Skip to main content

Hydrogel Synthesis and Design

  • Living reference work entry
  • First Online:
Functional Biopolymers

Abstract

The capacity to exploit the many possible applications of hydrogels is strongly tied to our capacity to synthesize hydrogels with well-defined chemistries and structures. Herein, we review the major strategies used for the synthesis of hydrogels, focusing on the key choices to be made in terms of the chemical and structural properties of the backbone polymer, the nature of the crosslinking strategy used (in terms of both the mechanism and the permanence of network formation), and the length scale at which network formation is conducted. The impacts of these various choices on the ultimate properties of the hydrogels generated are emphasized in the context of the rational design of hydrogel compositions and structures for target applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AIBME:

Dimethyl 2,2′-azobis(2-methylpropionate)

AIBN:

Azobisisobutyronitrile

CD:

Cyclodextrin

CNCs:

Cellulose nanocrystals

CTAB:

Cetyltrimethylammonium bromide

CuAAC:

Copper(I)-catalyzed alkyne-azide click reaction

CV:

Coefficient of variance

DHs:

Dendrimer-based hydrogels

GRAS:

Generally recognized as safe (FDA)

GelMA:

Methacrylated gelatin

HA:

Hyaluronic acid, HA

HPMC:

Hydroxypropyl methylcellulose

IPN:

Interpenetrating polymer network

IUPAC:

International Union of Pure and Applied Chemistry

PAA:

Poly(acrylic acid)

PAAm:

Poly(acrylamide)

PAH:

Poly(allylamine hydrochloride)

PAMAM:

Poly(amidoamine)

PCL:

Poly(ɛ -caprolactone)

PDADMAC:

Poly(diallyldimethylammonium chloride)

PDLA:

Poly(d-lactic acid)

PEG:

Poly(ethylene glycol)

PEO:

Poly(ethylene oxide)

PHEMA:

Poly(hydroxyethyl methacrylate)

PLA:

Poly(lactic acid)

PLL:

Poly-l-lysine

PLLA:

Poly(l-lactic acid)

PMAA:

Poly(methacrylic acid)

PNIPAM:

Poly(N-isopropylacrylamide)

POEGMA:

Poly(oligoethylene glycol methacrylate)

POLAMA:

Poly(oligolactic acid methacrylate)

PPF:

Poly(propylene fumarate)

PRINT:

Particle replication in non-wetting templates

PSS:

Poly(styrene sulfonate)

PU:

Poly(urethane)

PVA:

Poly(vinyl alcohol)

PVP:

Poly(vinylpyrrolidone)

QDs:

Quantum dots

SPAAC:

Strain-promoted alkyne-azide click reactions

STMP:

Sodium trimetaphosphate

STPP:

Sodium tripolyphosphate

TEM:

Transmission electron microscopy

TEMED:

Tetramethylethylenediamine

References

  1. D. Pasqui, M. De Cagna, R. Barbucci, Polysaccharide-based hydrogels: the key role of water in affecting mechanical properties. Polymers 4(4), 1517–1534 (2012)

    Article  CAS  Google Scholar 

  2. F. Muller-Plathe, Different states of water in hydrogels? Macromolecules 31, 6721–6723 (1998)

    Article  Google Scholar 

  3. J.F. Mano, G.A. Silva, H.S. Azevedo, P.B. Malafaya, S.S. Sousa, L.F. Boesel, J.M. Oliveira, T.C. Santos, A.P. Marques, N.M. Neves, R.L. Reis, Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J. R. Soc. Interface 4(17), 999–1030 (2007)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. W. Zhao, X. Jin, Y. Cong, Y. Liu, J. Fu, Degradable natural polymer hydrogels for articular cartilage tissue engineering. J. Chem. Tech. Biotech. 88(3), 327–339 (2013)

    Article  CAS  Google Scholar 

  5. E.B. Glor, C.H. Miller, D.F. Spandau, Degradation of starch and its hydrolytic products by oral bacteria. J. Dent. Res. 67(1), 75–81 (1998)

    Article  Google Scholar 

  6. M. Alberta Araújo, A.M. Cunha, M. Mota, Enzymatic degradation of starch-based thermoplastic compounds used in protheses: identification of the degradation products in solution. Biomaterials 25(13), 2687–2693 (2004)

    Article  PubMed  CAS  Google Scholar 

  7. United States Food and Drug Administration, Code of Federal Regulations Title 21 Food and Drugs (Electronic Code of Federal Regulations by Government Publishing Office, 2017). https://www.ecfr.gov/cgi-bin/text-idx?SID=3ee286332416f26a91d9e6d786a604ab&mc=true&tpl=/ecfrbrowse/Title21/21tab_02.tpl

  8. G. Camci-Unal, J.W. Nichol, H. Bae, H. Tekin, J. Bischoff, A. Khademhosseini, Hydrogel surfaces to promote attachment and spreading of endothelial progenitor cells. J. Tissue Eng. Regen. Med. 7(5), 337–347 (2013)

    Article  PubMed  CAS  Google Scholar 

  9. D. Tian, P. Chandra, J.S. Lee, C. Lu, J.N. Saddler, A comparison of various lignin-extraction methods to enhance the accessibility and ease of enzymatic hydrolysis of the cellulosic component of steam-pretreated poplar. Biotechnol. Biofuels. 10(157), 1–10 (2017)

    PubMed  PubMed Central  Google Scholar 

  10. X. Xu, A.K. Jha, D.A. Harrington, M.C. Farach-Carson, X. Jia, Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks. Soft. Matter 8(12), 3280–3294 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. L.J. del Valle, A. Díaz, J. Puiggalí, Hydrogels for biomedical applications: cellulose, chitosan, and protein/peptide derivatives. Gels 3(27), 1–28 (2017)

    Google Scholar 

  12. A. Sannino, C. Demitri, M. Madaghiele, Biodegradable cellulose-based hydrogels: design and applications. Materials 2(2), 353–373 (2009)

    Article  PubMed Central  CAS  Google Scholar 

  13. W.N.E. van Dijk-Wolthuis, J.A.M. Hoogeboom, M.J. van Steenbergen, S.K.Y. Tsang, W.E. Hennink, Degradation and release behavior of dextran-based hydrogels. Macromolecules 30, 4639–4645 (1997)

    Article  Google Scholar 

  14. C. Elvira, J.F. Mano, J. San Roman, R.L. Reis, Starch-based biodegradable hydrogels with potential biomedical applications as drug delivery systems. Biomaterials 23, 1955–1966 (2002)

    Article  PubMed  CAS  Google Scholar 

  15. H. Ismail, M. Irani, Z. Ahmad, Starch-based hydrogels: present status and applications. Int. J. Polym. Mater. 62(7), 411–420 (2013)

    Article  CAS  Google Scholar 

  16. J.A. Rowley, G. Madlambayan, D.J. Mooney, Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20, 45–53 (1999)

    Article  PubMed  CAS  Google Scholar 

  17. A.D. Augst, H.J. Kong, D.J. Mooney, Alginate hydrogels as biomaterials. Macromol. Biosci. 6(8), 623–633 (2006)

    Article  PubMed  CAS  Google Scholar 

  18. Y. Li, H. Meng, Y. Liu, B.P. Lee, Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering. Sci. World J. 2015, 1–10 (2015)

    Google Scholar 

  19. M. Strathmann, T. Griebe, H.-C. Flemming, Agarose hydrogels as EPS models. Water. Sci. Tech. 43(6), 169–175 (2001)

    Article  CAS  Google Scholar 

  20. S.T. Koshy, R.M. Desai, P. Joly, J. Li, R.K. Bagrodia, S.A. Lewin, N.S. Joshi, D.J. Mooney, Click-crosslinked injectable gelatin hydrogels. Adv. Healthc. Mater. 5(5), 541–547 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. E.E. Antoine, P.P. Vlachos, M.N. Rylander, Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. Tissue Eng. Part B Rev. 20(6), 683–696 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. L. Almany, D. Seliktar, Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials 26(15), 2467–2477 (2005)

    Article  PubMed  CAS  Google Scholar 

  23. P.B. Rapp, A.K. Omar, J.J. Shen, M.E. Buck, Z.G. Wang, D.A. Tirrell, Analysis and control of chain mobility in protein hydrogels. J. Am. Chem. Soc. 139(10), 3796–3804 (2017)

    Article  PubMed  CAS  Google Scholar 

  24. A. Dasgupta, J.H. Mondal, D. Das, Peptide hydrogels. RSC Adv. 3(24), 9117–9149 (2013)

    Article  CAS  Google Scholar 

  25. S.R. MacEwan, A. Chilkoti, Elastin-like polypeptides: biomedical applications of tunable biopolymers. Biopolymers 94(1), 60–77 (2010)

    Article  CAS  PubMed  Google Scholar 

  26. Z. Yang, B. Xu, A simple visual assay based on small molecule hydrogels for detecting inhibitors of enzymes. Chem. Commun. 21, 2424–2425 (2004)

    Article  CAS  Google Scholar 

  27. T.J. Deming, Polypeptide hydrogels via a unique assembly mechanism. Soft. Matter 1, 28–35 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. Y. Shao, H. Jia, T. Cao, D. Liu, Supramolecular hydrogels based on DNA self-assembly. Acc. Chem. Res. 50(4), 659–668 (2017)

    Article  PubMed  CAS  Google Scholar 

  29. C.M. Kirschner, K.S. Anseth, Hydrogels in healthcare: from static to dynamic material microenvironments. Acta Mater. 61(3), 931–944 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. H. Tan, K.G. Marra, Injectable, biodegradable hydrogels for tissue engineering applications. Materials 3(3), 1746–1767 (2010)

    Article  PubMed Central  CAS  Google Scholar 

  31. N.R. Patel, A.K. Whitehead, J.J. Newman, M.E. Caldorera-Moore, Poly(ethylene glycol) hydrogels with tailorable surface and mechanical properties for tissue engineering applications. ACS Biomater. Sci. Eng. 3(8), 1494–1498 (2016)

    Article  CAS  PubMed  Google Scholar 

  32. B.E. Jensen, I. Davila, A.N. Zelikin, Poly(vinyl alcohol) physical hydrogels: matrix-mediated drug delivery using spontaneously eroding substrate. J. Phys. Chem. B 120(26), 5916–5926 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. E.A. Kamoun, X. Chen, M.S. Mohy Eldin, E.R.S. Kenawry, Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: a review of remarkably blended polymers. Arab. J. Chem. 8(1), 1–14 (2015)

    Article  CAS  Google Scholar 

  34. S. Chauhan, Acrylic acid and methacrylic acid based hydrogels-a review. Der Chem. Sin. 6(1), 61–72 (2015)

    CAS  Google Scholar 

  35. V. Kozlovskaya, E. Kharlampieva, M.L. Mansfield, S.A. Sukhishvili, Poly(methacrylic acid) hydrogel films and capsules: response to pH and ionic strength, and encapsulation of macromolecules. Chem. Mater. 18, 328–336 (2006)

    Article  CAS  Google Scholar 

  36. M. Teodorescu, M. Bercea, Poly(vinylpyrrolidone) – a versatile polymer for biomedical and beyond medical applications. Polym. Plast. Technol. Eng. 54(9), 923–943 (2015)

    Article  CAS  Google Scholar 

  37. N. Roy, N. Saha, PVP-based hydrogels: synthesis, properties and applications, in Hydrogel Synthesis, Characterization, and Applications, ed. F.V. Câmara, L.J. Ferreira (Nova Science, New York, 2012)

    Google Scholar 

  38. J.M.S. Malmonge, S.M. Malmoge, Synthesis of PolyHEMA hydrogels for using as biomaterials: bulk and solution radical-initiated polymerization techniques. Mater. Res. 3(3), 1–5 (2000)

    Google Scholar 

  39. M.G. Yasuda, M. Gochin, W. Stone Jr., Hydrogels of poly (hydroxyethyl methacrylate) and hydroxyethyl methacrylate glycerol monomethacrylate copolymers. J. Poly. Sci. A 4, 2913–2927 (1966)

    Article  CAS  Google Scholar 

  40. M. Patenaude, T. Hoare, Injectable, mixed natural-synthetic polymer hydrogels with modular properties. Biomacromolecules 13(2), 369–378 (2012)

    Article  PubMed  CAS  Google Scholar 

  41. J. Li, W.R.K. Illeperuma, Z. Suo, J.J. Vlassak, Hybrid hydrogels with extremely high stiffness and toughness. ACS Macro. Lett. 3(6), 520–523 (2014)

    Article  CAS  Google Scholar 

  42. C. Tang, S. Ye, H. Liu, Electrospinning of poly(styrene-co-maleic anhydride) (SMA) and water-swelling behavior of crosslinked/hydrolyzed SMA hydrogel nanofibers. Polymer 48(15), 4482–4491 (2007)

    Article  CAS  Google Scholar 

  43. C.T. Huynh, M.K. Nguyen, D.S. Lee, Injectable block copolymer hydrogels: achievements and future challenges for biomedical applications. Macromolecules 44(17), 6629–6636 (2011)

    Article  CAS  Google Scholar 

  44. X. Zhao, O. Coutelier, H.H. Nguyen, C. Delmas, M. Destarac, J.D. Marty, Effect of copolymer composition of RAFT/MADIX-derived N-vinylcaprolactam/N-vinylpyrrolidone statistical copolymers on their thermoresponsive behavior and hydrogel properties. Polym. Chem. 6(29), 5233–5243 (2015)

    Article  CAS  Google Scholar 

  45. A.T. Metters, C.N. Bowman, K.S. Anseth, A. Statistical Kinetic, Model for the bulk degradation of PLA-b-PEG-b-PLA hydrogel networks. J. Phys. Chem. B 104, 7043–7049 (2000)

    Article  CAS  Google Scholar 

  46. D. McLean, T. Hoare, Kinetic prediction of functional group distributions in thermosensitive microgels. J. Phys. Chem. B 110, 20327–20336 (2006)

    Article  PubMed  CAS  Google Scholar 

  47. X. Jia, K.L. Kiick, Hybrid multicomponent hydrogels for tissue engineering. Macromol. Biosci. 9(2), 140–156 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. M. Jaiswal, V. Koul, Assessment of multicomponent hydrogel scaffolds of poly(acrylic acid-2-hydroxy ethyl methacrylate)/gelatin for tissue engineering applications. J. Biomater. Appl. 27(7), 848–861 (2013)

    Article  PubMed  CAS  Google Scholar 

  49. A. Sunder, R. Mülhaupt, R. Haag, H. Frey, Hyperbranched polyether polyols: a modular approach to complex polymer architectures. Adv. Mater. 12(3), 235–239 (2000)

    Article  CAS  Google Scholar 

  50. P.J. Flory, Principles of Polymer Chemistry. The George Fisher Baker Non-Resident Lectureship in Chemistry at Cornell University (Cornell University Press, Ithaca, 1953)

    Google Scholar 

  51. S. Zhu, A. Hamielec, Polymerization kinetic modeling and macromolecular reaction engineering, in Polymer Science: A Comprehensive Reference Ring-Opening Polymerization and Special Polymerization Processes, vol 4 (Elsevier Science, 2012), pp. 779–831

    Google Scholar 

  52. A. Thomas, S.S. Muller, H. Frey, Beyond poly(ethylene glycol): linear polyglycerol as a multifunctional polyether for biomedical and pharmaceutical applications. Biomacromolecules 15(6), 1935–1954 (2014)

    Article  PubMed  CAS  Google Scholar 

  53. H. Frey, R. Haag, Dendritic polyglycerol: a new versatile biocompatible material. Rev. Mol. Biotechnol. 90, 257–267 (2002)

    Article  CAS  Google Scholar 

  54. K.M. Kim, M. Jikei, M. Kakimoto, Preparation and properties of novel hyperbranched poly(dimethylsiloxane)s. Polym. J. 34(4), 275–279 (2002)

    Article  CAS  Google Scholar 

  55. D. Holtel, A. Burgath, H. Frey, Degree of branching in hyperbranched polymers. Acta Polym. 48, 30–35 (1997)

    Article  Google Scholar 

  56. H. Frey, D. Holter, Degree of branching in hyperbranched polymers. 3 Copolymerization of ABm-monomers with AB and ABn-monomers. Acta Polym. 50, 67–76 (1999)

    Article  CAS  Google Scholar 

  57. H. Frey, Degree of branching in hyperbranched polymers. 2. Enhancement of the DB: scope and limitations. Acta Polym. 48, 298–309 (1997)

    Article  Google Scholar 

  58. R. Hanselmann, D. Holter, H. Frey, Hyperbranched polymers prepared via the core-dilution/slow addition technique: computer simulation of molecular weight distribution and degree of branching. Macromolecules 31, 3790–3801 (1998)

    Article  CAS  Google Scholar 

  59. A. Sunder, R. Hanselmann, H. Frey, R. Mulhaupt, Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization. Macromolecules 32, 4240–4246 (1999)

    Article  CAS  Google Scholar 

  60. R.K. Kainthan, E.B. Muliawan, S.G. Hatzikiriakos, D.E. Brooks, Synthesis, characterization, and viscoelastic properties of high molecular weight hyperbranched polyglycerols. Macromolecules 39, 7708–7717 (2006)

    Article  CAS  Google Scholar 

  61. W. Hassan, Y. Dong, W. Wang, Encapsulation and 3D culture of human adipose-derived stem cells in an in-situ crosslinked hybrid hydrogel composed of PEG-based hyperbranched copolymer and hyaluronic acid. Stem Cell Res. Ther. 4(32), 1–11 (2013)

    Google Scholar 

  62. Y. Liu, F. Zhang, Y. Ru, Hyperbranched phosphoramidate-hyaluronan hybrid: a reduction-sensitive injectable hydrogel for controlled protein release. Carbohydr. Polym. 117, 304–311 (2015)

