 108:175–196

    Google Scholar 

  • Arens B (1996) Rates of aeolian sand transport on a beach in a humid temperate climate. Geomorphology 7:3–18

    Google Scholar 

  • Askin RW, Davidson-Arnott RGD (1981) Micro erosion meter modified for use underwater. Mar Geol 40:M45–M48

    Google Scholar 

  • Atakturk SS, Katsaros KB (1989) The K-gill: a twin propellor-vane anemometer for measurements of atmospheric turbulence. J Atmos Ocean Technol 6:509–515

    Google Scholar 

  • Aubrey DG, Trowbridge JH (1985) Kinematic and dynamic estimates from electromagnetic current meter data. J Geophys Res 90(C5):9137–9146

    Google Scholar 

  • Aubrey DG, Trowbridge JH (1988) Reply (to comments by Guza, 1988). J Geophys Res 93(C2):1344–1346

    Google Scholar 

  • Bauer BO, Namikas SL (1998) Design and field test of a continuously weighing tipping-bucket assembly for aeolian sand traps. Earth Surf Process Landf 23:1171–1183

    Google Scholar 

  • Best JL, Kostaschuk RA, Villard P (2001) Quantitative visualization of flow fields associated with alluvial sand dunes. Journal of Flow Visualization 4:373–381

    Google Scholar 

  • Birkemeier WA, Long CE, Hathaway KK (1997) DELILAH, DUCK94 and Sandy DUCK: three nearshore field experiments. In: Proceedings coastal engineering 1996. American Society of Civil Engineers, New York, pp 4052–4065

    Google Scholar 

  • Black KP, Rosenberg MA (1994) Suspended sand measurements in a turbulent environment: field comparison of optical and pump sampling techniques. Coast Eng 24:137–150

    Google Scholar 

  • Bodge KR, Dean RG (1984) Wave measurement with differential pressure gages. In Proceedings coastal engineering 1984. American Society of Civil Engineers, pp. 755–769

    Google Scholar 

  • Bunt JAC, Larcombe P, Jago CF (1999) Quantifying the response of optical backscatter devices and transmissometers to variations in suspended particulate matter. Cont Shelf Res 19:1199–1220

    Google Scholar 

  • Cahoon DR, French JR, Spencer T, Reed D, Moller I (2000) Vertical accretion versus elevational adjustment in UK saltmarshes: an evaluation of alternative methodologies. In Pye, K., and Allen, J.R.L. (eds.), Coastal and estuarine environments. Journal of the Geological Society, Special Publication 175: 223–238

    Google Scholar 

  • Chandler J (1999) Effective application of automated digital photogrammetry for geomorphological research. Earth Surf Process Landf 24:51–63

    Google Scholar 

  • Cushing V (1976) Electromagnetic water current meter. In Proceedings of oceans’ 76. Proceedings coastal engineering 1992. Institute of Electrical and Electronic Engineers, pp. 298–301

    Google Scholar 

  • Davidson-Arnott RGD, Langham DRJ (2000) The effects of softening on nearshore erosion of a cohesive shoreline. Mar Geol 166:145–162

    Google Scholar 

  • Davidson-Arnott RGD, Law MN (1990) Seasonal patterns and controls on sediment supply to coastal foredunes, long point, Lake Erie. In: Nordstrom KF, Psuty NP, Carter RWG (eds) Coastal dunes: form and process. John Wiley & Sons, Chichester, pp 177–200

    Google Scholar 

  • Davidson-Arnott RGD, Law MN (1996) Measurement and prediction of long-term sediment supply to coastal foredunes. J Coast Res 12:654–663

    Google Scholar 

  • Davidson-Arnott RGD, Randall DC (1984) Spatial and temporal variations in spectra of storm waves across a barred nearshore. Mar Geol 60:15–30

    Google Scholar 

  • Downing JP, Beach RA (1989) Laboratory apparatus for calibrating optical suspended solids sensors. Mar Geol 86:243–249

    Google Scholar 

  • Downing JP, Sternberg RW, Lister CRB (1981) New instrumentation for the investigation of sediment suspension processes in the shallow marine environment. Mar Geol 42:19–34

    Google Scholar 

  • Gartner JW, Cheng RT, Wang P-F, Richter K (2001) Laboratory and field evaluation of the LISST-100 instrument for suspended particle size determinations. Mar Geol 175:199–219

    Google Scholar 

  • Goossens D, Offer Z, London G (2000) Wind tunnel and field calibration of five aeolian sand traps. Geomorphology 35:233–252

    Google Scholar 

  • Gorman L, Morang A, Larson R (1998) Monitoring the coastal environment; part IV: mapping, shoreline changes, and bathymetric analysis. J Coast Res 14:61–92

    Google Scholar 

  • Greeley R, Blumberg DG, Williams SH (1996) Field measurements of the flux and speed of wind-blown sand. Sedimentology 43:41–52

    Google Scholar 

  • Greenwood B, Jagger K (1995) Sensitivity of optical sensors to grain size variations in the sand mode: implications for transport measurements. In Proceedings canadian coastal conference. Canadian Coastal Science and Engineering Association, pp. 383–398

    Google Scholar 

  • Greenwood B, Mittler PR (1984) Sediment flux and equilibrium slopes in a barred nearshore. Mar Geol 60:79–98

    Google Scholar 

  • Greenwood B, Sherman DJ (1984) Waves, currents sediment flux and morphological response in a barred nearshore. Mar Geol 60:31–61

    Google Scholar 

  • Greenwood B, Hale PB, Mittler PR (1979) Sediment flux determination in the nearshore zone. In Proceedings workshop on instrumentation for currents and sediments in the nearshore zone. National Research Council of Canada, pp. 99–115

    Google Scholar 

  • Greenwood B, Osborne PD, Bowen AJ, Hazen DG, Hay AE (1990) C-COAST: The Canadian Coastal Sediment Transport Programme-suspended sediment transport in the nearshore zone. In Proceedings canadian coastal conference. National Research Council of Canada, pp. 319–336

    Google Scholar 

  • Greenwood B, Richards RG, Brander RW (1993) Acoustic imaging of sea-bed geometry: a high resolution remote tracking sonar (HERTSII). Mar Geol 112:207–218

    Google Scholar 

  • Guza RT (1988) Comments on “kinematic and dynamic estimates from electromagnetic current meter data” by D.G. Aubrey and J.H. Trowbridge. J Geophys Res 93(C2):1337–1343

    Google Scholar 

  • Hancock G, Willgoose G (2001) The production of digital elevation models for experimental model landscapes. Earth Surf Process Landf 26:475–490

    Google Scholar 

  • Holman RA, Sallenger AH Jr (1985) Set up and swash on a natural beach. J Geophys Res 90:945–953

    Google Scholar 

  • Houwing E-J (1999) Determination of the critical erosion threshold of cohesive sediments on intertidal mudflats along the Dutch Wadden Sea coast. Estuar Coast Shelf Sci 49:345–355

    Google Scholar 

  • Howell GL (1992) A new nearshore directional wave gage. In Proceedings coastal engineering 1992. American Society of Civil Engineers, pp. 295–307

    Google Scholar 

  • Huntley DA (1983) In situ sediment monitoring techniques: a survey of the state of the art in the USA. In Proceedings canadian coastal conference. National Research Council of Canada, pp. 151–165

    Google Scholar 

  • Huntley DA, Bowen AJ (1975) Comparison of the hydrodynamics of steep and shallow beaches. In: Hails J, Carr A (eds) Nearshore sediment dynamics and sedimentation. John Wiley & Sons, London, pp 69–110

    Google Scholar 

  • Irish JL, White TE (1998) Coastal engineering applications of high resolution lidar bathymetry. Coast Eng 35:47–71

    Google Scholar 

  • Irish, J.L., Wozencraft, J.M., and Cunningham, A.G., 2001. Water wave measurement with lidar from a fixed platform. In Proceedings coastal dynamics’ 01. American Society of Civil Engineers, pp. 998–1006

    Google Scholar 

  • Irwin HPAH (1980) A simple omnidirectional sensor for wind-tunnel studies of pedestrian level winds. J Wind Eng Ind Aerodyn 7:219–239

    Google Scholar 

  • Jackson DWT (1996) A new, instantaneous aeolian sand trap design for field use. Sedimentology 43:791–796

    Google Scholar 

  • Kineke GC, Sternberg RW (1992) Measurements of high concentration suspended sediments using the optical backscatterance sensor. Mar Geol 108:253–258

    Google Scholar 

  • Kineke GC, Sternberg RW, Cacchione DA, Krank K, Drake DE (1991) Distribution and characteristics of suspended sediment on the Amazon shelf. Oceanography 4:21–26

    Google Scholar 

  • Kirk RM (1977) Rates and forms of erosion on intertidal platforms at Kaikoura peninsula, South Island, New Zealand. N Z J Geol Geophys 20:571–613

    Google Scholar 

  • Konicki KM, Holman RA (2000) The statistics and kinematics of transverse sand bars on an open coast. Mar Geol 169:69–101

    Google Scholar 

  • Lawler DM (1992) Design and installation of a novel automatic erosion monitoring system. Earth Surf Process Landf 17:455–463

    Google Scholar 

  • Leatherman SP (1978) A new aeolian sand trap design. Sedimentology 25:303–306

    Google Scholar 

  • Lee D-Y, Wang H (1984) Measurement of surface waves from subsurface gage. In Proceedings coastal engineering. American Society of Civil Engineers, pp. 271–286

    Google Scholar 

  • Maa JP-Y, Wright LD, Lee C-H, Shannon TW (1993) VIMS Sea carousel: a field instrument for studying sediment transport. Mar Geol 115:271–287

    Google Scholar 

  • Masselink G, Hegge B (1995) Morphodynamics of meso-and macrotidal beaches: examples from Central Queensland, Australia. Mar Geol 129:1–23

    Google Scholar 

  • McKenna Neuman C, Lancaster N, Nickling WG (2000) Effect of unsteady winds on sediment transport intermittency along the stoss slope of a reversing dune. Sedimentology 47:211–226

    Google Scholar 

  • Mikkelsen OA, Pejrup M (2001) The use of a LISST-100 laser particle sizer for in-situ estimates of floc size, density and settling velocity. Geo-Mar Lett 20:187–195

    Google Scholar 

  • Morang A, Larson R, Gorman L (1997a) Monitoring the coastal environment; part 1: waves and currents. J Coast Res 13:111–133

    Google Scholar 

  • Morang A, Larson R, Gorman L (1997b) Monitoring the coastal environment; part 111: geophysical and research methods. J Coast Res 13:1064–1085

    Google Scholar 

  • Morris BA, Davidson MA, Huntley DA (2001) Measurements of the response of a coastal inlet using video moniotoring techniques. Mar Geol 175:251–272

    Google Scholar 

  • Nickling WG, McKenna Neuman C (1997) Wind tunnel evaluation of a wedge-shaped aeolian transport trap. Geomorphology 18:333–345

    Google Scholar 

  • Nielsen P, Dunn SL (1998) Manometer tubes for coastal hydrodynamics investigations. Coast Eng 35:73–84

    Google Scholar 

  • Osborne PD, Vincent CE, Greenwood B (1993) Measurement of suspended sediment concentrations in the nearshore: intercom-parison of optical and acoustic backscatter sensors. Cont Shelf Res 14:159–174

    Google Scholar 

  • Plant NG, Holman RA, Freilich MH, Birkemeir WA (1999) A simple model for interannual bar behaviour. J Geophys Res 104(C7):15,755–15,776

    Google Scholar 

  • Ribe RL, Russin EM (1974) Ocean wave measuring instrumentation. In Proceedings international symposium on ocean wave measurement and analysis. American Society of Civil Engineers, pp. 396–416

    Google Scholar 

  • Ridd PV (1992) A sediment level sensor for erosion and siltation detection. Estuar Coast Shelf Sci 35:355–362

    Google Scholar 

  • Ruessink BG, van Enckvort IMJ, Kingston KS, Davidson MA (2000) Analysis of two-and three-dimensional nearshore bar behaviour. Mar Geol 169:161–183

    Google Scholar 

  • Sallenger AH, Krabill W, Swift R, Brock J (2001) Quantifying hurricane-induced coastal changes using topographic lidar. In Proceedings coastal dynamics’ 01. American Society of Civil Engineers, pp. 1007–1018

    Google Scholar 

  • Seymour RJ (ed) (1989) Nearshore sediment transport. Plenum, New York

    Google Scholar 

  • Stockton P, Gillette DA (1990) Field measurements of the sheltering effect of vegetation on erodible land surfaces. Land Degrad Rehabil 2:77–85

    Google Scholar 

  • Sunamura T (1992) The geomorphology of rocky coasts. John Wiley & Sons, Chichester

    Google Scholar 

  • Sutherland TF, Lane PM, Amos CL, Downing J (2000) The calibration of optical backscatter sensors for suspended sediment of varying darkness levels. Mar Geol 162:587–597

    Google Scholar 

  • Timpy DL, Ludwick JC (1985) Bore height measurement with improved wave staff. Journal of Waterways, Port, Coastal and Ocean Engineering 111:495–510

    Google Scholar 

  • Tolhurst TJ, Black KS, Shayler SA, Mather S, Black I, Baker K, Paterson DM (1999) Measuring the in situ erosion shear stress of intertidal sediments with the cohesive strength M (CSM). Estuar Coast Shelf Sci 49:281–294

    Google Scholar 

  • Traykovski P, Latter RJ, Irish JD (1999) A laboratory evaluation of the laser in situ scattering and transmissometry instrument using natural sediments. Mar Geol 159:355–367

    Google Scholar 

  • Trudgill ST, High CJ, Hanna FK (1981) Improvements to the micro erosion meter. British geomorphology research group. Technical Bulletin 29:17

    Google Scholar 

  • Viles HA, Trudgill ST (1984) Long term remeasurements of micro-erosion meter rates, Aldabra atoll, Indian Ocean. Earth Surf Process Landf 9:89–94

    Google Scholar 

  • Wang P, Kraus N (1999) Horizontal water trap for measurement of aeolian sand transport. Earth Surf Process Landf 24:65–70

    Google Scholar 

  • White TE (1998) Status of measurement techniques for coastal sediment transport. Coast Eng 35:17–45

    Google Scholar 

  • Willis DH (1987) The Canadian coastal sediment study: an overview. In Coastal sediments’ 87. American Society of Civil Engineers, pp. 682–693

    Google Scholar 

  • Wright LD, Nielsen P, Short AD, Green MO (1982) Morphodynamics of a macrotidal beach. Mar Geol 50:97–128

    Google Scholar 

  • Wright LD, Boon JD, Kim SC, List JH (1991) Modes of cross-shore sediment transport on the shorefaceof the middle Atlantic bight. Mar Geol 96:19–51

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Davidson-Arnott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Davidson-Arnott, R. (2019). Beach and Nearshore Instrumentation. In: Finkl, C.W., Makowski, C. (eds) Encyclopedia of Coastal Science. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-93806-6_30

Download citation

Publish with us

Policies and ethics