Skip to main content

Blood Compatible Polymers

  • Living reference work entry
  • First Online:
Functional Biopolymers

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

  • 235 Accesses

Abstract

Medical devices made from polymeric materials come in contact with blood in a wide range of applications, including stents, artificial vascular grafts, hemodialysis membranes, catheters, and sutures, among others. In this chapter, an overview of the ongoing investigations with blood compatible polymers is provided. A summary of polymers used in blood contacting devices will be given, followed by details focusing on each of the types of polymers that are most commonly used. Furthermore, a description of the efforts made in improving the blood compatibility of these polymers will be provided, as most synthetic polymers are required to go through some level of modification in order to be used in blood contacting devices. Most modification strategies address the changes in surface properties of these polymers with the aim of controlling the interactions between blood components and the polymeric surface. Among these modification techniques, use of bioinert molecules, bioactive molecules, and a combination of the two molecules are the subject of most studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ACG:

Albumin-coated vascular graft

AFM:

Atomic force microscopy

APTT:

Activated partial thromboplastin time

ATBC:

Acetyl-tri-n-butyryl-citrate

ATH:

Antithrombin-heparin

BD:

Butanediol

BSA:

Bovine serum albumin

BTHC:

Butyryl-tri-n-hexyl-citrate

Bz-β-CD:

2,3,6-per-O-benzoyl-β-cyclodextrin

CLA:

Conjugated linoleic acid

COL:

Collagen

COMGHA:

Castor-oil-mono- hydrogenated acetates

DEHA:

Di(2-ethylhexyl)-adipate

DEHP:

Di(2-ethylhexyl)phthalate

DEHT:

Di(2-ethylhexyl) terephthalate

DINCH:

Cyclohexane 1,2-dicarboxylate

DINP:

Di-iso-nonyl phthalate

EC(s):

Endothelial cell(s)

ECC:

Extracorporeal circulation

ED:

Ethylenediamine

EPCs:

Endothelial progenitor cells

EVA:

Ethylene vinyl alcohol copolymer

GMA:

Glycidyl methacrylate

HSA:

Human serum albumin

LMWH:

Low-molecular-weight heparin

LVAD:

Left ventricular assist device

MDI:

Methylene-bis-phenyldiisocyanate

MPC:

2-methacryloyloxethyl phosphorylcholine

MW(s):

Molecular weight(s)

NO:

Nitric oxide

PAN:

Polyacrylonitrile

PANCHEMA:

Poly(acrylonitrile-co-HEMA)

PANCMA:

Poly(acrylonitrile-co-maleic anhydride)

PB:

Polybutadiene

PDMS:

Polydimethylsiloxane

PEG:

Polyethylene glycol

PEGMA:

Poly(ethylene glycol) methacrylate

PEO:

Polyethylene oxide

PES:

Polyethersulfone

PET:

Polyethylene terephthalate

PGA:

Polyglycolide

PLA:

Polylactide

PLG:

Poly(lactide-co-glycolide)

PMEA:

Poly(2-methoxyethyl acrylate)

PMMA:

Polymethylmethacrylate

POC:

Poly(1,8-octanediol-co-citrate)

Poly(HEMA):

Poly hydroxyl-ethylmethacrylate

Poly(MPC):

Poly(2-methacryloyloxyethyl phosphorylcholine)

Poly(OEGMA):

Poly(oligo(ethylene glycol) methacrylate)

PP:

Polypropylene

PPO:

Poly(propylene oxide)

PRT:

Plasma recalcification time

PSF:

Polysulfone

PTFE (ePTFE):

Polytetrafluoroethylene

PTMO:

Polytetramethylene oxide

PU:

Polyurethane

PUs:

Polyurethanes

PUU:

Polyurethaneurea

PVA:

Poly(vinyl alcohol)

PVC:

Polyvinylchloride

PVDF:

Polyvinylidine fluoride

PVP:

Polyvinylpyrrolidone

rHir:

Recombinant hirudin

SI-ATRP:

Surface initiated atom transfer radical polymerization

SNAP:

S-nitroso-N-acetylpenicillamine

SPU:

Segmented polyurethane

SPUs:

Segmented polyurethanes

Syn:

Syndiotactic

TAT:

Thrombin-antithrombin

TETM:

Tri-2-ethylhexyl trimellitate

TOTM:

Tris-octyl tri-mellitate

t-PA:

Tissue plasminogen activator

UFH:

Unfractionated heparin

References

  1. E.N.K. Chan, P. Huynh, T.T. Nguyen, in An Investigation on the Effects of Chamber Wall’s Elasticity on Blood Flow in a LVAD Pump. 19th Australasian Fluid Mechanics Conference, Melbourne (2014)

    Google Scholar 

  2. A.Z. Okkema, T.G. Grasel, R.J. Zdrahala, D.D. Solomon, S.L. Cooper, Bulk, surface, and blood-contacting properties of polyetherurethanes modified with polyethylene oxide. J. Biomater. Sci. Polym. Ed. 1, 43–62 (1989)

    Article  CAS  PubMed  Google Scholar 

  3. A. Takahara, A.Z. Okkema, S.L. Cooper, A.J. Coury, Effect of surface hydrophilicity on ex vivo blood compatibility of segmented polyurethanes. Biomaterials 12, 324–334 (1991)

    Article  CAS  PubMed  Google Scholar 

  4. A.Z. Okkema, D.J. Fabrizius, T.G. Grasel, S.L. Cooper, R.J. Zdrahala, Bulk, surface and blood-contacting properties of polyether polyurethanes modified with polydimetnylsiloxane macroglycols. Biomaterials 10, 23–32 (1989)

    Article  CAS  PubMed  Google Scholar 

  5. A. Takahara, J. Tashita, T. Kajiyama, M. Takayanagi, W.J. MacKnight, Microphase separated structure, surface composition and blood compatibility of segmented poly(urethaneureas) with various soft segment component. Polymer 26, 987–996 (1985)

    Article  CAS  Google Scholar 

  6. T.G. Grasel, S.L. Cooper, Properties and biological inteactions of polyurethane anionomers: Effect of sulfonate incorporation. J. Biomed. Mater. Res. 23, 311–338 (1989)

    Article  CAS  PubMed  Google Scholar 

  7. A.Z. Okkema, S.A. Visser, S.L. Cooper, Physical and blood-contacting properties of polyurethanes based on a sulfonic acid-containing diol chain extender. J. Biomed. Mater. Res. 25, 1371–1395 (1991)

    Article  CAS  PubMed  Google Scholar 

  8. J.H. Silver, J.W. Marchant, S.L. Cooper, Effect of polyol type on the physical properties and thrombogenicity of sulfonate-containing polyurethanes. J. Biomed. Mater. Res. 27, 1443–1457 (1993)

    Article  CAS  PubMed  Google Scholar 

  9. J.P. Santerre, P. Ten Hove, N.H. VanderKamp, J.L. Brash, Effect of sulfonation of segmented polyurethanes on the transient adsorption of fibrinogen from plasma: Possible correlation with anticoagulant behavior. J. Biomed. Mater. Res. 26, 39–57 (1992)

    Article  CAS  PubMed  Google Scholar 

  10. G.A. Skarja, J.L. Brash, Physicochemical properties and platelet interactions of segmented polyurethanes containing sulfonate groups in the hard segment. J. Biomed. Mater. Res. 34, 439–455 (1997)

    Article  CAS  PubMed  Google Scholar 

  11. K.Y. Chen, J.F. Kuo, C.Y. Chen, Synthesis, characterization and platelet adhesion studies of novel ion-containing aliphatic polyurethanes. Biomaterials 21, 161–171 (2000)

    Article  PubMed  Google Scholar 

  12. L. Poussard, F. Burel, J.P. Couvercelle, O. Lesouhaitier, Y. Merhi, M. Tabrizian, C. Bunel, In vitro thrombogenicity investigation of new water-dispersible polyurethane anionomers bearing carboxylate groups. J. Biomater. Sci. Polym. Ed. 16, 335–351 (2005)

    Article  CAS  PubMed  Google Scholar 

  13. S. Alibeik, A. Rizkalla, K. Mequanint, The effect of thiolation on the mechanical and protein adsorption properties of polyurethanes. Eur. Polym. J. 43, 1415–1427 (2007)

    Article  CAS  Google Scholar 

  14. S. Alibeik, H. Sheardown, A.S. Rizkalla, K. Mequanint, Protein adsorption and platelet adhesion onto ion-containing polyurethanes. J. Biomater. Sci. Polym. Ed. 18, 1195–1210 (2007)

    Article  CAS  PubMed  Google Scholar 

  15. D.K. Han, K.D. Park, G.H. Ryu, U.Y. Kim, B.G. Min, Y.H. Kim, Plasma protein adsorption to sulfonated poly(ethylene oxide)-grafted polyurethane surface. J. Biomed. Mater. Res. 30, 23–30 (1996)

    Article  CAS  PubMed  Google Scholar 

  16. D.K. Han, G.H. Ryu, K.D. Park, S.Y. Jeong, Y.H. Kim, B.G. Min, Adsorption behavior of fibrinogen to sulfonated polyethyleneoxide-grafted polyurethane surfaces. J. Biomater. Sci. Polym. Ed. 4, 401–413 (1993)

    Article  CAS  PubMed  Google Scholar 

  17. J.G. Archambault, J.L. Brash, Protein repellent polyurethane-urea surfaces by chemical grafting of hydroxyl-terminated poly(ethylene oxide): Effects of protein size and charge. Colloids Surf. B Biointerfaces 33, 111–120 (2004)

    Article  CAS  Google Scholar 

  18. J.G. Archambault, J.L. Brash, Protein resistant polyurethane surfaces by chemical grafting of PEO: Amino-terminated PEO as grafting reagent. Colloids Surf. B Biointerfaces 39, 9–16 (2004)

    Article  CAS  PubMed  Google Scholar 

  19. H. Chen, X. Hu, Y. Zhang, D. Li, Z. Wu, T. Zhang, Effect of chain density and conformation on protein adsorption at PEG-grafted polyurethane surfaces. Colloids Surf. B Biointerfaces 61, 237–243 (2008)

    Article  CAS  PubMed  Google Scholar 

  20. Z. Jin, W. Feng, K. Beisser, S. Zhu, H. Sheardown, J.L. Brash, Protein-resistant polyurethane prepared by surface-initiated atom transfer radical graft polymerization (ATRgP) of water-soluble polymers: Effects of main chain and side chain lengths of grafts. Colloids Surf. B Biointerfaces 70, 53–59 (2009)

    Article  CAS  PubMed  Google Scholar 

  21. C. Wang, C. Ma, C. Mu, W. Lin, A novel approach for synthesis of zwitterionic polyurethane coating with protein resistance. Langmuir 30, 12860–12867 (2014)

    Article  CAS  PubMed  Google Scholar 

  22. Z. Jin, W. Feng, S. Zhu, H. Sheardown, J.L. Brash, Protein-resistant materials via surface-initiated atom transfer radical polymerization of 2-methacryloyloxyethyl phosphorylcholine. J. Biomater. Sci. Polym. Ed. 21, 1331–1344 (2010)

    Article  CAS  PubMed  Google Scholar 

  23. H. Tan, J. Liu, J. Li, X. Jiang, X. Xie, Y. Zhong, Q. Fu, Synthesis and hemocompatibility of biomembrane mimicing poly (carbonate urethane) s containing fluorinated alkyl phosphatidylcholine side groups. Biomacromolecules 7, 2591–2599 (2006)

    Article  CAS  PubMed  Google Scholar 

  24. Y. Yuan, F. Ai, X. Zang, W. Zhuang, J. Shen, S. Lin, Polyurethane vascular catheter surface grafted with zwitterionic sulfobetaine monomer activated by ozone. Colloids Surf. B Biointerfaces 35, 1–5 (2004)

    Article  CAS  PubMed  Google Scholar 

  25. J. Yuan, L. Chen, X. Jiang, J. Shen, S. Lin, Chemical graft polymerization of sulfobetaine monomer on polyurethane surface for reduction in platelet adhesion. Colloids Surf. B Biointerfaces 39, 87–94 (2004)

    Article  CAS  PubMed  Google Scholar 

  26. J. Yuan, S. Lin, J. Shen, Enhanced blood compatibility of polyurethane functionalized with sulfobetaine. Colloids Surf. B Biointerfaces 66, 90–95 (2008)

    Article  CAS  PubMed  Google Scholar 

  27. J. Yuan, J. Zhang, J. Zhou, Y.L. Yuan, J. Shen, S.C. Lin, Platelet adhesion onto segmented polyurethane surfaces modified by carboxybetaine. J. Biomater. Sci. Polym. Ed. 14, 1339–1349 (2003)

    Article  CAS  PubMed  Google Scholar 

  28. Y. Ito, Antithrombogenic heparin-bound polyurethanes. J. Biomater. Appl. 2, 235–265 (1987)

    Article  CAS  PubMed  Google Scholar 

  29. R. Eloy, J. Belleville, M.C. Rissoan, J. Baguet, Heparinization of medical grade polyurethanes. J. Biomater. Appl. 2, 475–519 (1988)

    Article  CAS  PubMed  Google Scholar 

  30. E.A. Aksoy, V. Hasirci, N. Hasirci, A. Motta, M. Fedel, C. Migliaresi, Plasma protein adsorption and platelet adhesion on heparin-immobilized polyurethane films. J. Bioact. Compat. Polym. 23, 505–519 (2008)

    Article  CAS  Google Scholar 

  31. L.S. Liu, Y. Ito, Y. Imanishi, Synthesis and antithrombogenicity of heparinized polyurethanes with intervening spacer chains of various kinds. Biomaterials 12, 390–396 (1991)

    Article  CAS  PubMed  Google Scholar 

  32. C. Nojiri, T. Okano, H.A. Jacobs, Ki Dong Park, S.F. Mohammad, D.B. Olsen, Sung Wan Kim, Blood compatibility of PEO grafted polyurethane and HEMA/styrene block copolymer surfaces. J. Biomed. Mater. Res. 24, 1151–1171 (1990)

    Article  CAS  PubMed  Google Scholar 

  33. J.-S. Bae, E.-J. Seo, I.-K. Kang, Synthesis and characterization of heparinized polyurethanes using plasma glow discharge. Biomaterials 20, 529–537 (1999)

    Article  CAS  PubMed  Google Scholar 

  34. M. Wan, D.K. Baek, J.H. Cho, I.K. Kang, K.H. Kim, In vitro blood compatibility of heparin-immobilized polyurethane containing ester groups in the side chain. J. Mater. Sci. Mater. Med. 15, 1079–1087 (2004)

    Article  CAS  PubMed  Google Scholar 

  35. K.D. Park, T. Okano, C. Nojiri, S.W. Kim, Heparin immobilization onto segmented polyurethaneurea surfaces – Effect of hydrophilic spacers. J. Biomed. Mater. Res. 22, 977–992 (1988)

    Article  CAS  PubMed  Google Scholar 

  36. P. Klement, Y.J. Du, L. Berry, M. Andrew, A.K.C. Chan, Blood-compatible biomaterials by surface coating with a novel antithrombin-heparin covalent complex. Biomaterials 23, 527–535 (2002)

    Article  CAS  PubMed  Google Scholar 

  37. Y.J. Du, P. Klement, L.R. Berry, P. Tressel, A.K.C. Chan, In vivo rabbit acute model tests of polyurethane catheters coated with a novel antithrombin-heparin covalent complex. Thromb. Haemost. 94, 366–372 (2005)

    Article  CAS  PubMed  Google Scholar 

  38. Y.J. Du, J.L. Brash, G. McClung, L.R. Berry, P. Klement, A.K.C. Chan, Protein adsorption on polyurethane catheters modified with a novel antithrombin-heparin covalent complex. J. Biomed. Mater. Res. A 80A, 216–225 (2007)

    Article  CAS  Google Scholar 

  39. P. Klement, Y.J. Du, L.R. Berry, P. Tressel, A.K.C. Chan, Chronic performance of polyurethane catheters covalently coated with ATH complex: A rabbit jugular vein model. Biomaterials 27, 5107–5117 (2006)

    Article  CAS  PubMed  Google Scholar 

  40. Y.J. Du, L.R. Berry, A. Chan, Chemical-physical characterization of polyurethane catheters modified with a novel antithrombin-heparin covalent complex. Aust. J. Biol. Sci. 22, 2277–2294 (2011)

    CAS  Google Scholar 

  41. K.N. Sask, L.R. Berry, A.K.C. Chan, J.L. Brash, Modification of polyurethane surface with an antithrombin − Heparin complex for blood contact: Influence of molecular weight of polyethylene oxide used as a linker/spacer. Langmuir 28, 2099–2106 (2012)

    Article  CAS  PubMed  Google Scholar 

  42. K.N. Sask, L.R. Berry, A.K.C. Chan, J.L. Brash, Polyurethane modified with an antithrombin-heparin complex via polyethylene oxide linker/spacers : Influence of PEO molecular weight and PEO-ATH bond on catalytic and direct anticoagulant functions. J. Biomed. Mater. Res. A 100A, 2821–2828 (2012)

    Article  CAS  Google Scholar 

  43. M.D. Phaneuf, S.A. Berceli, M.J. Bide, W.G. Quist, F.W. LoGerfo, Covalent linkage of recombinant hirudin to poly(ethylene terephthalate)(Dacron): Creation of a novel antithrombin surface. Biomaterials 18, 755–765 (1997)

    Article  CAS  PubMed  Google Scholar 

  44. M.D. Phaneuf, D.J. Dempsey, M.J. Bide, M. Szycher, W.C. Quist, F.W. LoGerfo, Bioengineering of a novel small diameter polyurethane vascular graft with covalently bound recombinant hirudin. ASAIO J. 44, M653–M658 (1998)

    Article  CAS  PubMed  Google Scholar 

  45. W.G. McClung, D.L. Clapper, A.B.. Anderson, D.E. Babcock, J.L. Brash, Interactions of fibrinolytic system proteins with lysine-containing surfaces. J. Biomed. Mater. Res. A 66, 795–801 (2003)

    Article  CAS  Google Scholar 

  46. W.G. McClung, D.L. Clapper, S.P. Hu, J.L. Brash, Adsorption of plasminogen from human plasma to lysine-containing surfaces. J. Biomed. Mater. Res. 49, 409–414 (2000)

    Article  CAS  PubMed  Google Scholar 

  47. W.G. McClung, D.L. Clapper, S.P. Hu, J.L. Brash, Lysine-derivatized polyurethane as a clot lysing surface: Conversion of adsorbed plasminogen to plasmin and clot lysis in vitro. Biomaterials 22, 1919–1924 (2001)

    Article  CAS  PubMed  Google Scholar 

  48. H. Chen, Y. Zhang, D. Li, X. Hu, L. Wang, W.G. McClung, J.L. Brash, Surfaces having dual fibrinolytic and protein resistant properties by immobilization of lysine on polyurethane through a PEG spacer. J. Biomed. Mater. Res. A 90, 940–946 (2009)

    Article  PubMed  CAS  Google Scholar 

  49. Z. Wu, H. Chen, D. Li, J.L. Brash, Tissue plasminogen activator-containing polyurethane surfaces for fibrinolytic activity. Acta Biomater. 7, 1993–1998 (2011)

    Article  CAS  PubMed  Google Scholar 

  50. M. Belanger, Y. Marois, Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primanry reference materials low-density polyethylene and polydiemthylsiloxane: A review. J. Biomed. Mater. Res. 58, 467–477 (2001)

    Article  CAS  PubMed  Google Scholar 

  51. F. Abbasi, H. Mirzadeh, A.A. Katbab, Modification of polysiloxane polymers for biomedical applications: A review. Polym. Int. 50, 1279–1287 (2001)

    Article  CAS  Google Scholar 

  52. M.T. Khorasani, H. Mirzadeh, In vitro blood compatibility of modified PDMS surfaces as superhydrophobic and superhydrophilic materials. J. Appl. Polym. Sci. 91, 2042–2047 (2004)

    Article  CAS  Google Scholar 

  53. L. Cheng, Q. Liu, Y. Lei, Y. Lin, A. Zhang, The synthesis and characterization of carboxybetaine functionalized polysiloxanes for the preparation of anti-fouling surfaces. RSC Adv. 4, 54372–54381 (2014)

    Article  CAS  Google Scholar 

  54. A. Zhang, L. Cheng, S. Hong, C. Yang, Y. Lin, Preparation of anti-fouling silicone elastomers by covalent immobilization of carboxybetaine. RSC Adv. 5, 88456–88463 (2015)

    Article  CAS  Google Scholar 

  55. H. Chen, M.A. Brook, H. Sheardown, Silicone elastomers for reduced protein adsorption. Biomaterials 25, 2273–2282 (2004)

    Article  CAS  PubMed  Google Scholar 

  56. H. Chen, M.A. Brook, Y. Chen, H. Sheardown, Surface properties of PEO-silicone composites: Reducing protein adsorption. J. Biomater. Sci. Polym. Ed. 16, 531–548 (2005)

    Article  CAS  PubMed  Google Scholar 

  57. H. Chen, Z. Zhang, Y. Chen, M.A. Brook, H. Sheardown, Protein repellant silicone surfaces by covalent immobilization of poly(ethylene oxide). Biomaterials 26, 2391–2399 (2005)

    Article  CAS  PubMed  Google Scholar 

  58. H. Chen, M.A. Brook, H.D. Sheardown, Y. Chen, B. Klenkler, Generic bioaffinity silicone surfaces. Bioconjug. Chem. 17, 21–28 (2006)

    Article  CAS  PubMed  Google Scholar 

  59. J.M. Leung, L.R. Berry, A.K.C. Chan, J.L. Brash, Surface modification of polydimethylsiloxane with a covalent antithrombin-heparin complex to prevent thrombosis. J. Biomater. Sci. Polym. Ed. 25, 786–801 (2014)

    Article  CAS  PubMed  Google Scholar 

  60. J.M. Leung, L.R. Berry, H.M. Atkinson, R.M. Cornelius, D. Sandejas, N. Rochow, P.R. Selvaganapathy, C. Fusch, A.K.C. Chan, J.L. Brash, Surface modification of poly(dimethylsiloxane) with a covalent antithrombin–heparin complex for the prevention of thrombosis: Use of polydopamine as bonding agent. J. Mater. Chem. B 3, 6032–6036 (2015)

    Article  CAS  PubMed  Google Scholar 

  61. H. Chen, L. Wang, Y. Zhang, D. Li, W.G. McClung, M.A. Brook, H. Sheardown, J.L. Brash, Fibrinolytic poly(dimethyl siloxane) surfaces. Macromol. Biosci. 8, 863–870 (2008)

    Article  CAS  PubMed  Google Scholar 

  62. H. Zhang, G.M. Annich, J. Miskulin, K. Osterholzer, S.I. Merz, R.H. Bartlett, M.E. Meyerhoff, Nitric oxide releasing silicone rubbers with improved blood compatibility: Preparation, characterization, and in vivo evaluation. Biomaterials 23, 1485–1494 (2002)

    Article  CAS  PubMed  Google Scholar 

  63. M.R. Kapadia, D.A. Popowich, M.R. Kibbe, Modified prosthetic vascular conduits. Circulation 117, 1873–1882 (2008)

    Article  PubMed  Google Scholar 

  64. J. Yang, D. Motlagh, J.B. Allen, A.R. Webb, M.R. Kibbe, O. Aalami, M. Kapadia, T.J. Carroll, G.A. Ameer, Modulating expanded polytetrafluoroethylene vascular graft host response via citric acid-based biodegradable elastomers. Adv. Mater. 18, 1493–1498 (2006)

    Article  CAS  Google Scholar 

  65. C. Sato, M. Aoki, M. Tanaka, Blood-compatible poly (2-methoxyethyl acrylate) for the adhesion and proliferation of endothelial and smooth muscle cells. Colloids Surf. B Biointerfaces 145, 586–596 (2016)

    Article  CAS  PubMed  Google Scholar 

  66. L. Karrer, J. Duwe, A.H. Zisch, E. Khabiri, M. Cikirikcioglu, A. Napoli, A. Goessl, T. Schaffner, O.M. Hess, T. Carrel, et al., PPS-PEG surface coating to reduce thrombogenicity of small diameter ePTFE vascular grafts. Int. J. Artif. Organs 28, 993–1002 (2005)

    Article  CAS  PubMed  Google Scholar 

  67. S.W. Jordan, K.M. Faucher, J.M. Caves, R.P. Apkarian, S.S. Rele, X.L. Sun, S.R. Hanson, E.L. Chaikof, Fabrication of a phospholipid membrane-mimetic film on the luminal surface of an ePTFE vascular graft. Biomaterials 27, 3473–3481 (2006)

    Article  CAS  PubMed  Google Scholar 

  68. G. Jin, Q. Yao, S. Zhang, L. Zhang, Surface modifying of microporous PTFE capillary for bilirubin removing from human plasma and its blood compatibility. Mater. Sci. Eng. C 28, 1480–1488 (2008)

    Article  CAS  Google Scholar 

  69. C. Li, A. Hill, M. Imran, In vitro and in vivo studies of ePTFE vascular grafts treated with P15 peptide. J. Biomater. Sci. Polym. Ed. 16, 875–891 (2005)

    Article  CAS  PubMed  Google Scholar 

  70. J.I. Rotmans, J.M.M. Heyligers, H.J.M. Verhagen, E. Velema, M.M. Nagtegaal, D.P.V. De Kleijn, F.G. De Groot, E.S.G. Stroes, G. Pasterkamp, In vivo cell seeding with anti-CD34 antibodies successfully accelerates endothelialization but stimulates intimal hyperplasia in porcine arteriovenous expanded polytetrafluoroethylene grafts. Circulation 112, 12–18 (2005)

    Article  CAS  PubMed  Google Scholar 

  71. X. Kapfer, W. Meichelboeck, F.M. Groegler, Comparison of carbon-impregnated and standard ePTFE prostheses in extra-anatomical anterior tibial artery bypass: A prospective randomized multicenter study. Eur. J. Vasc. Endovasc. Surg. 32, 155–168 (2006)

    Article  CAS  PubMed  Google Scholar 

  72. P.H. Lin, R.L. Bush, Q. Yao, A.B.. Lumsden, C. Chen, Evaluation of platelet deposition and neointimal hyperplasia of heparin-coated small-caliber ePTFE grafts in a canine femoral artery bypass model. J. Surg. Res. 118, 45–52 (2004)

    Article  CAS  PubMed  Google Scholar 

  73. P.C. Begovac, R.C. Thomson, J.L. Fisher, A. Hughson, A. Gällhagen, Improvements in GORE-TEX® vascular graft performance by Carmeda® BioActive Surface heparin immobilization. Eur. J. Vasc. Endovasc. Surg. 25, 432–437 (2003)

    Article  CAS  PubMed  Google Scholar 

  74. M. Bosiers, K. Deloose, J. Verbist, H. Schroë, G. Lauwers, W. Lansink, P. Peeters, Heparin-bonded expanded polytetrafluoroethylene vascular graft for femoropopliteal and femorocrural bypass grafting: 1-year results. J. Vasc. Surg. 43, 313–318 (2006)

    Article  PubMed  Google Scholar 

  75. J.S. Lindholt, B. Gottschalksen, N. Johannesen, D. Dueholm, H. Ravn, E.D. Christensen, B. Viddal, T. Flørenes, G. Pedersen, M. Rasmussen, et al., The Scandinavian Propaten trial-1-year patency of PTFE vascular prostheses with heparin-bonded luminal surfaces compared to ordinary pure PTFE vascular prostheses – A randomised clinical controlled multi-centre trial. Eur. J. Vasc. Endovasc. Surg. 41, 668–673 (2011)

    Article  CAS  PubMed  Google Scholar 

  76. R.A. Hoshi, R. Van Lith, M.C. Jen, J.B. Allen, K.A. Lapidos, G. Ameer, The blood and vascular cell compatibility of heparin-modified ePTFE vascular grafts. Biomaterials 34, 30–41 (2013)

    Article  CAS  PubMed  Google Scholar 

  77. S. Lu, P. Zhang, X. Sun, F. Gong, S. Yang, L. Shen, Z. Huang, C. Wang, Synthetic ePTFE grafts coated with an anti-CD133 antibody-functionalized heparin/collagen multilayer with rapid in vivo endothelialization properties. ACS Appl. Mater. Interfaces 5, 7360–7369 (2013)

    Article  CAS  PubMed  Google Scholar 

  78. A.P. Zhu, Z. Ming, S. Jian, Blood compatibility of chitosan/heparin complex surface modified ePTFE vascular graft. Appl. Surf. Sci. 241, 485–492 (2005)

    Article  CAS  Google Scholar 

  79. H.P. Greisler, D.J. Cziperle, D.U. Kim, J.D. Garfield, D. Petsikas, P.M. Murchan, E.O. Applegren, W. Drohan, W.H. Burgess, Enhanced endothelialization of expanded polytetrafluoroethylene grafts by fibroblast growth factor type 1 pretreatment. Surgery 112, 244–254 (1992)

    CAS  PubMed  Google Scholar 

  80. M. Heise, G. Schmidmaier, I. Husmann, C. Heidenhain, J. Schmidt, P. Neuhaus, U. Settmacher, PEG-hirudin/iloprost coating of small diameter ePTFE grafts effectively prevents pseudointima and intimal hyperplasia development. Eur. J. Vasc. Endovasc. Surg. 32, 418–424 (2006)

    Article  CAS  PubMed  Google Scholar 

  81. R.S. Greco, H.C. Kim, A.P. Donetz, R.A. Harvey, Patency of a small vessel prosthesis bonded to tissue-plasminogen activator and iloprost. Ann. Vasc. Surg. 9, 140–145 (1995)

    Article  CAS  PubMed  Google Scholar 

  82. M. Deutsch, J. Meinhart, T. Fischlein, P. Preiss, P. Zilla, Clinical autologous in vitro endothelialization of infrainguinal ePTFE grafts in 100 patients: A 9-year experience. Surgery 126, 847–855 (1999)

    Article  CAS  PubMed  Google Scholar 

  83. H. Magometschnigg, M. Kadletz, M. Vodrazka, W. Dock, M. Grimm, M. Grabenwöger, E. Minar, M. Staudacher, G. Fenzl, E. Wolner, Prospective clinical-study with invitro endothelial-cell lining of expanded polytetrafluoroethylene grafts in crural repeat reconstruction. J. Vasc. Surg. 15, 527–535 (1992)

    Article  CAS  PubMed  Google Scholar 

  84. H.R. Laube, J. Duwe, W. Rutsch, W. Konertz, Clinical experience with autologous endothelial cell–seeded polytetrafluoroethylene coronary artery bypass grafts. J. Thorac. Cardiovasc. Surg. 120, 134–141 (2000)

    Article  CAS  PubMed  Google Scholar 

  85. D.P. Griese, A. Ehsan, L.G. Melo, D. Kong, L. Zhang, M.J. Mann, R.E. Pratt, R.C. Mulligan, V.J. Dzau, Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts: Implications for cell-based vascular therapy. Circulation 108, 2710–2715 (2003)

    Article  PubMed  Google Scholar 

  86. D.J. Smith, D. Chakravarthy, M.L. Simm, J.A. Hrabie, Nitric oxide-releasing polymers containing the [N(O)NO]- group. J. Med. Chem. 39, 1148–1156 (1996)

    Article  CAS  PubMed  Google Scholar 

  87. G. Odian, Polyesters, in Principles of Polymerization, 4th edn., (Wiley, New York, 2004), pp. 92–96

    Chapter  Google Scholar 

  88. N.P. Desai, J.A. Hubbell, Solution technique to incorporate polyethylene oxide and other water-soluble polymers into surfaces of polymeric biomaterials. Biomaterials 12, 144–153 (1991)

    Article  CAS  PubMed  Google Scholar 

  89. N.P. Desai, J.A. Hubbell, Biological responses to polyethylene oxide modified polyethylene terephthalate surfaces. J. Biomed. Mater. Res. 25, 829–843 (1991)

    Article  CAS  PubMed  Google Scholar 

  90. W.R. Gombotz, G.H. Wang, T.A. Horbett, A.S. Hoffman, Protein adsorption to poly(ethylene oxide) surfaces. J. Biomed. Mater. Res. 25, 1547–1562 (1991)

    Article  CAS  PubMed  Google Scholar 

  91. A. Kidane, T. Mcpherson, H.S. Shim, K. Park, Surface modification of polyethylene terephthalate using PEO-polybutadiene-PEO triblock copolymers. Colloids Surf. B Biointerfaces 18, 347–353 (2000)

    Article  CAS  PubMed  Google Scholar 

  92. J. Li, D. Tan, X. Zhang, H. Tan, M. Ding, C. Wan, Q. Fu, Preparation and characterization of nonfouling polymer brushes on poly (ethylene terephthalate) film surfaces. Colloids Surf. B Biointerfaces 78, 343–350 (2010)

    Article  CAS  PubMed  Google Scholar 

  93. K. Kottke-mar, J.M. Anderson, R.E. Marchant, Effect of albumin coating on the in vitro blood compatibility of Dacron arterial prostheses. Biomaterials 10, 147–155 (1989)

    Article  Google Scholar 

  94. M. Patel, R.E. Arnell, L.R. Sauvage, H.-D. Wu, Q. Shi, A.R. Wechezak, D. Mungin, M. Walker, Experimental evaluation of ten clinically used arterial prostheses. Ann. Vasc. Surg. 6, 244–251 (1992)

    Article  CAS  PubMed  Google Scholar 

  95. Y. Marois, N. Chakfe, R. Guidoin, R.C. Duhamel, R. Roy, M. Marois, M.W. King, Y. Douville, An albumin-coated polyester arterial graft: In vivo assessment of biocompatibility and healing characteristics. Biomaterials 17, 3–14 (1996)

    Article  CAS  PubMed  Google Scholar 

  96. Y.J. Kim, I.K. Kang, M.W. Huh, S.C. Yoon, Surface characterization and in vitro blood compatibility of poly(ethylene terephthalate) immobilized with insulin and/or heparin using plasma glow discharge. Biomaterials 21, 121–130 (2000)

    Article  CAS  PubMed  Google Scholar 

  97. A.W. Lambert, A.D. Fox, D.J. Williams, M. Horrocks, J.S. Budd, Experience with heparin-bonded collagen-coated grafts for infrainguinal bypass. Cardiovasc. Surg. 7, 491–494 (1999)

    Article  CAS  PubMed  Google Scholar 

  98. C. Devine, C. Mccollum, N. West, Heparin-bonded Dacron or polytetrafluorethylene for femoropopliteal bypass: Five-year results of a prospective randomized multicenter clinical trial. J. Vasc. Surg. 40, 924–931 (2004)

    Article  PubMed  Google Scholar 

  99. S.A. Berceli, M.D. Phaneuf, B.S. Phaneuf, F.W. LoGerfo, Evaluation of a novel hirudin-coated polyester graft to physiologic flow conditions: Hirudin bioavailability and thrombin uptake. J. Vasc. Surg. 27, 1117–1127 (1998)

    Article  CAS  PubMed  Google Scholar 

  100. M.C. Wyers, M.D. Phaneuf, E.M. Rzucidlo, M.A. Contreras, F.W. Logerfo, W.C. Quist, In vivo assessment of a novel Dacron surface with covalently bound recombinant Hirudin. Cardiovasc. Pathol. 8, 153–159 (1999)

    Article  CAS  PubMed  Google Scholar 

  101. P. Li, X. Cai, J. Yuan, S. Chen, L. Li, J. Shen, Hemocompatibility and anti-biofouling property improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of zwitterionic cysteine. Colloids Surf. B Biointerfaces 110, 327–332 (2013)

    Article  CAS  PubMed  Google Scholar 

  102. X. Duan, R.S. Lewis, Improved haemocompatibility of cysteine-modified polymers via endogenous nitric oxide. Biomaterials 23, 1197–1203 (2002)

    Article  CAS  PubMed  Google Scholar 

  103. H. Gappa-Fahlenkamp, R.S. Lewis, Improved hemocompatibility of poly(ethylene terephthalate) modified with various thiol-containing groups. Biomaterials 26, 3479–3485 (2005)

    Article  CAS  PubMed  Google Scholar 

  104. Y. Liu, Y. Yang, F. Wu, Effects of l-arginine immobilization on the anticoagulant activity and hemolytic property of polyethylene terephthalate films. Appl. Surf. Sci. 256, 3977–3981 (2010)

    Article  CAS  Google Scholar 

  105. SCENIHR (Scientific Committee on Emerging and Newly-Identified Health Risks). Scientific opinion on the safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk (2015)

    Google Scholar 

  106. T. Gourlay, L. Shedden, D. Horne, D.M. Stefanou, Simple surface sulfonation retards plasticiser migration and impacts upon blood/material contact activation processes. Perfusion 25, 31–39 (2010)

    Article  PubMed  Google Scholar 

  107. X. Zhao, J.M. Courtney, H.Q. Yin, R.H. West, G.D. Lowe, Blood interactions with plasticised poly (vinyl chloride): influence of surface modification. J. Mater. Sci. Mater. Med. 19, 713–719 (2008)

    Article  PubMed  CAS  Google Scholar 

  108. F. Marcella, C. Federica, P. Giorgio, G. Luca, E.T. Florio, P. Stefania, C. Francesco, L. Giuseppe, Di-(2-ethylhexyl)-phthalate migration from irradiated poly(vinyl chloride) blood bags for graft-vs-host disease prevention. Int. J. Pharm. 430, 86–88 (2012)

    Article  PubMed  CAS  Google Scholar 

  109. B.Y. Yu, J.W. Chung, S.-Y. Kwak, Reduced migration from flexible poly (vinyl chloride) of a plasticizer containing β-cyclodextrin derivative. Environ. Sci. Technol. 42, 7522–7527 (2008)

    Article  CAS  PubMed  Google Scholar 

  110. E.D.S. Van Vliet, E.M. Reitano, J.S. Chhabra, G.P. Bergen, R.M. Whyatt, A review of alternatives to di (2-ethylhexyl) phthalate-containing medical devices in the neonatal intensive care unit. J. Perinatol. 31, 551–560 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. J. Sampson, D. De Korte, DEHP-plasticised PVC: Relevance to blood services. Transfus. Med. 21, 73–83 (2011)

    Article  CAS  PubMed  Google Scholar 

  112. J. Simmchen, R. Ventura, J. Segura, Progress in the removal of Di-[2-Ethylhexyl]-phthalate as plasticizer in blood bags. Transfus. Med. Rev. 26, 27–37 (2012)

    Article  PubMed  Google Scholar 

  113. K. Johansson, G. Greis, B. Johansson, A. Grundtmann, Y. Pahlby, S. Törn, H. Axelberg, P. Carlsson, Evaluation of a new PVC-free catheter material for intermittent catheterization: A prospective, randomized, crossover study. Scand. J. Urol. 47, 33–37 (2013)

    Article  PubMed  Google Scholar 

  114. N.S. Harada, H.T. Oyama, J.R. Bártoli, D. Gouvêa, I.A. Cestari, S.H. Wang, Quantifying adsorption of heparin on a PVC substrate using ATR-FTIR. Polym. Int. 54, 209–214 (2005)

    Article  CAS  Google Scholar 

  115. A. Röckel, J. Hertel, P. Fiegel, S. Abdelhamid, N. Panitz, D. Walb, Permeability and secondary membrane formation of a high flux polysulfone hemofilter. Kidney Int. 30, 429–432 (1986)

    Article  PubMed  Google Scholar 

  116. A. Higuchi, K. Shirano, M. Harashima, B.O. Yoon, M. Hara, M. Hattori, K. Imamura, Chemically modified polysulfone hollow fibers with vinylpyrrolidone having improved blood compatibility. Biomaterials 23, 2659–2666 (2002)

    Article  CAS  PubMed  Google Scholar 

  117. M. Hayama, K.I. Yamamoto, F. Kohori, K. Sakai, How polysulfone dialysis membranes containing polyvinylpyrrolidone achieve excellent biocompatibility? J. Memb. Sci. 234, 41–49 (2004)

    Article  CAS  Google Scholar 

  118. M. Matsuda, K. Ichiro Yamamoto, T. Yakushiji, M. Fukuda, T. Miyasaka, K. Sakai, Nanotechnological evaluation of protein adsorption on dialysis membrane surface hydrophilized with polyvinylpyrrolidone. J. Memb. Sci. 310, 219–228 (2008)

    Article  CAS  Google Scholar 

  119. J.Y. Park, M.H. Acar, A. Akthakul, W. Kuhlman, A.M. Mayes, Polysulfone-graft-poly(ethylene glycol) graft copolymers for surface modification of polysulfone membranes. Biomaterials 27, 856–865 (2006)

    Article  CAS  PubMed  Google Scholar 

  120. A. Higuchi, K. Sugiyama, B.O. Yoon, M. Sakurai, M. Hara, M. Sumita, S.I. Sugawara, T. Shirai, Serum protein adsorption and platelet adhesion on pluronic-adsorbed polysulfone membranes. Biomaterials 24, 3235–3245 (2003)

    Article  CAS  PubMed  Google Scholar 

  121. A. Roy, P. Dadhich, S. Dhara, S. De, In vitro cytocompatibility and blood compatibility of polysulfone blend, surface-modified polysulfone and polyacrylonitrile membranes for hemodialysis. RSC Adv. 5, 7023–7034 (2015)

    Article  CAS  Google Scholar 

  122. K. Ishihara, K. Fukumoto, Y. Iwasaki, N. Nakabayashi, Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 1 Surface characterization. Biomaterials 20, 1545–1551 (1999)

    Article  CAS  PubMed  Google Scholar 

  123. K. Ishihara, K. Fukumoto, Y. Iwasaki, N. Nakabayashi, Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 2 Protein adsorption and platelet adhesion. Biomaterials 20, 1553–1559 (1999)

    Article  CAS  PubMed  Google Scholar 

  124. T. Hasegawa, Y. Iwasaki, K. Ishihara, Preparation and performance of protein-adsorption-resistant asymmetric porous membrane composed of polysulfone/phospholipid polymer blend. Biomaterials 22, 243–251 (2001)

    Article  CAS  PubMed  Google Scholar 

  125. F.C. Kung, M.C. Yang, The effect of covalently bonded conjugated linoleic acid on the reduction of oxidative stress and blood coagulation for polysulfone hemodialyzer membrane. Int. J. Biol. Macromol. 38, 157–164 (2006)

    Article  CAS  PubMed  Google Scholar 

  126. X.J. Huang, D. Guduru, Z.K. Xu, J. Vienken, T. Groth, Blood compatibility and permeability of heparin-modified Polysulfone as potential membrane for simultaneous hemodialysis and LDL removal. Macromol. Biosci. 11, 131–140 (2011)

    Article  CAS  PubMed  Google Scholar 

  127. M.C. Yang, W.C. Lin, Protein adsorption and platelet adhesion of polysulfone membrane immobilized with chitosan and heparin conjugate. Polym. Adv. Technol. 14, 103–113 (2003)

    Article  CAS  Google Scholar 

  128. B. Xie, R. Zhang, H. Zhang, A. Xu, Y. Deng, Y. Lv, F. Deng, S. Wei, Decoration of heparin and bovine serum albumin on polysulfone membrane assisted via polydopamine strategy for hemodialysis. J. Biomater. Sci. Polym. Ed. 27, 880–897 (2016)

    Article  CAS  PubMed  Google Scholar 

  129. J. Barzin, C. Feng, K.C. Khulbe, T. Matsuura, S.S. Madaeni, H. Mirzadeh, Characterization of polyethersulfone hemodialysis membrane by ultrafiltration and atomic force microscopy. J. Memb. Sci. 237, 77–85 (2004)

    Article  CAS  Google Scholar 

  130. H. Wang, T. Yu, C. Zhao, Q. Du, Improvement of hydrophilicity and blood compatibility on Polyethersulfone membrane by adding Polyvinylpyrrolidone. Fibers Polym. 10, 1–5 (2009)

    Article  CAS  Google Scholar 

  131. J.Y. Ho, T. Matsuura, J.P. Santerre, The effect of fluorinated surface modifying macromolecules on the surface morphology of polyethersulfone membranes. J. Biomater. Sci. Polym. Ed. 11, 1085–1104 (2000)

    Article  CAS  PubMed  Google Scholar 

  132. M.L. Lopez-Donaire, J.P. Santerre, Surface modifying oligomers used to functionalize polymeric surfaces: Consideration of blood contact applications. J. Appl. Polym. Sci. 131, 40328 (2014)

    Article  CAS  Google Scholar 

  133. C. Zhao, J. Xue, F. Ran, S. Sun, Modification of polyethersulfone membranes – a review of methods. Prog. Mater. Sci. 58, 76–150 (2013)

    Article  CAS  Google Scholar 

  134. E. Klein, The modern history of haemodialysis membranes and controllers. Nephrology 4, 255–265 (1998)

    Article  Google Scholar 

  135. T.Y. Liu, W.C. Lin, L.Y. Huang, S.Y. Chen, M.C. Yang, Surface characteristics and hemocompatibility of PAN/PVDF blend membranes. Polym. Adv. Technol. 16, 413–419 (2005)

    Article  CAS  Google Scholar 

  136. L.S. Wan, Z.K. Xu, X.J. Huang, Asymmetric membranes fabricated from poly(acrylonitrile-co-N-vinyl-2-pyrrolidone)s with excellent biocompatibility. J. Appl. Polym. Sci. 102, 4577–4583 (2006)

    Article  CAS  Google Scholar 

  137. L.S. Wan, Z.K. Xu, X.J. Huang, Z.G. Wang, J.L. Wang, Copolymerization of acrylonitrile with N-vinyl-2-pyrrolidone to improve the hemocompatibility of polyacrylonitrile. Polymer 46, 7715–7723 (2005)

    Article  CAS  Google Scholar 

  138. T. McPherson, A. Kidane, I. Szleifer, K. Park, Prevention of protein adsorption by tethered poly(ethylene oxide) layers: Experiments and single-chain mean-field analysis. Langmuir 14, 176–186 (1998)

    Article  CAS  Google Scholar 

  139. Z.-W. Dai, F.-Q. Nie, Z.-K. Xu, Acrylonitrile-based copolymer membranes containing reactive groups: Fabrication dual-layer biomimetic membranes by the immobilization of biomacromolecules. J. Memb. Sci. 264, 20–26 (2005)

    Article  CAS  Google Scholar 

  140. A.F. Che, F.Q. Nie, X.D. Huang, Z.K. Xu, K. Yao, Acrylonitrile-based copolymer membranes containing reactive groups: Surface modification by the immobilization of biomacromolecules. Polymer 46, 11060–11065 (2005)

    Article  CAS  Google Scholar 

  141. M. Ulbricht, G. Belfortt, Surface modification of ultrafiltration membranes by low temperature plasma II graft polymerization onto polyacrylonitrile and polysulfone. J. Memb. Sci. 111, 193–215 (1996)

    Article  CAS  Google Scholar 

  142. W.C. Lin, T.Y. Liu, M.C. Yang, Hemocompatibility of polyacrylonitrile dialysis membrane immobilized with chitosan and heparin conjugate. Biomaterials 25, 1947–1957 (2004)

    Article  CAS  PubMed  Google Scholar 

  143. F.-C. Kung, M.-C. Yang, Effect of conjugated linoleic acid grafting on the hemocompatibility of polyacrylonitrile membrane. Polym. Adv. Technol. 17, 419–425 (2006)

    Article  CAS  Google Scholar 

  144. M.F. Maitz, Applications of synthetic polymers in clinical medicine. Biosurf. Biotribol. 1, 161–176 (2015)

    Article  Google Scholar 

  145. G. Shmack, V. Dutschk, E. Pisanova, Modification of polyamide fibers to improve their biocompatibility. Fibre Chem. 32, 48–55 (2000)

    Article  CAS  Google Scholar 

  146. R.K. Dey, A.R. Ray, Synthesis, characterization, and blood compatibility of polyamidoamines copolymers. Biomaterials 24, 2985–2993 (2003)

    Article  CAS  PubMed  Google Scholar 

  147. J.P. Singhal, A.R. Ray, Synthesis of blood compatible polyamide block copolymers. Biomaterials 23, 1139–1145 (2002)

    Article  CAS  PubMed  Google Scholar 

  148. J.L. Brash, The fate of fibrinogen following adsorption at the blood-biomaterial Interface. Ann. N. Y. Acad. Sci. 516, 206–222 (1987)

    Article  CAS  PubMed  Google Scholar 

  149. I. Reviakine, F. Jung, S. Braune, J.L. Brash, R. Latour, M. Gorbet, W. Van Oeveren, Stirred, shaken, or stagnant: What goes on at the blood – Biomaterial interface. Blood Rev. 31, 11–21 (2016)

    Article  PubMed  CAS  Google Scholar 

  150. M. Tanzi, Bioactive technologies for hemocompatibility. Expert Rev. Med. Devices 2, 473–492 (2015)

    Article  Google Scholar 

  151. R.J. Zdrahala, I.J. Zdrahala, Biomedical applications of polyurethanes: A review of past promises, present realities and a vibrant future. J. Biomater. Appl. 14, 67–90 (1999)

    Article  CAS  PubMed  Google Scholar 

  152. M. Szycher, Szycher’s Handbook of Polyurethanes (CRC Press, New York, 1999)

    Google Scholar 

  153. B.L. Wilkoff, J. Rickard, E. Tkatchouk, A.D. Padsalgikar, G. Gallagher, J. Runt, The biostability of cardiac lead insulation materials as assessed from long-term human implants. J. Biomed. Mater. Res. B Appl. Biomater. 104, 411–421 (2016)

    Article  CAS  PubMed  Google Scholar 

  154. J. Pant, M.J. Goudie, E. Brisbois, H. Handa, Nitric oxide-releasing polyurethanes, in Advances in Polyurethane Biomaterials, ed. by S. L. Cooper, J. Guan, (Woodhead Publishing, Duxford, 2016), pp. 417–449

    Chapter  Google Scholar 

  155. E.J. Brisbois, T.C. Major, M.J. Goudie, R.H. Bartlett, M.E. Meyerhoff, H. Handa, Improved hemocompatibility of silicone rubber extracorporeal tubing via solvent swelling-impregnation of S-nitroso-N-acetylpenicillamine (SNAP) and evaluation in rabbit thrombogenicity model. Acta Biomater. 37, 111–119 (2015)

    Article  CAS  Google Scholar 

  156. S. Post, T. Kraus, U. Müller-Reinartz, C. Weiss, H. Kortmann, A. Quentmeier, M. Winkler, K.J. Husfeldt, J.R. Allenberg, Dacron vs polytetrafluoroethylene grafts for femoropopliteal bypass: A prospective randomised multicentre trial. Eur. J. Vasc. Endovasc. Surg. 22, 226–231 (2001)

    Article  CAS  PubMed  Google Scholar 

  157. R.W. Hobson, J.A. O’Donnell, Z. Jamil, K. Mehta, Below-knee bypass for limb salvage: Comparison of autogenous saphenous-vein, polytetrafluoroethylene, and composite Dacron-autogenous vein grafts. Arch. Surg. 115, 833–837 (1980)

    Article  PubMed  Google Scholar 

  158. S.K. Pulfer, D. Ott, D.J. Smith, Incorporation of nitric oxide-releasing crosslinked polyethyleneimine microspheres into vascular grafts. J. Biomed. Mater. Res. 37, 182–189 (1997)

    Article  CAS  PubMed  Google Scholar 

  159. Y. Liu, J. Chen, Y. Yang, F. Wu, Improved blood compatibility of poly (ethylene terephthalate) films modified with L -arginine. J. Biomater. Sci. Polym. Ed. 19, 497–507 (2008)

    Article  CAS  PubMed  Google Scholar 

  160. C.V. Prowse, D. de Korte, J.R. Hess, P.F. van der Meer, Commercially available blood storage containers. Vox Sang. 106, 1–13 (2014)

    Article  CAS  PubMed  Google Scholar 

  161. M. Lozano, J. Cid, DEHP plasticizer and blood bags: Challenges ahead. ISBT Sci. Ser. 8, 127–130 (2013)

    Article  Google Scholar 

  162. S. Nagaoka, A. Nakao, Clinical application of antithrombogenic hydrogel with long poly (ethylene oxide) chains. Biomaterials 11, 119–121 (1990)

    Article  CAS  PubMed  Google Scholar 

  163. P.R. Craddock, J. Fehr, A.P. Dalmasso, K.L. Brighan, H.S. Jacob, Hemodialysis leukopenia pulmonary vascular leukostasis resulting from complement activation by dialyzer cellophane membranes. J. Clin. Invest. 59, 879–888 (1977)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. A. Kato, T. Takita, M. Furuhashi, T. Takahashi, T. Watanabe, Y. Maruyama, A. Hishida, Polymethylmethacrylate efficacy in reduction of renal itching in hemodialysis patients: Crossover study and role of tumor necrosis factor-α. Artif. Organs 25, 441–447 (2001)

    Article  CAS  PubMed  Google Scholar 

  165. A. Kato, M. Hamada, T. Maruyama, Y. Maruyama, A. Hishida, Pruritus and hydration state of stratum corneum in hemodialysis patients. Am. J. Nephrol. 20, 437–442 (2000)

    Article  CAS  PubMed  Google Scholar 

  166. N. Dimković, L. Djukanović, A. Radmilović, P. Bojić, T. Juloski, Uremic pruritus and skin mast cell. Nephron 61, 5–9 (1992)

    Article  PubMed  Google Scholar 

  167. W.R. Clark, D. Gao, Properties of membranes used for hemodialysis therapy. Semin. Dial. 15, 191–195 (2002)

    Article  PubMed  Google Scholar 

  168. M. Irfan, A. Idris, Overview of PES biocompatible/hemodialysis membranes: PES-blood interactions and modification techniques. Mater. Sci. Eng. C Mater. Biol. Appl. 56, 574–592 (2015)

    Article  CAS  PubMed  Google Scholar 

  169. T.Y. Liu, W.C. Lin, L.Y. Huang, S.Y. Chen, M.C. Yang, Hemocompatibility and anaphylatoxin formation of protein-immobilizing polyacrylonitrile hemodialysis membrane. Biomaterials 26, 1437–1444 (2005)

    Article  CAS  PubMed  Google Scholar 

  170. H. Sugaya, Y. Sakai, Polymethylmethacrylate: from polymer to dialyzer, in Polymethylmethacrylate, (Karger Publishers, Basel, 1999), pp. 1–8

    Google Scholar 

  171. A. Albertazzi, M. Bonomini: Clinical experience with PMMA membrane, in Polymethylmethacrylate, (Karger Publishers, 1999), pp. 213–221

    Google Scholar 

  172. G. Cohen, M. Rudnicki, S. Schmaldienst, W.H. Hörl, Effect of dialysis on serum/plasma levels of free immunoglobulin light chains in end-stage renal disease patients. Nephrol. Dial. Transplant. 17, 879–883 (2002)

    Article  CAS  PubMed  Google Scholar 

  173. M. Bonomini, B. Fiederling, T. Bucciarelli, V. Manfrini, C. Di Ilio, A. Albertazzi, A new polymethylmethacrylate membrane for hemodialysis. Int. J. Artif. Organ 19, 232–239 (1996)

    Article  CAS  Google Scholar 

  174. F. Aucella, M. Vigilante, A. Gesuete, Review: The effect of polymethylmethacrylate dialysis membranes on uraemic pruritus. NDT Plus 3, i8–i11 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  175. S. Itoh, C. Susuki, T. Tsuji, Platelet activation through interaction with hemodialysis membranes induces neutrophils to produce reactive oxygen species. J. Biomed. Mater. Res. A 77, 294–303 (2006)

    Article  PubMed  CAS  Google Scholar 

  176. V. Sirolli, E. Ballone, S. Di Stante, L. Amoroso, M. Bonomini, Cell activation and cellular-cellular interactions during hemodialysis: Effect of dialyzer membrane. Int. J. Artif. Organs 25, 539–537 (2002)

    Article  Google Scholar 

  177. Y. Nagase, K. Horiguchi, Biocompatible polyamides and polyurethanes containing phospholipid moiety, in Biomedical Engineering: Frontiers and Challenges, ed. By R. Fazel (INTECH Open Access Publisher, 2007) pp. 217–232

    Google Scholar 

  178. R. Waksman, Biodegradable stents: They do their job and disappear. J. Invasive Cardiol. 18, 70–74 (2006)

    PubMed  Google Scholar 

  179. A.M. Lincoff, J.G. Furst, S.G. Ellis, R.J. Tuch, E.J. Topol, Sustained local delivery of dexamethasone by a novel intravascular eluting stent to prevent restenosis in the porcine coronary injury model. J. Am. Coll. Cardiol. 29, 808–816 (1997)

    Article  CAS  PubMed  Google Scholar 

  180. H. Tamai, K. Igaki, T. Tsuji, E. Kyo, K. Kosuga, A.S.M. Kawashima, H. Komori, S. Motohara, H. Uehata, E. Takeuchi, A biodegradable poly-l-lactic acid coronary stent in porcine coronary artery. J. Interv. Cardiol. 12, 443–450 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Alibeik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Alibeik, S., Sask, K.N. (2018). Blood Compatible Polymers. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Biopolymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-92066-5_3-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92066-5_3-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92066-5

  • Online ISBN: 978-3-319-92066-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics