Skip to main content

Microbial Inoculants for Improving Carbon Sequestration in Agroecosystems to Mitigate Climate Change

  • Reference work entry
  • First Online:

Abstract

The impacts of losing carbon from the terrestrial pool into the atmosphere have major consequences that affect many aspects of our planet in the long term and the short term. Agricultural lands could contribute in targeting these issues and provide efficient solutions, such as decreasing the level of atmospheric carbon while increasing carbon levels in soil. The proper selection of suitable microbial inoculants that are able to sequester carbon into soils is very important in order to improve agricultural land’s capability to sequester and store carbon. By achieving that, soil quality and properties would increase, and atmospheric carbon would be mitigated. In this review, we discussed the potential of using microorganisms as microbial inoculants to overcome the negative impacts of losing carbon from soils, by increasing carbon levels in soils. Soil microorganisms have the ability to affect the organic matter quantity and quality, which leads to affecting soil ecology and properties. Fungi and bacteria contribute differently in soil carbon sequestration by regulating multiple and different pathways inputs and losses of soil carbon such as possessing metabolic activities that can capture CO2, the ability to sediment carbonates, the recalcitrant nature of their vegetative and products tissues, or the formation of stable forms that protect carbon in soil. More studies are needed to test the potential of certain microbial strains with carbon sequestration ability to improve soil quality and mitigate climate change.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amundson R (2001) The carbon budget in soils. Annu Rev Earth Planet Sci 29(1):535–562

    Article  CAS  Google Scholar 

  • Averill C et al (2014) Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505(7484):543–545

    Article  CAS  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32(11):1559–1570

    Article  CAS  Google Scholar 

  • Babalola OO, Glick BR (2012) The use of microbial inoculants in African agriculture: current practice and future prospects. J Food Agric Environ 10(3&4):540–549

    Google Scholar 

  • Baldock J et al (1989) Incorporation of uniformly labeled 13C glucose carbon into the organic fraction of a soil-carbon balance and CP MAS 13C NMR measurements. Soil Res 27(4):725–746

    Article  CAS  Google Scholar 

  • Bashan Y et al (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378(1–2):1–33

    Article  CAS  Google Scholar 

  • Berg B, McClaugherty C (2003) Plant litter: decomposition, humus formation, carbon sequestration. Springer, Berlin

    Book  Google Scholar 

  • Blagodatskaya E, Kuzyakov Y (2013) Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biol Biochem 67:192–211

    Article  CAS  Google Scholar 

  • Bradford MA et al (2013) Empirical evidence that soil carbon formation from plant inputs is positively related to microbial growth. Biogeochemistry 113(1–3):271–281

    Article  CAS  Google Scholar 

  • Chan Y (2008) Increasing soil organic carbon of agricultural land. NSW Dep Prim Ind 735:1–5

    Google Scholar 

  • Chen PH et al (2012) Enhancing CO2 bio-mitigation by genetic engineering of cyanobacteria. Energy Environ Sci 5(8):8318–8327

    Article  CAS  Google Scholar 

  • Drigo B et al (2012) Rapid incorporation of carbon from ectomycorrhizal mycelial necromass into soil fungal communities. Soil Biol Biochem 49:4–10

    Article  CAS  Google Scholar 

  • Ekblad A et al (2013) The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling. Plant Soil 366(1–2):1–27

    Article  CAS  Google Scholar 

  • Eni D et al (2011) Flood and it impact on farmlands in Itigidi, Abi local government area, Cross River state. Niger J Int Human Soc Sci 1(9):98–104

    Google Scholar 

  • Fang H et al (2014) Changes in soil heterotrophic respiration, carbon availability, and microbial function in seven forests along a climate gradient. Ecol Res 29(6):1077–1086

    Article  CAS  Google Scholar 

  • Fernandez CW, Koide RT (2011) The role of chitin in the decomposition of ectomycorrhizal fungal litter. Ecology 93(1):24–28

    Article  Google Scholar 

  • Fernandez CW, Koide RT (2014) Initial melanin and nitrogen concentrations control the decomposition of ectomycorrhizal fungal litter. Soil Biol Biochem 77:150–157

    Article  CAS  Google Scholar 

  • Fischer H et al (2010) Microbial uptake of low-molecular-weight organic substances out-competes sorption in soil. Eur J Soil Sci 61(4):504–513

    Article  CAS  Google Scholar 

  • Frey SD et al (2013) The temperature response of soil microbial efficiency and its feedback to climate. Nat Clim Chang 3(4):395

    Article  CAS  Google Scholar 

  • Geyer KM et al (2016) Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry 127(2–3):173–188

    Article  CAS  Google Scholar 

  • Ghotbi-Ravandi AA et al (2014) Effects of mild and severe drought stress on photosynthetic efficiency in tolerant and susceptible barley (Hordeum vulgare L.) genotypes. J Agron Crop Sci 200(6):403–415

    Article  CAS  Google Scholar 

  • Grandy AS et al (2009) The influence of microbial communities, management, and soil texture on soil organic matter chemistry. Geoderma 150(3–4):278–286