    Article  PubMed  CAS  Google Scholar 

  63. S. Deng, H. Xu, X. Jiang, J. Yin, Poly(vinyl alcohol) (PVA)-enhanced hybrid hydrogels of Hyperbranched poly(ether amine) (hPEA) for selective adsorption and separation of dyes. Macromolecules 46(6), 2399–2406 (2013)

    Article  CAS  Google Scholar 

  64. M.H. Oudshoorn, R. Rissmann, J.A. Bouwstra, W.E. Hennink, Synthesis and characterization of hyperbranched polyglycerol hydrogels. Biomaterials 27(32), 5471–5479 (2006)

    Article  PubMed  CAS  Google Scholar 

  65. C.A. Holden, P. Tyagi, A. Thakur, R. Kadam, G. Jadhav, U.B. Kompella, H. Yang, Polyamidoamine dendrimer hydrogel for enhanced delivery of antiglaucoma drugs. Nanomedicine 8(5), 776–783 (2012)

    Article  PubMed  CAS  Google Scholar 

  66. P.N. Desai, Q. Yuan, H. Yang, Synthesis and characterization of photocurable polyamidoamine dendrimer hydrogels as a versatile platform for tissue engineering and drug delivery. Biomacromolecules 11(3), 666–673 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. H. Yang, P. Tyagi, R.S. Kadam, C.A. Holden, U.B. Kompella, Hybrid dendrimer hydrogel/PLGA nanoparticle platform sustains drug delivery for one week and antiglaucoma effects for four days following one-time topical administration. ACS Nano 6(9), 7595–7606 (2012)

    Article  PubMed  CAS  Google Scholar 

  68. J. Wang, H. He, R.C. Cooper, H. Yang, In situ-forming polyamidoamine dendrimer hydrogels with tunable properties prepared via Aza-Michael addition reaction. ACS Appl. Mater. Interfaces 9(12), 10494–10503 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. T. Sakai, T. Matsunaga, Y. Yamamoto, C. Ito, R. Yoshida, S. Suzuki, N. Saskai, M. Shibayama, U.I. Chung, Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 41, 5379–5384 (2008)

    Article  CAS  Google Scholar 

  70. J. Henise, B.R. Hearn, G.W. Ashley, D.V. Santi, Biodegradable tetra-PEG hydrogels as carriers for a releasable drug delivery system. Bioconjug. Chem. 26(2), 270–278 (2015)

    Article  CAS  PubMed  Google Scholar 

  71. H. Jia, Z. Huang, Z. Li, Z. Zheng, X. Wang, One-pot synthesis of highly mechanical and redox-degradable polyurethane hydrogels based on tetra-PEG and disulfide/thiol chemistry. RSC Adv. 6(54), 48863–48869 (2016)

    Article  CAS  Google Scholar 

  72. J.-F. Lutz, Polymerization of oligo(ethylene glycol) (meth)acrylates: toward new generations of smart biocompatible materials. J. Polym. Sci. A 46(11), 3459–3470 (2008)

    Article  CAS  Google Scholar 

  73. J.F. Lutz, O. Akdemir, A. Hoth, Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: is the age of poly(NIPAM) over? J. Am. Chem. Soc. 128, 13046–13047 (2006)

    Article  PubMed  CAS  Google Scholar 

  74. N.M.B. Smeets, M. Patenaude, D. Kinio, F.M. Yavitt, E. Bakaic, F.C. Yang, M. Rheinstadter, T. Hoare, Injectable hydrogels with in situ-forming hydrophobic domains: oligo(d,l-lactide) modified poly(oligoethylene glycol methacrylate) hydrogels. Polym. Chem. 5(23), 6811–6823 (2014)

    Article  CAS  Google Scholar 

  75. M.A. Tasdelen, M.U. Kahveci, Y. Yagci, Telechelic polymers by living and controlled/living polymerization methods. Prog. Polym. Sci. 36(4), 455–567 (2011)

    Article  CAS  Google Scholar 

  76. H. Zhou, J.A. Johnson, Photo-controlled growth of telechelic polymers and end-linked polymer gels. Angew. Chem. Int. Ed. Engl. 52(8), 2235–2238 (2013)

    Article  PubMed  CAS  Google Scholar 

  77. T. Zinn, L. Willner, R. Lund, Telechelic polymer hydrogels: relation between the microscopic dynamics and macroscopic viscoelastic response. ACS Macro. Lett. 5(12), 1353–1356 (2016)

    Article  CAS  Google Scholar 

  78. I.W. Hamley, G. Cheng, V. Castelletto, A thermoresponsive hydrogel based on telechelic PEG end-capped with hydrophobic dipeptides. Macromol. Biosci. 11(8), 1068–1078 (2011)

    Article  PubMed  CAS  Google Scholar 

  79. T. Annable, R. Buscall, R. Ettelaie, D. Whittlestone, The rheology of solutions of associating polymers: comparison of experimental behavior with transient network theory. J. Rheol. 37(4), 695–726 (1993)

    Article  CAS  Google Scholar 

  80. K.C. Tam, R.D. Jenkins, M.A. Winnik, D.R. Bassett, A structural model of hydrophobically modified urethane-ethoxylate (HEUR) associative polymers in shear flows. Macromolecules 31, 4149–4159 (1998)

    Article  CAS  Google Scholar 

  81. R.J. English, I. Ratcliffe, R.L. Blanchard, B.J. Parsons, Effect of polydispersity on fluorescence quenching in micelles formed by telechelic associative polymers. Macromolecules 40, 6699–6708 (2007)

    Article  CAS  Google Scholar 

  82. P. Barretta, F. Bordi, C. Rinaldi, G. Paradossi, A. Dynamic Light, Scattering study of hydrogels based on telechelic poly(vinyl alcohol). J. Phys. Chem. B 104, 11019–11026 (2000)

    Article  CAS  Google Scholar 

  83. R. Karunakaran, J.P. Kennedy, Synthesis, characterization, and crosslinking of methacrylate-telechelic PDMAAm-b-PDMS-b-PDMAAm copolymers. J. Polym. Sci. A 45(18), 4284–4290 (2007)

    Article  CAS  Google Scholar 

  84. N. Stavrouli, T. Aubry, C. Tsitsilianis, Rheological properties of ABA telechelic polyelectrolyte and ABA polyampholyte reversible hydrogels: a comparative study. Polymer 49(5), 1249–1256 (2008)

    Article  CAS  Google Scholar 

  85. F. Bossard, T. Aubry, G. Gotzamanis, C. Tsitsilianis, pH-tunable rheological properties of a telechelic cationic polyelectrolyte reversible hydrogel. Soft Matter 2(6), 510–516 (2006)

    Article  CAS  PubMed  Google Scholar 

  86. T. Yan, K. Schroter, F. Herbst, W.H. Binder, T. Thurn-Albrecht, Unveiling the molecular mechanism of self-healing in a telechelic, supramolecular polymer network. Sci. Rep. 6, 1–8 (2016)

    Article  CAS  Google Scholar 

  87. K. Kinoshita, T. Takami, Y. Mori, Y. Uchida, Y. Murakami, RAFT-based synthesis and the gelation property of telechelic polymers that can immobilize biomacromolecules. J. Polym. Sci. A 55(8), 1356–1365 (2017)

    Article  CAS  Google Scholar 

  88. A.A. Badwan, A. Abumalooh, E. Sallam, A. Abukalaf, O. Jawan, A sustained release drug delivery system using calcium alginate beads. Drug Dev. Ind. Pharm. 11(2–3), 239–256 (2008)

    Google Scholar 

  89. A.I. Chou, S.B. Nicoll, Characterization of photocrosslinked alginate hydrogels for nucleus pulposus cell encapsulation. J. Biomed. Mater. Res. A 91(1), 187–194 (2009)

    Article  PubMed  CAS  Google Scholar 

  90. W. Tong, X. Song, C. Gao, Layer-by-layer assembly of microcapsules and their biomedical applications. Chem. Soc. Rev. 41(18), 6103–6124 (2012)

    Article  PubMed  CAS  Google Scholar 

  91. S. Krol, S. del Guerra, M. Grupillo, A. Diaspro, A. Gliozzi, P. Marchetti, Multilayer Nanoencapsulation. New approach for immune protection of human pancreatic islets. Nano Lett. 6(9), 1933–1939 (2006)

    Article  PubMed  CAS  Google Scholar 

  92. J.S. Lee, J. Feijen, Polymersomes for drug delivery: design, formation and characterization. J. Control. Release 161(2), 473–483 (2012)

    Article  PubMed  CAS  Google Scholar 

  93. J.W. Maina, J.J. Richardson, R. Chandrawati, K. Kempe, M.P. van Koeverden, F. Caruso, Capsosomes as long-term delivery vehicles for protein therapeutics. Langmuir 31(28), 7776–7781 (2015)

    Article  PubMed  CAS  Google Scholar 

  94. I.Y. Perevyazko, M. Bauer, G.M. Pavlov, S. Hoppener, S. Schubert, D. Fischer, U.S. Schubert, Polyelectrolyte complexes of DNA and linear PEI: formation, composition and properties. Langmuir 28(46), 16167–16176 (2012)