    Article  CAS  Google Scholar 

  • Caporali F, Marinari S (2008) Soil carbon sequestration under organic farming in the Mediterranean environment. Transworld Research Network, pp 39–51

    Google Scholar 

  • Guckert JB et al (1985) Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol Lett 31(3):147–158

    Article  CAS  Google Scholar 

  • Han J et al (2013) Induction of calcium carbonate by Bacillus cereus. Geomicrobiol J 30(8):682–689

    Article  CAS  Google Scholar 

  • Hasanuzzaman M et al (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14(5):9643–9684

    Article  CAS  Google Scholar 

  • Hoorman JJ et al (2009) Using cover crops to convert to MD-till. Crops Soil 42:9–13

    Google Scholar 

  • Ineson P et al (1995) Quantification of soil carbon inputs under elevated CO 2: C 3 plants in a C 4 soil. Plant Soil 187(2):345–350

    Article  Google Scholar 

  • Ipcc W (2007) Climate change 2007: the physical science basis contribution of working group I. fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jansen K et al (2014) Douglas-fir seedlings exhibit metabolic responses to increased temperature and atmospheric drought. PLoS One 9(12):1–21

    Google Scholar 

  • Janzen HH (2004) Carbon cycling in earth systems – a soil science perspective. Agric Ecosyst Environ 104(3):399–417

    Article  CAS  Google Scholar 

  • Kadlec V et al (2012) Soil organic carbon dynamics and its influence on the soil erodibility factor. Soil Water Res 7(3):97–108

    Article  Google Scholar 

  • Kallenbach C et al (2015) Microbial physiology and necromass regulate agricultural soil carbon accumulation. Soil Biol Biochem 91:279–290

    Article  CAS  Google Scholar 

  • Koide RT et al (2014) Determining place and process: functional traits of ectomycorrhizal fungi that affect both community structure and ecosystem function. New Phytol 201(2):433–439

    Article  Google Scholar 

  • Komala T, Khun T (2014) Biological carbon dioxide sequestration potential of Bacillus pumilus. Sains Malaysiana 43(8):1149–1156

    Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123(1–2):1–22

    Article  CAS  Google Scholar 

  • Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528(7580):60

    Article  CAS  Google Scholar 

  • Li N et al (2015) Fungi contribute more than bacteria to soil organic matter through necromass accumulation under different agricultural practices during the early pedogenesis of a Mollisol. Eur J Soil Biol 67:51–58

    Article  Google Scholar 

  • Luck J et al (2011) Climate change and diseases of food crops. Plant Pathol 60(1):113–121

    Article  Google Scholar 

  • Macreadie PI et al (2014) Quantifying and modelling the carbon sequestration capacity of seagrass meadows – a critical assessment. Mar Pollut Bull 83(2):430–439

    Article  CAS  Google Scholar 

  • Mardukhi B et al (2011) Arbuscular mycorrhizas enhance nutrient uptake in different wheat genotypes at high salinity levels under field and greenhouse conditions. C R Biol 334(7):564–571

    Article  CAS  Google Scholar 

  • Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol 12(4):563–569

    CAS  Google Scholar 

  • Nie M et al (2015) Increased plant productivity and decreased microbial respiratory C loss by plant growth-promoting rhizobacteria under elevated CO2. Sci Rep 5:1–6

    CAS  Google Scholar 

  • Olson KR (2013) Soil organic carbon sequestration, storage, retention and loss in U.S. croplands: issues paper for protocol development. Geoderma 195–196:201–206

    Article  CAS  Google Scholar 

  • Ontl TA, Schulte LA (2012) Soil carbon storage. Nat Educ Knowl 3(10):35

    Google Scholar 

  • Ortiz N et al (2015) Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. J Plant Physiol 174:87–96

    Article  CAS  Google Scholar 

  • Pal A, Pandey S (2014) Role of glomalin in improving soil fertility: a review. Int J Plant Soil Sci 3(9):1112–1129

    Article  Google Scholar 

  • Paul E et al (2001) Dynamics of resistant soil carbon of Midwestern agricultural soils measured by naturally occurring 14C abundance. Geoderma 104(3–4):239–256

    Article  CAS  Google Scholar 

  • Peng Y et al (2010) Progress in microbial and enzyme immobilization of carbon dioxide. Chem Bioeng 27(7):10–13

    CAS  Google Scholar 

  • Peng S et al (2013) The effects of arbuscular mycorrhizal hyphal networks on soil aggregations of purple soil in Southwest China. Soil Biol Biochem 57:411–417

    Article  CAS  Google Scholar 

  • Plante AF et al (2011) Biological, chemical and thermal indices of soil organic matter stability in four grassland soils. Soil Biol Biochem 43(5):1051–1058

    Article  CAS  Google Scholar 

  • Powlson DS et al (2011) Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. Eur J Soil Sci 62(1):42–55

    Article  CAS  Google Scholar 

  • Qafoku NP (2015) Climate change effects on soils: accelerated weathering, soil carbon, and elemental cycling. Academic, Advan Agron

    Google Scholar 

  • Randers J (2012) 2052: a global forecast for the next forty years. Chelsea Green Publishing, Burlington

    Google Scholar 

  • Rawlins BG et al (2013) Application of a novel method for soil aggregate stability measurement by laser granulometry with sonication. Eur J Soil Sci 64(1):92–103

    Article  CAS  Google Scholar 

  • Saiya-Cork K et al (2002) The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem 34(9):1309–1315

    Article  CAS  Google Scholar 

  • Sangakkara U et al (2014) Soil quality and crop yields as affected by microbial inoculants in nature farming. Build Org Bridges 3:987–990

    Google Scholar 

  • Selvakumar G et al (2012) Response of biofertilizers on growth, yield attributes and associated protein profiling changes of blackgram (Vigna mungo L. Hepper). World Appl Sci J 16(10):1368–1374

    Google Scholar 

  • Sessitsch A et al (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    Article  CAS  Google Scholar 

  • Shindell D et al (2012) Simultaneously mitigating near-term climate change and improving human health and food security. Science 335(6065):183–189

    Article  CAS  Google Scholar 

  • Singh PK (2012) Role of glomalin related soil protein produced by arbuscular mycorrhizal fungi: a review. Agric Sci Res J 2(3):119–125

    Google Scholar 

  • Singh P et al (2013) Glomalin: an arbuscular mycorrhizal fungal soil protein. Protoplasma 250(3):663–669

    Article  CAS  Google Scholar 

  • Six J et al (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70(2):555–569

    Article  CAS  Google Scholar 

  • Smith AP et al (2014) Microbial community structure varies across soil organic matter aggregate pools during tropical land cover change. Soil Biol Biochem 77:292–303

    Article  CAS  Google Scholar 

  • Stockmann U et al (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosyst Environ 164:80–99

    Article  CAS  Google Scholar 

  • Stocks-Fischer S et al (1999) Microbiological precipitation of CaCO3. Soil Biol Biochem 31(11):1563–1571

    Article  CAS  Google Scholar 

  • Tan WF et al (2014) Soil inorganic carbon stock under different soil types and land uses on the loess plateau region of China. Catena 121:22–30

    Article  CAS  Google Scholar 

  • Tavasolee A et al (2011) Interactive effects of arbuscular mycorrhizal fungi and rhizobial strains on chickpea growth and nutrient content in plant. Afr J Biotechnol 10(39):7585–7591

    Google Scholar 

  • Teskey R et al (2014) Responses of tree species to heat waves and extreme heat events. Plant Cell Environ. https://doi.org/10.1111/pce.12417

    Article  Google Scholar 

  • Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47(1):123–138

    Article  Google Scholar 

  • Upadhyay SK et al (2011) Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere 21(2):214–222

    Article  CAS  Google Scholar 

  • Waksman SA (1936) Humus: Origin, chemical composition, and importance in nature. 1st edn, Baillliere, Tindall & Cox, Covent Garden, London

    Google Scholar 

  • Wallander H et al (2013) Evaluation of methods to estimate production, biomass and turnover of ectomycorrhizal mycelium in forests soils – a review. Soil Biol Biochem 57:1034–1047

    Article  CAS  Google Scholar 

  • Wang Q et al (2010) Cropping systems to improve carbon sequestration for mitigation of climate change. J Environ Prot 1(3):207–215

    Article  CAS  Google Scholar 

  • Wani P, Khan M (2013) Nickel detoxification and plant growth promotion by multi metal resistant plant growth promoting rhizobium species RL9. Bull Environ Contam Toxicol 91(1):117–124

    Article  CAS  Google Scholar 

  • West JS et al (2015) Impact of climate change on diseases in sustainable arable crop systems: CLIMDIS. Home-Grown Cereals Authority, London, pp 1–67

    Google Scholar 

  • Wright SF, Upadhyaya A (1999) Quantification of arbuscular mycorrhizal fungi activity by the glomalin concentration on hyphal traps. Mycorrhiza 8(5):283–285

    Article  CAS  Google Scholar 

  • Wu QS et al (2014a) Direct and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate stability in rhizosphere of trifoliate orange. Sci Rep 4(5823):1–8

    CAS  Google Scholar 

  • Wu QS et al (2014b) Contribution of arbuscular mycorrhizas to glomalin-related soil protein, soil organic carbon and aggregate stability in citrus rhizosphere. Int J Agric Biol 16:207–2012

    CAS  Google Scholar 

  • Xiao L et al (2015) Effect of carbonic anhydrase on silicate weathering and carbonate formation at present day CO2 concentrations compared to primordial valves. Scientific reports 5:7733

    Google Scholar 

  • Zhang Z et al (2011) Bacillus mucilaginosus can capture atmospheric CO2 by carbonic anhydrase. Afr J Microbiol Res 5:106–112

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olubukola Oluranti Babalola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ahmed, A.A.Q., Odelade, K.A., Babalola, O.O. (2020). Microbial Inoculants for Improving Carbon Sequestration in Agroecosystems to Mitigate Climate Change. In: Leal Filho, W. (eds) Handbook of Climate Change Resilience. Springer, Cham. https://doi.org/10.1007/978-3-319-93336-8_119

Download citation

Publish with us

Policies and ethics