    Article  PubMed  CAS  Google Scholar 

  95. H. Tsuji, F. Horii, S.H. Hyon, Y. Ikada, Stereocomplex formation between enantiomeric poly(lactic acid)s. 2. Stereocomplex formation in concentrated solutions. Macromolecules 24, 2719–2724 (1991)

    Article  CAS  Google Scholar 

  96. K. Kobayashi, H. Sumitomo, T. Itoigawa, Maltopentaose- and maltoheptaose-carrying styrene macromers and their homopolymers. Macromolecules 20, 906–908 (1987)

    Article  CAS  Google Scholar 

  97. H. Tsuji, Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol. Biosci. 5(7), 569–597 (2005)

    Article  PubMed  CAS  Google Scholar 

  98. M. Kakuta, M. Hirata, Y. Kimura, Stereoblock polylactides as high-performance bio-based polymers. Polym. Rev. 49(2), 107–140 (2009)

    Article  CAS  Google Scholar 

  99. M.J. Webber, E.A. Appel, E.W. Meijer, R. Langer, Supramolecular biomaterials. Nat. Mater. 15(1), 13–26 (2016)

    Article  PubMed  CAS  Google Scholar 

  100. T. Hoare, D. Zurakowski, R. Langer, D.S. Kohane, Rheological blends for drug delivery. I. Characterization in vitro. J. Biomed. Mater. Res. A 92(2), 575–585 (2010)

    PubMed  Google Scholar 

  101. D.B. Rasale, A.K. Das, Chemical reactions directed peptide self-assembly. Int. J. Mol. Sci. 16(5), 10797–10820 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. J. Kopecek, J. Yang, Smart self-assembled hybrid hydrogel biomaterials. Angew. Chem. Int. Ed. Engl. 51(30), 7396–7417 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. P.Y.W. Dankers, T.M. Hermans, T.W. Baughman, Y. Kamikawa, R.E. Kieltyka, M.M. Bastings, H.M. Janssen, N.A.J.M. Sommerdijk, A. Larsen, M.J.A. van Luyn, A.W. Bosman, E.R. Popa, G. Fytas, E.W. Meijer, Hierarchical formation of supramolecular transient networks in water: a modular injectable delivery system. Adv. Mater. 24(20), 2703–2709 (2012)

    Article  PubMed  CAS  Google Scholar 

  104. J. Roosma, T. Mes, P. Leclere, A.R.A. Palmans, E.W. Meijer, Supramolecular materials from benzene-1,3,5-tricarboxamide-based nanorods. J. Am. Chem. Soc. 130, 1120–1121 (2008)

    Article  PubMed  CAS  Google Scholar 

  105. L.E. Buerkle, H.A. von Recum, S.J. Rowan, Toward potential supramolecular tissue engineering scaffolds based on guanosine derivatives. Chem. Sci. 3(2), 564–572 (2012)

    Article  CAS  Google Scholar 

  106. T. Kakuta, Y. Takashima, M. Nakahata, M. Otsubo, H. Yamaguchi, A. Harada, Preorganized hydrogel: self-healing properties of supramolecular hydrogels formed by polymerization of host-guest-monomers that contain cyclodextrins and hydrophobic guest groups. Adv. Mater. 25(20), 2849–2853 (2013)

    Article  CAS  PubMed  Google Scholar 

  107. O.Y. Posudievsky, S.A. Biskulova, V.D. Pokhodenko, New hybrid guest–host nanocomposites based on polyaniline, poly(ethylene oxide) and V2O5. J. Mater. Chem. 14(9), 1419–1423 (2004)

    Article  CAS  Google Scholar 

  108. Y. Zheng, I. Wyman, Supramolecular nanostructures based on cyclodextrin and poly(ethylene oxide): syntheses, structural characterizations and applications for drug delivery. Polymers 8(5), 1–18 (2016)

    Article  CAS  Google Scholar 

  109. T. Kakuta, Y. Takashima, A. Harada, Highly elastic supramolecular hydrogels using host–guest inclusion complexes with cyclodextrins. Macromolecules 46(11), 4575–4579 (2013)

    Article  CAS  Google Scholar 

  110. E.A. Appel, F. Biedermann, U. Rauwald, S.T. Jones, J.M. Zayed, O.A. Scherman, Supramolecular cross-linked networks via host-guest complexation with cucurbit[8]uril. J. Am. Chem. Soc. 132, 14251–14260 (2010)

    Article  CAS  PubMed  Google Scholar 

  111. M.A. Winnik, A. Yekta, Associative polymers in aqueous solution. Rheology and rheological techniques. Curr. Opin. Colloid Interface Sci. 2(4), 424–436 (1997)

    Article  CAS  Google Scholar 

  112. P. Alexandridis, Amphiphilic copolymers and their applications. Curr. Opin. Colloid Interface Sci. 1(4), 490–501 (1996)

    Article  CAS  Google Scholar 

  113. L.M. Landoll, Nonionic polymer surfactants. J. Polym. Sci. Polym. Chem. 20, 443–455 (1982)

    Article  CAS  Google Scholar 

  114. U.P. Strauss, E.G. Jackson, Polysoaps. I. Viscosity and solubilization studies on an n-dodecyl bromide addition compound of poly-2-vinylpyridine. J. Polym. Sci. 2(5), 649–659 (1951)

    Article  Google Scholar 

  115. D.N. Schulz, J.J. Kaladas, J.J. Maurer, J. Bock, S.J. Pace, W.W. Schulz, Copolymers of acrylamide and surfactant macromonomers: synthesis and solution properties. Polymer 28, 2110–2115 (1987)

    Article  CAS  Google Scholar 

  116. D.N. Schulz, J. Bock, Synthesis and fluid properties of associating polymer systems. J. Macromol. Sci. A 28(11–12), 1235–1243 (1991)

    Article  Google Scholar 

  117. I. Lee, K. Akiyoshi, Single molecular mechanics of a cholesterol-bearing pullulan nanogel at the hydrophobic interfaces. Biomaterials 25(15), 2911–2918 (2004)

    Article  PubMed  CAS  Google Scholar 

  118. P. Sheikholeslami, B. Muirhead, D.S. Baek, H. Wang, X. Zhao, D. Sivakumaran, S. Boyd, H. Sheardown, T. Hoare, Hydrophobically-modified poly(vinyl pyrrolidone) as a physically-associative, shear-responsive ophthalmic hydrogel. Exp. Eye Res. 137, 18–31 (2015)

    Article  PubMed  CAS  Google Scholar 

  119. S. Doktorovova, E.B. Souto, Nanostructured lipid carrier-based hydrogel formulations for drug delivery: a comprehensive review. Expert Opin. Drug Deliv. 6(2), 165–176 (2009)

    Article  PubMed  CAS  Google Scholar 

  120. T.R. Hoare, D.S. Kohane, Hydrogels in drug delivery: progress and challenges. Polymer 49(8), 1993–2007 (2008)

    Article  CAS  Google Scholar 

  121. S. Malli, C. Bories, B. Pradines, K. Bouchemal, In situ forming pluronic(R) F127/chitosan hydrogel limits metronidazole transmucosal absorption. Eur. J. Pharm. Biopharm. 112, 143–147 (2017)

    Article  PubMed  CAS  Google Scholar 

  122. I.M. Diniz, C. Chen, X. Xu, S. Ansari, H.H. Zadeh, M.M. Marques, S. Shi, A. Moshaverinia, Pluronic F-127 hydrogel as a promising scaffold for encapsulation of dental-derived mesenchymal stem cells. J. Mater. Sci. Mater. Med. 26(3), 152–162 (2015)

    Article  CAS  Google Scholar 

  123. H. Namazi, M. Adeli, Novel linear–globular thermoreversible hydrogel ABA type copolymers from dendritic citric acid as the A blocks and poly(ethyleneglycol) as the B block. Eur. Polym. J. 39(7), 1491–1500 (2003)

    Article  CAS  Google Scholar 

  124. A.L.Z. Lee, S. Venkataraman, C.H. Fox, D.J. Coady, C.W. Frank, J.L. Hedrick, Y.Y. Yang, Modular composite hydrogels from cholesterol-functionalized polycarbonates for antimicrobial applications. J. Mater. Chem. B 3(34), 6953–6963 (2015)

    Article  CAS  PubMed  Google Scholar 

  125. D.A. Hoagland, S.P. Gido, S. Pudjijanto, L.W. Kleiner, S. Venkatraman, Microstructure of poly(vinyl alcohol) hydrogels produced by freeze/thaw cycling. J. Polym. Sci. B 37, 3438–3454 (1999)

    Article  Google Scholar 

  126. P. Giannouli, E.R. Morris, Cryogelation of xanthan. Food Hydrocoll. 17(4), 495–501 (2003)

    Article  CAS  Google Scholar 

  127. C.R. Martinez, B.L. Iverson, Rethinking the term “pi-stacking”. Chem. Sci. 3(7), 2191–2201 (2012)

    Article  CAS  Google Scholar 

  128. A.N. Rissanou, E. Georgilis, E. Kasotakis, A. Mitraki, V. Harmandaris, Effect of solvent on the self-assembly of dialanine and diphenylalanine peptides. J. Phys. Chem. B 117(15), 3962–3975 (2013)

    Article  PubMed  CAS  Google Scholar 

  129. C. Guo, Y. Luo, R. Zhou, G. Wei, Probing the self-assembly mechanism of diphenylalanine-based peptide nanovesicles and nanotubes. ACS Nano 6(5), 3907–3918 (2012)

    Article  PubMed  CAS  Google Scholar 

  130. V. Singh, K. Snigdha, C. Singh, S. Neeraj, A.K. Thakur, Understanding the self-assembly of Fmoc-phenylalanine to hydrogel formation. Soft Matter 11(26), 5353–5364 (2015)

    Article  PubMed  CAS  Google Scholar 

  131. A.M. Smith, R.J. Williams, C. Tang, P. Coppo, R.F. Collins, M.L. Turner, A. Saiani, R.V. Ulijn, Fmoc-diphenylalanine self assembles to a hydrogel via a novel architecture based on π–π interlocked β-sheets. Adv. Mater. 20(1), 37–41 (2008)

    Article  CAS  Google Scholar 

  132. R.J. Williams, A.M. Smith, R. Collins, N. Hodson, A.K. Das, R.V. Ulijn, Enzyme-assisted self-assembly under thermodynamic control. Nat. Nanotechnol. 4(1), 19–24 (2009)

    Article  PubMed  CAS  Google Scholar 

  133. H. Wang, C. Ren, Z. Song, L. Wang, X. Chen, Z. Yang, Enzyme-triggered self-assembly of a small molecule: a supramolecular hydrogel with leaf-like structures and an ultra-low minimum gelation concentration. Nanotechnology 21(22), 225606 (2010)

    Article  PubMed  CAS  Google Scholar 

  134. Y.-H. Fu, C.-Y. Chen, C.-T. Chen, Tuning of hydrogen peroxide-responsive polymeric micelles of biodegradable triblock polycarbonates as a potential drug delivery platform with ratiometric fluorescence signaling. Polym. Chem. 6(47), 8132–8143 (2015)

    Article  CAS  Google Scholar 

  135. R. Nozawa, H. Tanaka, W.Y. Cha, Y. Hong, I. Hisaki, S. Shimizu, J.Y. Shin, T. Kowalczyk, S. Irle, D. Kim, H. Shinokubo, Stacked antiaromatic porphyrins. Nat. Commun. 7, 1–7 (2016)

    Google Scholar 

  136. R.J. Williams, T.E. Hall, V. Glattauer, J. White, P.J. Pasic, A.B. Sorensen, L. Wassington, K.M. McLean, P.D. Currie, P.G. Hartley, The in vivo performance of an enzyme-assisted self-assembled peptide/protein hydrogel. Biomaterials 32(22), 5304–5310 (2011)

    Article  PubMed  CAS  Google Scholar 

  137. F.A. Cotton, G. Wilkinson, C.A. Murillo, M.C.A.M. Bochmann, Advanced Inorganic Chemistry, 6th edn. (Wiley, New York, 1999)

    Google Scholar 

  138. G.L. Miessler, D.A. Tarr, Inorganic Chemistry (Prentice Hall, Upper Saddle River, 1999)

    Google Scholar 

  139. N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd edn. (Butterworth-Heinemann, Oxford, 1997)

    Google Scholar 

  140. Y. Chujo, K. Sada, T. Saegus, Cobalt(III) bipyridyl-branched polyoxazoline complex as a thermally and redox reversible hydrogel. Macromolecules 26(24), 6320–6323 (1993)

    Article  CAS  Google Scholar 

  141. Y. Chujo, K. Sada, T. Saegus, Iron(II) bipyridyl-branched polyoxazoline complex as a thermally reversible hydrogel. Macromolecules 26(24), 6315–6319 (1993)

    Article  CAS  Google Scholar 

  142. G.L. Fiore, J.L. Klinkenberg, A. Pfister, C.L. Fraser, Iron tris(bipyridine) PEG hydrogels with covalent and metal coordinate cross-links. Biomacromolecules 10, 128–133 (2009)

    Article  PubMed  CAS  Google Scholar 

  143. M. Chiper, S. Hoeppener, U.S. Schubert, C.A. Fustin, J.F. Gohy, Self-assembly behavior of bis(terpyridine) and metallo-bis(terpyridine) pluronics in dilute aqueous solutions. Macromol. Chem. Phys. 211(21), 2323–2330 (2010)

    Article  CAS  Google Scholar 

  144. S.J. Buwalda, P.J. Dijkstra, J. Feijen, Poly(ethylene glycol)-poly(l-lactide) star block copolymer hydrogels crosslinked by metal-ligand coordination. J. Polym. Sci. A 50(9), 1783–1791 (2012)

    Article  CAS  Google Scholar 

  145. X. Wang, T. He, L. Yang, H. Wu, R. Zhang, Z. Zhang, R. Shen, J. Xiang, Y. Zhang, C. Wei, A Co2+-selective and chirality-sensitive supermolecular metallohydrogel with a nanofiber network skeleton. Nanoscale 8(12), 6479–6483 (2016)

    Article  PubMed  CAS  Google Scholar 

  146. W. Fang, Z. Sun, T. Tu, Novel supramolecular thixotropic metallohydrogels consisting of rare metal–organic nanoparticles: synthesis, characterization, and mechanism of aggregation. J. Phys. Chem. C 117(47), 25185–25194 (2013)

    Article  CAS  Google Scholar 

  147. X. Yan, S. Li, T.R. Cook, X. Ji, Y. Yao, B. Pollock, Y. Shi, G. Yu, J. Li, F. Huang, P.J. Stang, Hierarchical self-assembly: well-defined supramolecular nanostructures and metallohydrogels via amphiphilic discrete organoplatinum(II) metallacycles. J. Am. Chem. Soc. 135(38), 14036–14039 (2013)

    Article  PubMed  CAS  Google Scholar 

  148. X. Wang, T. He, L. Yang, H. Wu, J. Yin, R. Shen, J. Xiang, C. Wei, Designing isometrical gel precursors to identify the gelation pathway for nickel-selective metallohydrogels. Dalton Trans. 45(46), 18438–18442 (2016)

    Article  PubMed  CAS  Google Scholar 

  149. R. Laishram, U. Maitra, A stimuli-responsive metallohydrogel exhibiting cyclohexane-like hydrophobicity. Chem. Asian J. 12(12), 1267–1271 (2017)

    Article  PubMed  CAS  Google Scholar 

  150. X. Wang, C. Wei, T. He, L. Yang, H. Wu, J. Yin, R. Shen, J. Xiang, Y. Zhang, Pb2+-specific metallohydrogel based on tryptophan-derivatives: preparation, characterization, multi-stimuli responsiveness and potential applications in wastewater and soil treatment. RSC Adv. 6(84), 81341–81345 (2016)

    Article  CAS  Google Scholar 

  151. S. Chatterjee, U. Maitra, A novel strategy towards designing a CdSe quantum dot-metallohydrogel composite material. Nanoscale 8(32), 14979–14985 (2016)

    Article  PubMed  CAS  Google Scholar 

  152. J.S. Katz, J.A. Burdick, Synthetic biomaterials, in Molecular Cellular and Tissue Engineering, ed. by J.D. Bronzio, D.R. Peterson (CRC Press, Boca Raton, 2015)

    Google Scholar 

  153. P.W. Drapala, B. Jiang, Y.C. Chiu, W.F. Mieler, E.M. Brey, J.J. Kang-Mieler, V.H. Perez-Luna, The effect of glutathione as chain transfer agent in PNIPAAm-based thermo-responsive hydrogels for controlled release of proteins. Pharm. Res. 31(3), 742–753 (2014)

    Article  PubMed  CAS  Google Scholar 

  154. A.S. Sarvestani, X. He, E. Jabbari, Viscoelastic characterization and modeling of gelation kinetics of injectable in situ cross-linkable poly(lactide-co-ethylene oxide-co-fumarate) hydrogels. Biomacromolecules 8, 406–415 (2007)

    Article  PubMed  CAS  Google Scholar 

  155. M. Patenaude, N.M.B. Smeets, T. Hoare, Designing injectable, covalently cross-linked hydrogels for biomedical applications. Macromol. Rapid Commun. 35(6), 598–617 (2014)

    Article  PubMed  CAS  Google Scholar 

  156. G. Hamdi, G. Ponchel, D. Duchene, Formulation of epichlorohydrin cross-linked starch microspheres. J. Microencapsul. 18(3), 373–383 (2001)

    Article  PubMed  CAS  Google Scholar 

  157. J. Wojtasz, J. Carlstedt, P. Fyhr, V. Kocherbitov, Hydration and swelling of amorphous cross-linked starch microspheres. Carbohydr. Polym. 135, 225–233 (2016)

    Article  PubMed  CAS  Google Scholar 

  158. L.X. Gao, J.I. Chen, X.W. Han, S.X. Yan, Y. Zhang, W.Q. Zhang, Z.W. Gao, Electro-response characteristic of starch hydrogel crosslinked with glutaraldehyde. J. Biomater. Sci. Polym. Ed. 26(9), 545–557 (2015)

    Article  PubMed  CAS  Google Scholar 

  159. K. Pal, A.K. Banthia, D.K. Majumdar, Effect of heat treatment of starch on the properties of the starch hydrogels. Mater. Lett. 62(2), 215–218 (2008)

    Article  CAS  Google Scholar 

  160. A. Hassan, M.B.K. Miazi, A. Hussain, S. Farrukh, T. Ahmad, Development of anti-bacterial PVA/starch based hydrogel membrane for wound dressing. J. Polym. Environ. (2017). https://doi.org/10.1007/s10924-017-0944-2

  161. Z. Malekpour, M. Hojatoleslamy, H. Molvai, J. Keramat, A.G. Yazdi, M.A. Shariati, Effects of cross-linking modification with phosphoryl chloride (POCl3) on physiochemical properties of barley starch. Potravinarstvo 10(1), 195–201 (2016)

    Google Scholar 

  162. L. Mirmoghtadaie, M. Kadivar, M. Shahedi, Effects of cross-linking and acetylation on oat starch properties. Food Chem. 116(3), 709–713 (2009)

    Article  CAS  Google Scholar 

  163. S.H. Koo, K.Y. Lee, H.G. Lee, Effect of cross-linking on the physicochemical and physiological properties of corn starch. Food Hydrocoll. 24(6–7), 619–625 (2010)

    Article  CAS  Google Scholar 

  164. F.M. Carbinatto, A.D. de Castro, B.S. Cury, A. Magalhaes, R.C. Evangelista, Physical properties of pectin-high amylose starch mixtures cross-linked with sodium trimetaphosphate. Int. J. Pharm. 423(2), 281–288 (2012)

    Article  PubMed  CAS  Google Scholar 

  165. K. Woo, P.A. Seib, Cross-linking of wheat starch and hydroxypropylated wheat starch in alkaline slurry with sodium trimetaphosphate. Carbohydr. Polym. 33, 263–271 (1997)

    Article  CAS  Google Scholar 

  166. Y.-Y. Fang, L.J. Wang, D. Li, B.Z. Li, B. Bhandari, X.D. Chen, Z.H. Mao, Preparation of crosslinked starch microspheres and their drug loading and releasing properties. Carbohydr. Polym. 74(3), 379–384 (2008)

    Article  CAS  Google Scholar 

  167. M.W. Rutenberg, D. Solarek, Starch derivatives: production and uses, in Starch: Chemistry and Technology, ed. R.L. Whistler (Academic, Orlando, 1984)

    Google Scholar 

  168. G.T. Hermanson, Bioconjugate Techniques, 3rd edn. (Academic, London, 2013)

    Google Scholar 

  169. I. Mironi-Harpaz, D.Y. Wang, S. Venkatraman, D. Seliktar, Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity. Acta Biomater. 8(5), 1838–1848 (2012)

    Article  PubMed  CAS  Google Scholar 

  170. J. Baier Leach, K.A. Bivens, C.W. Patrick, C.E. Schmidt, Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnol. Bioeng. 82(5), 578–589 (2003)

    Article  PubMed  CAS  Google Scholar 

  171. J. Hedin, Å. Östlund, M. Nydén, UV induced cross-linking of starch modified with glycidyl methacrylate. Carbohydr. Polym. 79(3), 606–613 (2010)

    Article  CAS  Google Scholar 

  172. M. Diolosa, I. Donati, G. Turco, M. Cadenaro, R. Di Lenarda, L. Breschi, S. Paoletti, Use of methacrylate-modified chitosan to increase the durability of dentine bonding systems. Biomacromolecules 15(12), 4606–4613 (2014)

    Article  PubMed  CAS  Google Scholar 

  173. J. Han, K. Wang, D. Yang, J. Nie, Photopolymerization of methacrylated chitosan/PNIPAAm hybrid dual-sensitive hydrogels as carrier for drug delivery. Int. J. Biol. Macromol. 44(3), 229–235 (2009)

    Article  PubMed  CAS  Google Scholar 

  174. M.F. Akhtar, M. Hanif, N.M. Ranjha, Methods of synthesis of hydrogels … a review. Saudi Pharm. J. 24(5), 554–559 (2016)

    Article  PubMed  Google Scholar 

  175. K.E. Pfitzner, J.E. Mofatt, Sulfoxide-carbodiimide reactions. I. A facile oxidation of alcohols. J. Am. Chem. Soc. 87(24), 5661–5670 (1965)

    Article  CAS  Google Scholar 

  176. T. Iwasawa, P. Wash, C. Gibson, J. Rebek, Reaction of an introverted carboxylic acid with carbodiimide. Tetrahedron 63(28), 6506–6511 (2007)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Y. Sekine, Y. Moritani, T. Ikeda-Fukazawa, Y. Sasaki, K. Akiyoshi, A hybrid hydrogel biomaterial by nanogel engineering: bottom-up design with nanogel and liposome building blocks to develop a multidrug delivery system. Adv. Healthc. Mater. 1(6), 722–728 (2012)

    Article  PubMed  CAS  Google Scholar 

  178. L. Capretto, S. Focaroli, X.L. Zhang, S. Mazzitelli, C. Nastruzzi, Production of low cost microfluidic chips by a “shrinking” approach: applications to emulsion and microparticle production. J. Control. Release 148(1), 26–28 (2010)

    Article  CAS  Google Scholar 

  179. A.M. Kloxin, C.J. Kloxin, C.N. Bowman, K.S. Anseth, Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv. Mater. 22(31), 3484–3494 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. R. Censi, P.J. Fieten, P. di Martino, W.E. Hennink, T. Vermonden, In situ forming hydrogels by tandem thermal gelling and Michael addition reaction between thermosensitive triblock copolymers and thiolated hyaluronan. Macromolecules 43(13), 5771–5778 (2010)

    Article  CAS  Google Scholar 

  181. J. Kim, Y. Park, G. Tae, K.B. Lee, C.M. Hwang, S.J. Hwang, I.S. Kim, I. Noh, K. Sun, Characterization of low-molecular-weight hyaluronic acid-based hydrogel and differential stem cell responses in the hydrogel microenvironments. J. Biomed. Mater. Res. A 88(4), 967–975 (2009)

    Article  PubMed  CAS  Google Scholar 

  182. C. Chen, L. Wang, L. Deng, R. Hu, A. Dong, Performance optimization of injectable chitosan hydrogel by combining physical and chemical triple crosslinking structure. J. Biomed. Mater. Res. A 101(3), 684–693 (2013)

    Article  PubMed  CAS  Google Scholar 

  183. J.W. DuBose, C. Cutshall, A.T. Metters, Controlled release of tethered molecules via engineered hydrogel degradation: model development and validation. J. Biomed. Mater. Res. A 74(1), 104–116 (2005)

    Article  PubMed  CAS  Google Scholar 

  184. S. Cai, Y. Liu, X. Zheng Shu, G.D. Prestwich, Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor. Biomaterials 26(30), 6054–6067 (2005)

    Article  PubMed  CAS  Google Scholar 

  185. N.J. Darling, Y.S. Hung, S. Sharma, T. Segura, Controlling the kinetics of thiol-maleimide Michael-type addition gelation kinetics for the generation of homogenous poly(ethylene glycol) hydrogels. Biomaterials 101, 199–206 (2016)

    Article  PubMed  CAS  Google Scholar 

  186. S. Allazetta, T.C. Hausherr, M.P. Lutolf, Microfluidic synthesis of cell-type-specific artificial extracellular matrix hydrogels. Biomacromolecules 14(4), 1122–1131 (2013)

    Article  PubMed  CAS  Google Scholar 

  187. S.-C. Han, W.D. He, J. Li, L.Y. Li, X.L. Sun, B.Y. Zhang, T.T. Pan, Reducible polyethylenimine hydrogels with disulfide crosslinkers prepared by michael addition chemistry as drug delivery carriers: synthesis, properties, and in vitro release. J. Polym. Sci. A 47(16), 4074–4082 (2009)

    Article  CAS  Google Scholar 

  188. Y. Liang, T.W. Jensen, E.J. Roy, C. Cha, R.J. Devolder, R.E. Kohman, B.Z. Zhang, K.B. Textor, L.A. Rund, L.B. Schook, Y.W. Tong, H. Kong, Tuning the non-equilibrium state of a drug-encapsulated poly(ethylene glycol) hydrogel for stem and progenitor cell mobilization. Biomaterials 32(7), 2004–2012 (2011)

    Article  PubMed  CAS  Google Scholar 

  189. J.L. Court, R.P. Redman, J.H. Wang, S.W. Leppard, V.J. Obyrne, S.A. Small, A.L. Lewis, S.A. Jones, P.W. Stratford, A novel phosphorylcholine-coated contact lens for extended wear use. Biomaterials 22, 3261–3272 (2001)

    Article  PubMed  CAS  Google Scholar 

  190. A.T. Cameron, M.S. Hollenberg, The relative toxicity of halides and certain other anions. J. Gener. Physiol. 4(4), 411–422 (1921)

    Article  Google Scholar 

  191. G.-Z. Li, R.K. Randev, A.H. Soeriyadi, G. Rees, C. Boyer, Z. Tong, T.P. Davis, C.R. Becer, D.M. Haddleton, Investigation into thiol-(meth)acrylate Michael addition reactions using amine and phosphine catalysts. Polym. Chem. 1(8), 1196–1204 (2010)

    Article  CAS  Google Scholar 

  192. Y. Yu, C. Deng, F. Meng, Q. Shi, J. Feijen, Z. Zhong, Novel injectable biodegradable glycol chitosan-based hydrogels crosslinked by Michael-type addition reaction with oligo(acryloyl carbonate)-b-poly(ethylene glycol)-b-oligo(acryloyl carbonate) copolymers. J. Biomed. Mater. Res. A 99(2), 316–326 (2011)

    Article  PubMed  CAS  Google Scholar 

  193. Y. Dong, A.O. Saeed, W. Hassan, C. Keigher, Y. Zheng, H. Tai, A. Pandit, W. Wang, “One-step” preparation of thiol-ene clickable PEG-based thermoresponsive hyperbranched copolymer for in situ crosslinking hybrid hydrogel. Macromol. Rapid Commun. 33(2), 120–126 (2012)

    Article  PubMed  CAS  Google Scholar 

  194. M. Koritzinsky, F. Levitin, T. van den Beucken, R.A. Rumantir, N.J. Harding, K.C. Chu, P.C. Boutros, I. Braakman, B.G. Wouters, Two phases of disulfide bond formation have differing requirements for oxygen. J. Cell Biol. 203(4), 615–627 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. K.P. Vercruysse, D.M. Marecak, J.F. Marecek, G.D. Prestwich, Synthesis and in vitro degradation of new polyvalent hydrazide cross-linked hydrogels of hyaluronic acid. Bioconjug. Chem. 8, 686–694 (1997)

    Article  PubMed  CAS  Google Scholar 

  196. F. Rubino, Toxicity of glutathione-binding metals: a review of targets and mechanisms. Toxics 3(1), 20–62 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. D.-C. Wu, J.-L. Xian, Y.-L. Wu, C.-L. Lay, Y. Liu, ‘Living’ controlled in situ gelling systems: thiol-disulfide exchange method toward tailor-made biodegradable hydrogels. J. Am. Chem. Soc. 132, 15140–15143 (2010)

    Article  PubMed  CAS  Google Scholar 

  198. S.Y. Choh, D. Cross, C. Wang, Facile synthesis and characterization of disulfide-cross-linked hyaluronic acid hydrogels for protein delivery and cell encapsulation. Biomacromolecules 12(4), 1126–1136 (2011)

    Article  PubMed  CAS  Google Scholar 

  199. H. Zhang, A. Qadeer, W. Chen, In situ gelable interpenetrating double network hydrogel formulated from binary components: thiolated chitosan and oxidized dextran. Biomacromolecules 12(5), 1428–1437 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. G. Godeau, T. Darmanin, F. Guittard, Switchable surfaces from highly hydrophobic to highly hydrophilic using covalent imine bonds. J. Appl. Polym. Sci. 133, 43130 (2016). https://doi.org/10.1002/app.43130

    Article  CAS  Google Scholar 

  201. K.C. Leung, S. Xuan, C.M. Lo, Reversible switching between hydrophilic and hydrophobic superparamagnetic iron oxide microspheres via one-step supramolecular dynamic dendronization: exploration of dynamic wettability. ACS Appl. Mater. Interfaces 1(9), 2005–2012 (2009)

    Article  PubMed  CAS  Google Scholar 

  202. E.H. Vernot, J.D. MacEwen, R.H. Bruner, C.C. Haun, E.R. Kinkead, D.E. Prentice, A. Hall III, R.E. Schmidt, R.L. Eason, G.B. Hubbard, J.T. Young, Long-term inhalation toxicity of hydrazine. Fundam. Appl. Toxicol. 5, 1050–1064 (1984)

    Article  Google Scholar 

  203. E. Bakaic, N.M.B. Smeets, M. Badv, M. Dodd, O. Barrigar, E. Siebers, M. Lawlor, H. Sheardown, T. Hoare, Injectable and degradable poly(oligoethylene glycol methacrylate) hydrogels with tunable charge densities as adhesive peptide-free cell scaffolds. ACS Biomater Sci. Eng. (2017). https://doi.org/10.1021/acsbiomaterials.7b00397

  204. P. Bulpitt, D. Aeschlimann, New strategy for chemical modification of hyaluronic acid: preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. In Situ Polymerizable Hyaluronic Acid Hydrogel Materials. J. Biomed. Mater. Res. 47(2), 152–169 (1999)

    Google Scholar 

  205. J.M. Garver, S. Gronert, V.M. Bierbaum, Experimental validation of the alpha-effect in the gas phase. J. Am. Chem. Soc. 133(35), 13894–13897 (2011)

    Article  PubMed  CAS  Google Scholar 

  206. K.Y. Lee, K.H. Bouhadir, D.J. Mooney, Degradation behavior of covalently cross-linked poly(aldehyde guluronate) hydrogels. Macromolecules 33, 97–101 (2000)

    Article  CAS  Google Scholar 

  207. M. Vetrik, M. Hruby, M. Pradny, J. Michaelek, A new type of irreversibly reductively biodegradable hydrogel. Polym. Degrad. Stab. 96(5), 892–897 (2011)

    Article  CAS  Google Scholar 

  208. A. Dirksen, P.E. Dawson, Rapid oxime and hydrazone ligations with aromatic aldehydes for biomolecular labeling. Bioconjug. Chem. 19, 2543–2548 (2008)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. M. Patenaude, S. Campbell, D. Kinio, T. Hoare, Tuning gelation time and morphology of injectable hydrogels using ketone-hydrazide cross-linking. Biomacromolecules 15(3), 781–790 (2014)

    Article  PubMed  CAS  Google Scholar 

  210. J. Kalia, R.T. Raines, Hydrolytic stability of hydrazones and oximes. Angew. Chem. Int. Ed. 47(39), 7523–7526 (2008)

    Article  CAS  Google Scholar 

  211. G.N. Grover, H.D. Maynard, Protein-polymer conjugates: synthetic approaches by controlled radical polymerizations and interesting applications. Curr. Opin. Chem. Biol. 14(6), 818–827 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. T. Sladek, J. Filkuka, S. Dolezel, J. Vasku, B. Hartmannova, J. Travnickova, The border zone of the early myocardial infarction in dogs; its characteristics and viability. Basic Res. Cardiol. 79, 344–349 (1984)

    Article  PubMed  CAS  Google Scholar 

  213. S.A. Stewart, M. Backholm, N.A.D. Burke, H.D.H. Stover, Cross-linked hydrogels formed through Diels-Alder coupling of furan- and maleimide-modified poly(methyl vinyl ether-alt-maleic acid). Langmuir 32(7), 1863–1870 (2016)

    Article  PubMed  CAS  Google Scholar 

  214. H.-L. Wei, J. Yang, H.J. Chu, Z. Yang, C.C. Ma, K. Yao, Diels-Alder reaction in water for the straightforward preparation of thermoresponsive hydrogels. J. Appl. Polym. Sci. 120(2), 974–980 (2011)

    Article  CAS  Google Scholar 

  215. J. Zhang, Y. Niu, C. Huang, L. Xiao, Z. Chen, K. Yang, Y. Wang, Self-healable and recyclable triple-shape PPDO–PTMEG co-network constructed through thermoreversible Diels–Alder reaction. Polym. Chem. 3(6), 1390–1393 (2012)

    Article  CAS  Google Scholar 

  216. C.M. Nimmo, S.C. Owen, M.S. Shoichet, Diels-Alder click cross-linked hyaluronic acid hydrogels for tissue engineering. Biomacromolecules 12(3), 824–830 (2011)

    Article  PubMed  CAS  Google Scholar 

  217. H. Tan, J.P. Rubin, K.G. Marra, Direct synthesis of biodegradable polysaccharide derivative hydrogels through aqueous Diels-Alder chemistry. Macromol. Rapid Commun. 32(12), 905–911 (2011)

    Article  PubMed  CAS  Google Scholar 

  218. H.-L. Wei, K. Yao, Z. Yang, H.J. Chu, J. Zhu, C.C. Ma, Z.X. Zhao, Preparation of thermosensitive hydrogels by means of tandem physical and chemical crosslinking. Macromol. Res. 19(3), 294–299 (2011)

    Article  CAS  Google Scholar 

  219. R. Huisgen, 1,3-dipolar cycloadditions past and future. Angew. Chem. Int. Ed. 2(10), 565–632 (1963)

    Article  Google Scholar 

  220. Q. Wang, T.R. Chan, R. Hilgraf, V.V. Fokin, K.B. Sharpless, M.G. Finn, Bioconjugation by copper(I)-catalyzed Azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 125, 3192–3193 (2002)

    Article  CAS  Google Scholar 

  221. D.A. Ossipov, J. Hilborn, Poly(vinyl alcohol)-based hydrogels formed by “click chemistry”. Macromolecules 39, 1709–1718 (2006)

    Article  CAS  Google Scholar 

  222. X. Su, L. Bu, H. Dong, S. Fu, R. Zhuo, Z. Zhong, An injectable PEG-based hydrogel synthesized by strain-promoted alkyne–azide cycloaddition for use as an embolic agent. RSC Adv. 6(4), 2904–2909 (2016)

    Article  CAS  Google Scholar 

  223. V. Crescenzi, L. Cornelio, C.D. Meo, S. Nardecchia, R. Lamanna, Novel hydrogels via click chemistry: synthesis and potential biomedical applications. Biomacromolecules 8, 1844–1850 (2007)

    Article  PubMed  CAS  Google Scholar 

  224. A. Koschella, M. Hartlieb, T. Heinze, A “click-chemistry” approach to cellulose-based hydrogels. Carbohydr. Polym. 86(1), 154–161 (2011)

    Article  CAS  Google Scholar 

  225. X. Hu, D. Li, F. Zhou, C. Gao, Biological hydrogel synthesized from hyaluronic acid, gelatin and chondroitin sulfate by click chemistry. Acta Biomater. 7(4), 1618–1626 (2011)

    Article  PubMed  CAS  Google Scholar 

  226. M. van Dijk, Synthesis and characterization of biodegradable peptide-based polymers prepared by microwave-assisted click chemistry. Biomacromolecules 9, 2834–2843 (2008)

    Article  PubMed  CAS  Google Scholar 

  227. S.M. Hodgson, E. Bakaic, S.A. Stewart, T. Hoare, A. Adronov, Properties of poly(ethylene glycol) hydrogels cross-linked via strain-promoted alkyne-azide cycloaddition (SPAAC). Biomacromolecules 17(3), 1093–1100 (2016)

    Article  PubMed  CAS  Google Scholar 

  228. Y.A. Mørch, I. Donati, B.L. Strand, G. Skjak-Braek, Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 7, 1471–1480 (2006)

    Article  PubMed  CAS  Google Scholar 

  229. M.M. Flake, P.K. Hguyen, R.A. Scott, L.R. Vandiverm, R.K. Willits, D.L. Elbert, Poly(ethylene glycol) microparticles produced by precipitation polymerization in aqueous solution. Biomacromolecules 12(3), 844–850 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. O. Khanna, J.C. Larson, M.L. Mova, E.C. Opara, E.M. Brey, Generation of alginate microspheres for biomedical applications. J. Vis. Exp. 66, e3388 (2012). https://doi.org/10.3791/3388

    Article  CAS  Google Scholar 

  231. B.B. Lee, P. Ravindra, E.S. Chan, Size and shape of calcium alginate beads produced by extrusion dripping. Chem. Eng. Tech. 36(10), 1627–1642 (2013)

    CAS  Google Scholar 

  232. E.-S. Chan, Preparation of ca-alginate beads containing high oil content: influence of process variables on encapsulation efficiency and bead properties. Carbohydr. Polym. 84(4), 1267–1275 (2011)

    Article  CAS  Google Scholar 

  233. Y. Xu, C. Zhan, L. Fan, L. Wang, H. Zheng, Preparation of dual crosslinked alginate-chitosan blend gel beads and in vitro controlled release in oral site-specific drug delivery system. Int. J. Pharm. 336(2), 329–337 (2007)

    Article  PubMed  CAS  Google Scholar 

  234. D. Saeki, S. Sugiura, T. Kanamori, S. Sato, S. Ichikawa, Formation of monodisperse calcium alginate microbeads by rupture of water-in-oil-in-water droplets with an ultra-thin oil phase layer. Lab. Chip. 10(17), 2292–2295 (2010)

    Article  PubMed  CAS  Google Scholar 

  235. W.H. Tan, S. Takeuchi, Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv. Mater. 19(18), 2696–2701 (2007)

    Article  CAS  Google Scholar 

  236. K. Liu, H.J. Ding, J. Liu, Y. Chen, X.Z. Zhao, Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device. Langmuir 22, 9453–9457 (2006)

    Article  PubMed  CAS  Google Scholar 

  237. T.R. Arunraj, N. Sanoj Rejinold, N.A. Kumar, R. Jayakumar, Doxorubicin-chitin-poly(caprolactone) composite nanogel for drug delivery. Int. J. Biol. Macromol. 62, 35–43 (2013)

    Article  PubMed  CAS  Google Scholar 

  238. J. Xu, D.H. Wong, J.D. Bryne, K. Chen, C. Bowerman, J.M. DeSimone, Future of the particle replication in nonwetting templates (PRINT) technology. Angew. Chem. Int. Ed. Engl. 52(26), 6580–6589 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. L.W. Chen, B.Z. Yang, M.L. Wu, Synthesis and kinetics of microgel in inverse emulsion polymerization of acrylamide. Progr. Org. Coat. 31(4), 393–399 (1997)

    Article  CAS  Google Scholar 

  240. S.M. Joscelyne, G. Trägårdh, Membrane emulsification – a literature review. J. Membr. Sci. 169, 107–117 (2000)

    Article  CAS  Google Scholar 

  241. P. Chibante, R.H. Pelton, Preparation of aqueous latices with N-isopropylacrylamide. Colloids Surf. 20, 241–256 (1986)

    Google Scholar 

  242. M. Kashiwabara, K. Fujimoto, H. Kawaguchi, Preparation of monodisperse, reactive hydrogel microspheres and their amphoterization. Colloid Polym. Sci. 273, 339–345 (1995)

    Article  CAS  Google Scholar 

  243. S.J. Rendevski, A.N. Andonovski, Reaggregation of sodium alginate microgel structures after shear-induced deaggregation at filtering. Polym. Bull. 54(1–2), 93–100 (2005)

    Article  CAS  Google Scholar 

  244. N. Morimoto, S. Hirano, H. Takahashi, S. Loethen II, D.H. Thompson, K. Akitoshi, Self-assembled pH-sensitive cholesteryl pullulan nanogel as a protein delivery vehicle. Biomacromolecules 14(1), 56–63 (2013)

    Article  PubMed  CAS  Google Scholar 

  245. W. McPhee, K.C. Tam, R. Pelton, Poly(N-isopropylacrylamide) latices prepared with sodium dodecyl sulfate. J. Colloid Interface Sci. 156, 24–30 (1993)

    Article  CAS  Google Scholar 

  246. C. Mandrycky, Z. Wang, K. Kim, D.K. Kim, 3D bioprinting for engineering complex tissues. Biotechnol. Adv. 34(4), 422–434 (2016)

    Article  PubMed  CAS  Google Scholar 

  247. K. Pataky, T. Braschler, A. Negro, P. Renaud, Microdrop printing of hydrogel bioinks into 3D tissue-like geometries. Adv. Mater. 24(3), 391–396 (2012)

    Article  PubMed  CAS  Google Scholar 

  248. L.A. Hockaday, K.H. Kang, N.W. Colangelo, P.Y. Cheung, B. Duan, E. Malone, J. Wu, L.N. Girardi, L.J. Bonassar, H. Lipson, C.C. Chu, J.T. Butcher, Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 4(3), 035005 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  249. F. Xu, H. Sheardown, T. Hoare, Reactive electrospinning of degradable poly(oligoethylene glycol methacrylate)-based nanofibrous hydrogel networks. Chem. Commun. 52(7), 1451–1454 (2016)

    Article  CAS  Google Scholar 

  250. R. Lalani, L. Liu, Electrospun zwitterionic poly(sulfobetaine methacrylate) for nonadherent, superabsorbent, and antimicrobial wound dressing applications. Biomacromolecules 13(6), 1853–1863 (2012)

    Article  PubMed  CAS  Google Scholar 

  251. J.B. Lee, X. Wang, S. Faley, B. Baer, D.A. Balikov, H.J. Sung, L.M. Bellan, Development of 3D microvascular networks within gelatin hydrogels using thermoresponsive sacrificial microfibers. Adv. Healthc. Mater. 5(7), 781–785 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  252. T.J. Hinton, Q. Jallerat, R.N. Palchesko, J.H. Park, M.S. Grodzicki, H.J. Shue, M.H. Ramadan, A.R. Hudson, A.W. Feinberg, Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv. 1(9), e1500758 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  253. I.T. Ozbolat, M. Hospodiuk, Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76, 321–343 (2016)

    Article  PubMed  CAS  Google Scholar 

  254. Y. He, F.F. Yang, H.M. Zho, Q. Gao, B. Xia, J.Z. Fu, Research on the printability of hydrogels in 3D bioprinting. Sci. Rep. 6, 29977 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  255. S.H. Kim, S.-H. Kim, S. Nair, E. Moore, Reactive electrospinning of cross-linked poly(2-hydroxyethyl methacrylate) nanofibers and elastic properties of individual hydrogel nanofibers in aqueous solutions. Macromolecules 38, 3719–3723 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd Hoare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Majcher, M.J., Hoare, T. (2018). Hydrogel Synthesis and Design. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Biopolymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-92066-5_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92066-5_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92066-5

  • Online ISBN: 978-3-319-92066-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics