Advertisement

Advanced Hydrogel Structures

  • Michael J. Majcher
  • Todd HoareEmail author
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

Conventional hydrogels have been successfully used in a range of different applications. However, the weak mechanics, inhomogeneous network structures, and poorly controlled responses of conventional hydrogels to changes in their environment have limited the applications of conventional hydrogels across a broad range of potential uses. Herein, we describe several newer types of hydrogel structures and morphologies that have been developed to address these key limitations of conventional hydrogels, including environmentally responsive hydrogels, homogeneous network hydrogels, interpenetrating network hydrogels, double network hydrogels, nanocomposite hydrogels, self-healing/self-adhesive hydrogels, and shape memory hydrogels. The fundamentals of both the design and structure of such materials as well as the key application areas in which such materials have been used to solve key technical challenges are highlighted.

Abbreviations

CD

Cyclodextrin

CNCs

Cellulose nanocrystals

IPN

Interpenetrating network

IR

Infrared

LCST

Lower critical solution temperature

LDHs

Layered double hydroxides

l-Dopa

l-3, 4-dihydroxyphenylalanine

NPs

Nanoparticles

PAA

Poly(acrylic acid)

PAAm

Poly(acrylamide)

PAMPS

Poly(2-acrylamido-2-methylpropanesulfonic acid)

PCL

Poly(ɛ -caprolactone)

PNIPAM

Poly(N-isopropylacrylamide)

POEGMA

Poly(oligoethylene glycol methacrylate)

PPy

Polypyrrole

PS

Polystyrene

PVA

Poly(vinyl alcohol)

QDs

Quantum dots

SMPs

Shape memory polymers

SPHs

Superporous hydrogels

SPIONs

Superparamagnetic iron oxide nanoparticles

SPR

Surface plasmon resonance

UCST

Upper critical solution temperature

UV

Ultraviolet

VPT

Volume phase transition

References

  1. 1.
    E. Caló, V.V. Khutoryanskiy, Biomedical applications of hydrogels: a review of patents and commercial products. Eur. Polym. J. 65, 252–267 (2015)CrossRefGoogle Scholar
  2. 2.
    T. Sakai, T. Matsunaga, Y. Yamamoto, C. Ito, R. Yoshida, S. Suzuki, N. Saskai, M. Shibayama, U.I. Chung, Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 41, 5379–5384 (2008)CrossRefGoogle Scholar
  3. 3.
    P. Gupta, K. Vermani, S. Garg, Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today 7(10), 569–579 (2002)PubMedCrossRefGoogle Scholar
  4. 4.
    J.M. Knipe, N.A. Peppas, Multi-responsive hydrogels for drug delivery and tissue engineering applications. Regen. Biomater. 1(1), 57–65 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    T. Hoare, R. Pelton, Highly pH and temperature responsive microgels functionalized with vinylacetic acid. Macromolecules 37, 2544–2550 (2004)CrossRefGoogle Scholar
  6. 6.
    P. Gupta, K. Vermani, S. Garg, Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today 7(1), 569–579 (2002)PubMedCrossRefGoogle Scholar
  7. 7.
    T. Tanaka, Phase transitions in gels and a single polymer. Polymer 20, 1404–1412 (1979)CrossRefGoogle Scholar
  8. 8.
    P. Chibante, R.H. Pelton, Preparation of aqueous latices with N-Isopropylacrylamide. Colloids Surf. 20, 241–256 (1986)Google Scholar
  9. 9.
    Y. Maeda, T. Nakamura, I. Ikeda, Changes in the hydration states of poly(N-alkylacrylamide)s during their phase transitions in water observed by FTIR spectroscopy. Macromolecules 34, 1391–1399 (2001)CrossRefGoogle Scholar
  10. 10.
    S. Pfeifer, J.F. Lutz, A facile procedure for controlling monomer sequence distribution in radical chain polymerizations. J. Am. Chem. Soc. 129, 9542–9543 (2007)PubMedCrossRefGoogle Scholar
  11. 11.
    N.A. Cortez-Lemus, A. Licea-Claverie, Poly(N-vinylcaprolactam), a comprehensive review on a thermoresponsive polymer becoming popular. Prog. Polym. Sci. 53, 1–51 (2016)CrossRefGoogle Scholar
  12. 12.
    I.M. Diniz, C. Chen, X. Xu, S. Ansari, H.H. Zadeh, M.M. Marques, S. Shi, A. Moshaverinia, Pluronic F-127 hydrogel as a promising scaffold for encapsulation of dental-derived mesenchymal stem cells. J. Mater. Sci. Mater. Med. 26(3), 152–162 (2015)CrossRefGoogle Scholar
  13. 13.
    M. Jamard, T. Hoare, H. Sheardown, Nanogels of methylcellulose hydrophobized with N-tert-butylacrylamide for ocular drug delivery. Drug Deliv. Transl. Res. 6(6), 648–659 (2016)PubMedCrossRefGoogle Scholar
  14. 14.
    S.R. MacEwan, A. Chilkoti, Elastin-like polypeptides: biomedical applications of tunable biopolymers. Biopolymers 94(1), 60–77 (2010)PubMedCrossRefGoogle Scholar
  15. 15.
    X. Zhou, L. Weng, Q. Chen, J. Zhang, D. Shen, Z. Li, M. Shao, J. Xu, Investigation of pH sensitivity of poly(acrylic acid-co-acrylamide) hydrogel. Polym. Int. 52(7), 1153–1157 (2003)CrossRefGoogle Scholar
  16. 16.
    M. Boustta, P.E. Colombo, S. Lenglet, S. Poujol, M. Vert, Versatile UCST-based thermoresponsive hydrogels for loco-regional sustained drug delivery. J. Control. Release 174, 1–6 (2014)PubMedCrossRefGoogle Scholar
  17. 17.
    J. Hasa, M. Ilavsky, K. Dusek, Deformational, swelling, and potentiometric behavior of ionized poly( methacrylic acid) gels. I. Theory. J. Polym. Sci. Polym. Phys. 13, 253–262 (1975)CrossRefGoogle Scholar
  18. 18.
    E. Merino, M. Ribagorda, Control over molecular motion using the cis-trans photoisomerization of the azo group. Beilstein J. Org. Chem. 8, 1071–1090 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    M.M. Russew, S. Hecht, Photoswitches: from molecules to materials. Adv. Mater. 22(31), 3348–3360 (2010)PubMedCrossRefGoogle Scholar
  20. 20.
    D. Klinger, Light-Sensitive Polymeric Nanoparticles Based on Photo-Cleavable Chromophores. Springer Theses. I. (Springer International Publishing, Cham) XVII, 224. (2013).  https://doi.org/10.1007/978-3-319-00446-4. https://www.springer.com/gp/book/9783319004457
  21. 21.
    Y. Guan, Y. Zhang, Boronic acid-containing hydrogels: synthesis and their applications. Chem. Soc. Rev. 42(20), 8106–8121 (2013)PubMedCrossRefGoogle Scholar
  22. 22.
    A. Kim, S. Mujumdar, R. Siegel, Swelling properties of hydrogels containing phenylboronic acids. Chemosensors 2(1), 1–12 (2013)CrossRefGoogle Scholar
  23. 23.
    J.W. Tomsho, A. Pal, D.G. Hall, S.J. Benkovic, Ring structure and aromatic substituent effects on the pKa of the Benzoxaborole pharmacophore. ACS Med. Chem. Lett. 3(1), 48–52 (2012)PubMedCrossRefGoogle Scholar
  24. 24.
    T. Hoare, R. Pelton, Charge-switching, amphoteric glucose-responsive microgels with physiological swelling activity. Biomacromolecules 9, 733–740 (2008)PubMedCrossRefGoogle Scholar
  25. 25.
    S. Kang, Y.H. Bae, A sulfonamide based glucose-responsive hydrogel with covalently immobilized glucose oxidase and catalase. J. Control. Release 86, 115–121 (2003)PubMedCrossRefGoogle Scholar
  26. 26.
    T. Miyata, A. Jikihara, K. Nakamae, A.S. Hoffman, Preparation of reversibly glucose-responsive hydrogels by covalent immobilization of lectin in polymer networks having pendant glucose. J. Biomater. Sci. Polym. Ed. 15(9), 1085–1098 (2004)PubMedCrossRefGoogle Scholar
  27. 27.
    T. Miyata, N. Asami, T. Uragami, A reversibly antigen-responsive hydrogel. Nature 399, 766–769 (1999)PubMedCrossRefGoogle Scholar
  28. 28.
    M.E. Byrne, K. Park, N.A. Peppas, Molecular imprinting within hydrogels. Adv. Drug Deliv. Rev. 54, 149–161 (2002)PubMedCrossRefGoogle Scholar
  29. 29.
    M.C. Koetting, J.T. Peters, S.D. Steichen, N.A. Peppas, Stimulus-responsive hydrogels: Theory, modern advances, and applications. Mater. Sci. Eng. 93, 1–49 (2015)CrossRefGoogle Scholar
  30. 30.
    Y. Noda, Y. Hayashi, K. Ito, From topological gels to slide-ring materials. J. Appl. Polym. Sci. 131(15) (2014).  https://doi.org/10.1002/APP.40509
  31. 31.
    G. Fleury, G. Schlatter, C. Brochon, C. Travelet, A. Lapp, P. Lindner, G. Hadziioannou, Topological polymer networks with sliding cross-link points: the “Sliding Gels”. Relationships between their molecular structure and viscoelastic as well as the swelling properties. Macromolecules 40(3), 535–543 (2007)CrossRefGoogle Scholar
  32. 32.
    Y. Okumura, K. Ito, The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv. Mater. 13(7), 485–487 (2001)CrossRefGoogle Scholar
  33. 33.
    E.A. Appel, F. Biedermann, U. Rauwald, S.T. Jones, J.M. Zayed, O.A. Scherman, Supramolecular cross-linked networks via host-guest complexation with cucurbit[8]uril. J. Am. Chem. Soc. 132, 14251–14260 (2010)PubMedCrossRefGoogle Scholar
  34. 34.
    C. Zhao, Y. Domon, Y. Okumura, S. Okabe, M. Shibayama, K. Ito, Sliding mode of cyclodextrin in polyrotaxane and slide-ring gel. J. Phys. Condens. Matter 17(31), S2841–S2846 (2005)CrossRefGoogle Scholar
  35. 35.
    A.B.. Imran, K. Esaki, H. Gotoh, T. Seki, K. Ito, Y. Sakai, Y. Takeoka, Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network. Nat. Commun. 5 (2014).  https://doi.org/10.1038/ncomms6124
  36. 36.
    J. Henise, B.R. Hearn, G.W. Ashley, D.V. Santi, Biodegradable tetra-PEG hydrogels as carriers for a releasable drug delivery system. Bioconjug. Chem. 26(2), 270–278 (2015)PubMedCrossRefGoogle Scholar
  37. 37.
    H. Jia, Z. Huang, Z. Li, Z. Zheng, X. Wang, One-pot synthesis of highly mechanical and redox-degradable polyurethane hydrogels based on tetra-PEG and disulfide/thiol chemistry. RSC Adv. 6(54), 48863–48869 (2016)CrossRefGoogle Scholar
  38. 38.
    D. Klempner, L.H. Sperling, L.A. Utacki, Interpenetrating networks: an overview, in Interpenetrating Polymer Networks, vol 239. (American Chemical Society, Washington, DC, 1994).  https://doi.org/10.1021/ba-1994-0239. https://pubs.acs.org/isbn/9780841225282
  39. 39.
    L.H. Sperling, Recent advances in interpenetrating polymer networks. Polym. Eng. Sci. 25(9), 517–520 (1985)CrossRefGoogle Scholar
  40. 40.
    K.C. Frisch, A topologically interpenetration elastomeric network. J. Polym. Sci. B Polym. Lett. 7, 775–779 (1969)CrossRefGoogle Scholar
  41. 41.
    L.H. Sperling, D.W. Freidman, Synthesis and mechanical behavior of interpenetrating polymer networks: Poly(ethyl acrylate) and polystyrene. J. Polym. Sci. A2 Polym. Phys. 7(2), 425–427 (1969)CrossRefGoogle Scholar
  42. 42.
    L.H. Sperling, An overview of interpenetrating networks, in Polymeric Materials Encyclopedia, ed. by J.C. Salamone (CRC Press, Boca Raton, 1996)Google Scholar
  43. 43.
    T.R. Hoare, D.S. Kohane, Hydrogels in drug delivery: progress and challenges. Polymer 49(8), 1993–2007 (2008)CrossRefGoogle Scholar
  44. 44.
    E.S. Dragan, Design and applications of interpenetrating polymer network hydrogels. A review. Chem. Eng. J. 243, 572–590 (2014)CrossRefGoogle Scholar
  45. 45.
    T. Gilbert, N.M.B. Smeets, T. Hoare, Injectable interpenetrating network hydrogels via kinetically orthogonal reactive mixing of functionalized polymeric precursors. ACS Macro Lett. 4(10), 1104–1109 (2015)CrossRefGoogle Scholar
  46. 46.
    Y. Qiu, K. Park, Superporous IPN hydrogels having enhanced mechanical properties. AAPS PharmSciTech. 4(4), 406–412 (2003)PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    K.C. Frisch, D. Klempner, H.L. Frisch, Recent advances in polymer alloys and IPN technology. Mater. Des. 4, 821–827 (1983)CrossRefGoogle Scholar
  48. 48.
    Y. Zhang, J. Liu, L. Huang, Z. Wang, L. Wang, Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery. Sci. Rep. 5, 12374 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Y.H. Bae, T. Okano, C. Ebert, S. Heiber, S. Dave, S.W. Kim, Heterogeneous interpenetrating polymer networks for drug delivery. J. Control. Release 16, 189–196 (1991)CrossRefGoogle Scholar
  50. 50.
    J.P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15(14), 1155–1158 (2003)CrossRefGoogle Scholar
  51. 51.
    T. Nakajima, H. Furukawa, Y. Tanaka, T. Kurokawa, Y. Osada, J.P. Gong, True chemical structure of double network hydrogels. Macromolecules 42, 2184–2189 (2009)CrossRefGoogle Scholar
  52. 52.
    J.P. Gong, Why are double network hydrogels so tough? Soft Matter 6(12), 2583–2590 (2010)CrossRefGoogle Scholar
  53. 53.
    R.E. Webber, C. Creton, Large strain hysteresis and Mullins effect of tough double-network hydrogels. Macromolecules 40(8), 2919–2927 (2007)CrossRefGoogle Scholar
  54. 54.
    Q.M. Yu, Y. Tanaka, H. Furukawa, T. Kurokawa, J.P. Gong, Direct observation of damage zone around crack tips in double-network gels. Macromolecules 42(12), 3852–3855 (2009)CrossRefGoogle Scholar
  55. 55.
    Q. Chen, H. Chen, L. Zhu, J. Zheng, Fundamentals of double network hydrogels. J. Mater. Chem. B 3(18), 3654–3676 (2015)CrossRefGoogle Scholar
  56. 56.
    J.Y. Sun, X. Zhao, W.R.K. Illeperuma, O. Chaudhuri, K.H. Oh, D.J. Mooney, J.J. Vlassak, Z. Suo, Highly stretchable and tough hydrogels. Nature 489(7414), 133–136 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Q. Chen, L. Zhu, C. Zhao, Q. Wang, J. Zheng, A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide. Adv. Mater. 25(30), 4171–4176 (2013)PubMedCrossRefGoogle Scholar
  58. 58.
    P. Schexnailder, G. Schmidt, Nanocomposite polymer hydrogels. Colloid Polym. Sci. 287(1), 1–11 (2008)CrossRefGoogle Scholar
  59. 59.
    Y. Liu, H. Meng, S. Konst, R. Sarmiento, R. Rajachar, B.P. Lee, Injectable dopamine-modified poly(ethylene glycol) nanocomposite hydrogel with enhanced adhesive property and bioactivity. ACS Appl. Mater. Interfaces 6(19), 16982–16992 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    G. Marcelo, M. Lopez-Gonzalez, F. Mendicuti, M.P. Tarazona, M. Valiente, Poly(N-isopropylacrylamide)/gold hybrid hydrogels prepared by catechol redox chemistry. Characterization and smart tunable catalytic activity. Macromolecules 47(17), 6028–6036 (2014)CrossRefGoogle Scholar
  61. 61.
    V. Pardo-Yissar, R. Gabai, A.N. Shipway, T. Bourenko, I. Willner, Gold nanoparticle/hydrogel composites with solvent-switchable electronic properties. Adv. Mater. 13(17), 1320–1323 (2001)CrossRefGoogle Scholar
  62. 62.
    C. Wang, N.T. Flynn, R. Langer, Controlled structure and properties of thermoresponsive nanoparticle–hydrogel composites. Adv. Mater. 16(13), 1074–1079 (2004)CrossRefGoogle Scholar
  63. 63.
    M.A. da Silva, C.A. Dreiss, Soft nanocomposites: nanoparticles to tune gel properties. Polym. Int. 65(3), 268–279 (2016)CrossRefGoogle Scholar
  64. 64.
    P. Thoniyot, M.J. Tan, A.A. Karim, D.J. Young, X.J. Loh, Nanoparticle-hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv. Sci. 2(1–2), 1400010 (2015)CrossRefGoogle Scholar
  65. 65.
    S.R. Sershen, S.L. Westcott, N.J. Halas, J.L. West, Independent optically addressable nanoparticle-polymer optomechanical composites. Appl. Phys. Lett. 80(24), 4609–4611 (2002)CrossRefGoogle Scholar
  66. 66.
    N. Ravi, H.A. Aliyar, P.D. Hamilton, Hydrogel nanocomposite as a synthetic intra-ocular Lens capable of accommodation. Macromol. Symp. 227(1), 191–202 (2005)CrossRefGoogle Scholar
  67. 67.
    M. Liu, Y. Ishida, Y. Ebina, T. Sasaki, T. Aida, Photolatently modulable hydrogels using unilamellar titania nanosheets as photocatalytic crosslinkers. Nat. Commun. 4 (2013).  https://doi.org/10.1038/ncomms3029
  68. 68.
    L. Sheeney-Haj-Ichia, G. Sharabi, I. Willner, Control of the electronic properties of thermosensitive poly(N-isopropylacrylamide) and au-nanoparticle/poly(N-isopropylacrylamide) composite hydrogels upon phase transition. Adv. Funct. Mater. 12(1), 27–32 (2002)CrossRefGoogle Scholar
  69. 69.
    Y. Guo, J.-S. Hu, H.-P. Liang, L.-J. Wan, C.-L. Bai, Highly dispersed metal nanoparticles in porous anodic alumina films prepared by a breathing process of polyacrylamide hydrogel. Chem. Mater. 15, 4332–4336 (2003)CrossRefGoogle Scholar
  70. 70.
    C.D. Jones, L.A. Lyon, Photothermal patterning of microgel gold nanoparticle composite colloidal crystals. J. Am. Chem. Soc. 125, 460–465 (2003)PubMedCrossRefGoogle Scholar
  71. 71.
    P.S. Murthy, Y. Murali Mohan, K. Varaprasad, B. Sreedhar, K. Mohana Raju, First successful design of semi-IPN hydrogel-silver nanocomposites: a facile approach for antibacterial application. J. Colloid Interface Sci. 318(2), 217–224 (2008)PubMedCrossRefGoogle Scholar
  72. 72.
    Y. Xiang, D. Chen, Preparation of a novel pH-responsive silver nanoparticle/poly(HEMA–PEGMA–MAA) composite hydrogel. Eur. Polym. J. 43(10), 4178–4187 (2007)CrossRefGoogle Scholar
  73. 73.
    K. Varaprasad, G.S. Mohan Reddy, J. Jayaramudu, R. Sadiku, K. Ramam, S. Sinha Ray, Development of microbial resistant Carbopol nanocomposite hydrogels via a green process. Biomater. Sci. 2(2), 257–263 (2014)CrossRefGoogle Scholar
  74. 74.
    S. Rose, A. Prevoteau, P. Elziere, D. Hourdet, A. Marcellan, L. Leiber, Nanoparticle solutions as adhesives for gels and biological tissues. Nature 505(7483), 382–385 (2014)PubMedCrossRefGoogle Scholar
  75. 75.
    D. Zhang, J. Yang, S. Bao, Q. Wu, O. Wang, Semiconductor nanoparticle-based hydrogels prepared via self-initiated polymerization under sunlight, even visible light. Sci. Rep. 3, 1399 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    A. Skardal, J. Zhang, L. McCoard, S. Oottamasathien, G.D. Prestwich, Dynamically crosslinked gold nanoparticle – hyaluronan hydrogels. Adv. Mater. 22(42), 4736–4740 (2010)PubMedCrossRefGoogle Scholar
  77. 77.
    H. Wu, G. Yu, L. Pan, N. Liu, M.T. McDowell, Z. Bao, Y. Cui, Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 4, 1943 (2013)PubMedCrossRefGoogle Scholar
  78. 78.
    F. Zhao, D. Yao, R. Guo, L. Deng, A. Dong, J. Zhang, Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterials 5(4), 2054–2130 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    A. Motealleh, N.S. Kehr, Nanocomposite hydrogels and their applications in tissue engineering. Adv. Healthc. Mater. 6(1) (2017).  https://doi.org/10.1002/adhm.201600938
  80. 80.
    K.A. Juby, C. Dwivedi, M. Kumar, S. Kota, H.S. Misra, P.N. Bajaj, Silver nanoparticle-loaded PVA/gum acacia hydrogel: synthesis, characterization and antibacterial study. Carbohydr. Polym. 89(3), 906–913 (2012)PubMedCrossRefGoogle Scholar
  81. 81.
    N. Sahiner, S. Butun, O. Ozay, B. Dibek, Utilization of smart hydrogel-metal composites as catalysis media. J. Colloid Interface Sci. 373(1), 122–128 (2012)PubMedCrossRefGoogle Scholar
  82. 82.
    H.L. Abd El-Mohdy, Radiation synthesis of nanosilver/poly vinyl alcohol/cellulose acetate/gelatin hydrogels for wound dressing. J. Polym. Res. 20, 177 (2013).  https://doi.org/10.1007/s10965-013-0177-6CrossRefGoogle Scholar
  83. 83.
    I. Tokarev, I. Tokareva, V. Gopishettu, E. Katz, S. Minko, Specific biochemical-to-optical signal transduction by responsive thin hydrogel films loaded with noble metal nanoparticles. Adv. Mater. 22(12), 1412–1416 (2010)PubMedCrossRefGoogle Scholar
  84. 84.
    G.R. Bardajee, Z. Hooshyar, H. Rezanezhad, A novel and green biomaterial based silver nanocomposite hydrogel: synthesis, characterization and antibacterial effect. J. Inorg. Biochem. 117, 367–373 (2012)PubMedCrossRefGoogle Scholar
  85. 85.
    Y. Murali Mohan, K. Lee, T. Premkumar, K.E. Geckler, Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polymer 48(1), 158–164 (2007)CrossRefGoogle Scholar
  86. 86.
    J.S. Kim, E. Kuk, K.N. Yu, J.H. Kim, S.J. Park, J.L. Hu, S.H. Kim, Y.K. Park, Y.H. Park, C.Y. Hwang, Y.K. Kim, Y.S. Lee, D.H. Jeong, M.H. Cho, Antimicrobial effects of silver nanoparticles. Nanomedicine 3(1), 95–101 (2007)PubMedCrossRefGoogle Scholar
  87. 87.
    E.S. Abdel-Halim, S.S. Al-Deyab, Electrically conducting silver/guar gum/poly(acrylic acid) nanocomposite. Int. J. Biol. Macromol. 69, 456–463 (2014)PubMedCrossRefGoogle Scholar
  88. 88.
    P. Saravanan, M. Padmanabha Raju, S. Alam, A study on synthesis and properties of Ag nanoparticles immobilized polyacrylamide hydrogel composites. Mater. Chem. Phys. 103(2–3), 278–282 (2007)CrossRefGoogle Scholar
  89. 89.
    K. Vimala, K.S. Sivudu, Y.M. Mohan, B. Sreedhar, K. Mohana Raju, Controlled silver nanoparticles synthesis in semi-hydrogel networks of poly(acrylamide) and carbohydrates: a rational methodology for antibacterial application. Carbohydr. Polym. 75(3), 463–471 (2009)CrossRefGoogle Scholar
  90. 90.
    B. Tyliszczak, A. Drabczyk, S. Kudiacik-Kramarczyk, K. Bialik-Was, R. Kijowska, A. Sobczak-Kupiec, Preparation and cytotoxicity of chitosan-based hydrogels modified with silver nanoparticles. Colloids Surf. B: Biointerfaces 160, 325–330 (2017)PubMedCrossRefGoogle Scholar
  91. 91.
    Y.-Q. Ma, J.-Z. Yi, L.-M. Zhang, A facile approach to incorporate silver nanoparticles into dextran-based hydrogels for antibacterial and Catalytical application. J. Macromol. Sci. A 46(6), 643–648 (2009)CrossRefGoogle Scholar
  92. 92.
    R. Resmi, S. Unnikrishnan, L.K. Krishman, V.K. Krishnan, Synthesis and characterization of silver nanoparticle incorporated gelatin-hydroxypropyl methacrylate hydrogels for wound dressing applications. J. Appl. Polym. Sci. 134(10) (2017).  https://doi.org/10.1002/app.44529
  93. 93.
    E. Marsich, A. Travan, I. Donati, A. Di Luca, M. Benincasa, M. Crosera, S. Paoletti, Biological response of hydrogels embedding gold nanoparticles. Colloids Surf. B: Biointerfaces 83(2), 331–339 (2011)PubMedCrossRefGoogle Scholar
  94. 94.
    A.G. Skirtach, C. Dejugnat, D. Braun, A.S. Susha, A.L. Rogach, W. Parak, H. Mohwald, G.B. Sukhorukov, The role of metal nanoparticles in remote release of encapsulated materials. Nano Lett. 5(7), 1371–1377 (2005)PubMedCrossRefGoogle Scholar
  95. 95.
    J.-H. Kim, T.R. Lee, Hydrogel-templated growth of large gold nanoparticles: synthesis of thermally responsive hydrogel-nanoparticle composites. Langmuir 23, 6504–6509 (2007)PubMedCrossRefGoogle Scholar
  96. 96.
    I. Maity, D.B. Rasale, A.K. Das, Sonication induced peptide-appended bolaamphiphile hydrogels for in situ generation and catalytic activity of Pt nanoparticles. Soft Matter 8(19), 5301–5308 (2012)CrossRefGoogle Scholar
  97. 97.
    R. Fuhrer, E.K. Athanassiou, N.A. Luechinger, W.J. Stark, Crosslinking metal nanoparticles into the polymer backbone of hydrogels enables preparation of soft, magnetic field-driven actuators with muscle-like flexibility. Small 5(3), 383–388 (2009)PubMedCrossRefGoogle Scholar
  98. 98.
    J. Liu, J. Wang, Y. Wang, C. Liu, M. Jin, Y. Xu, L. Li, X. Guo, A. Hu, T. Liu, S.F. Lincoln, R.K. Prud’homme, A thermosensitive hydrogel carrier for nickel nanoparticles. Colloids Interf. Sci. Commun 4, 1–4 (2015)CrossRefGoogle Scholar
  99. 99.
    M.E. Villanueva, A.M. Diez, J.A. Gonzalez, C.J. Perez, M. Orrego, L. Piehl, S. Teves, G.J. Copello, Antimicrobial activity of starch hydrogel incorporated with copper nanoparticles. ACS Appl. Mater. Interfaces 8(25), 16280–16288 (2016)PubMedCrossRefGoogle Scholar
  100. 100.
    N. Sahiner, O. Ozay, N. Aktas, E. Inger, J. He, The on demand generation of hydrogen from co-Ni bimetallic nano catalyst prepared by dual use of hydrogel: as template and as reactor. Int. J. Hydrog. Energy 36(23), 15250–15258 (2011)CrossRefGoogle Scholar
  101. 101.
    A. Tiwari, N. Sharma, Efficiency of superparamagnetic Nano Iron oxide loaded poly(acrylamide-co-maleic acid) hydrogel in Uptaking Cu2+ ions from water. J. Disp. Sci. Technol. 34(10), 1437–1446 (2013)CrossRefGoogle Scholar
  102. 102.
    O. Korotych, Y. Samchenko, I. Boldeskul, Z. Ulberg, N. Zholobak, L. Sukhodub, N-isopropylacrylamide-based fine-dispersed thermosensitive ferrogels obtained via in-situ technique. Mater. Sci. Eng. C Mater. Biol. Appl. 33(2), 892–900 (2013)PubMedCrossRefGoogle Scholar
  103. 103.
    N. Sahiner, O. Ozay, N. Aktas, Aromatic organic contaminant removal from an aqueous environment by p(4-VP)-based materials. Chemosphere 85(5), 832–838 (2011)PubMedCrossRefGoogle Scholar
  104. 104.
    H. Yan, L. Yang, Z. Yang, H. Yang, A. Li, R. Cheng, Preparation of chitosan/poly(acrylic acid) magnetic composite microspheres and applications in the removal of copper(II) ions from aqueous solutions. J. Hazard. Mater. 229–230, 371–380 (2012)PubMedCrossRefGoogle Scholar
  105. 105.
    O. Ozay, S. Ekici, Y. Baran, N. Aktas, N. Sahiner, Removal of toxic metal ions with magnetic hydrogels. Water Res. 43(17), 4403–4411 (2009)PubMedCrossRefGoogle Scholar
  106. 106.
    M.A. Martins, M.C. Neves, A.C.C. Esteves, P.I. Girginova, A.J. Guiomar, V.S. Amaral, T. Trindale, Biofunctionalized ferromagnetic CoPt3/polymer nanocomposites. Nanotechnology 18(21) (2007).  https://doi.org/10.1088/0957-4484/18/21/215609
  107. 107.
    S.B. Campbell, M. Patenaude, T. Hoare, Injectable superparamagnets: highly elastic and degradable poly(N-isopropylacrylamide)-superparamagnetic iron oxide nanoparticle (SPION) composite hydrogels. Biomacromolecules 14(3), 644–653 (2013)PubMedCrossRefGoogle Scholar
  108. 108.
    V.K. Thakur, M.R. Kessler, Self-healing polymer nanocomposite materials: a review. Polymer 69, 369–383 (2015)CrossRefGoogle Scholar
  109. 109.
    C.R. van den Brom, I. Anac, R.F. Roskamp, M. Retsch, U. Jonas, B. Menges, J.A. Preece, The swelling behaviour of thermoresponsive hydrogel/silica nanoparticle composites. J. Mater. Chem. 20(23), 4827–4839 (2010)CrossRefGoogle Scholar
  110. 110.
    A.A. Adewunmi, S. Ismail, A.S. Sultan, Carbon nanotubes (CNTs) nanocomposite hydrogels developed for various applications: a critical review. J. Inorg. Organomet. Polym. Mater. 26(4), 717–737 (2016)CrossRefGoogle Scholar
  111. 111.
    J. Wang, S. Banerji, N. Menegazzo, W. Peng, Q. Zou, K.S. Booksh, Glucose detection with surface plasmon resonance spectroscopy and molecularly imprinted hydrogel coatings. Talanta 86, 133–141 (2011)PubMedCrossRefGoogle Scholar
  112. 112.
    J.O. You, D.T. Auguste, Conductive, physiologically responsive hydrogels. Langmuir 26(7), 4607–4612 (2010)PubMedCrossRefGoogle Scholar
  113. 113.
    C. Chang, J. Peng, L. Zhang, D.W. Pang, Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices. J. Mater. Chem. 19(41), 7771–7776 (2009)CrossRefGoogle Scholar
  114. 114.
    A. Salcher, M.S. Nikolic, S. Casado, M. Velez, H. Weller, B.H. Juarez, CdSe/CdS nanoparticles immobilized on pNIPAm-based microspheres. J. Mater. Chem. 20(7), 1367–1374 (2010)CrossRefGoogle Scholar
  115. 115.
    J. Yang, C.R. Han, J.F. Duan, F. Xu, R.C. Sun, In situ grafting silica nanoparticles reinforced nanocomposite hydrogels. Nanoscale 5(22), 10858–10863 (2013)PubMedCrossRefGoogle Scholar
  116. 116.
    X. Hu, X. Hao, J. Zhang, X. Zhang, P.C. Wang, G. Zou, X.J. Liang, Multifunctional hybrid silica nanoparticles for controlled doxorubicin loading and release with thermal and pH dually response. J. Mater. Chem. B Mater. Biol. Med. 1(8), 1109–1118 (2013)PubMedCrossRefGoogle Scholar
  117. 117.
    G.S. Alvarez, C. Helary, A.M. Mebert, X. Wang, T. Coradin, M.F. Desimone, Antibiotic-loaded silica nanoparticle–collagen composite hydrogels with prolonged antimicrobial activity for wound infection prevention. J. Mater. Chem. B 2(29), 4660–4670 (2014)CrossRefGoogle Scholar
  118. 118.
    L.Z. Zhao, C.H. Zhou, J. Wang, D.S. Tong, W.H. Yu, H. Wang, Recent advances in clay mineral-containing nanocomposite hydrogels. Soft Matter 11(48), 9229–9246 (2015)PubMedCrossRefGoogle Scholar
  119. 119.
    M. Irani, H. Ismail, Z. Ahmad, Preparation and properties of linear low-density polyethylene-g-poly (acrylic acid)/organo-montmorillonite superabsorbent hydrogel composites. Polym. Test. 32(3), 502–512 (2013)CrossRefGoogle Scholar
  120. 120.
    A.S. Ozcan, B. Erdem, A. Ozcan, Adsorption of Acid Blue 193 from aqueous solutions onto Na-bentonite and DTMA-bentonite. J. Colloid Interface Sci. 280(1), 44–54 (2004)PubMedCrossRefGoogle Scholar
  121. 121.
    K.J. De France, T. Hoare, E.D. Cranston, Review of hydrogels and aerogels containing nanocellulose. Chem. Mater. 29(11), 4609–4631 (2017)CrossRefGoogle Scholar
  122. 122.
    K.J. De France, K.G. Yager, K.J.W. Chan, B. Corbett, E.D. Cranston, T. Hoare, Injectable anisotropic nanocomposite hydrogels direct in situ growth and alignment of myotubes. Nano Lett. 17(10), 6487–6495 (2017)PubMedCrossRefGoogle Scholar
  123. 123.
    R. Sanna, D. Sanna, V. Alzari, D. Nuvoli, S. Scognamillo, M. Piccinini, M. Lazzari, M. Gioffredi, E. Gioffredi, G. Malucelli, A. Mariani, Synthesis and characterization of graphene-containing thermoresponsive nanocomposite hydrogels of poly(N-vinylcaprolactam) prepared by frontal polymerization. J. Polym. Sci. A Polym. Chem. 50(19), 4110–4118 (2012)CrossRefGoogle Scholar
  124. 124.
    A.O. Moughton, M.A. Hillmyer, T.P. Lodge, Multicompartment block polymer micelles. Macromolecules 45(1), 2–19 (2012)CrossRefGoogle Scholar
  125. 125.
    D. Sivakumaran, D. Maitland, T. Hoare, Injectable microgel-hydrogel composites for prolonged small-molecule drug delivery. Biomacromolecules 12(11), 4112–4120 (2011)PubMedCrossRefGoogle Scholar
  126. 126.
    R.T. Chacko, J. Ventura, J. Zhuang, S. Thayumanavan, Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv. Drug Deliv. Rev. 64(9), 836–851 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    G.L. Li, H. Mohwald, D.G. Shchukin, Precipitation polymerization for fabrication of complex core–shell hybrid particles and hollow structures. Chem. Soc. Rev. 42(8), 3628–3646 (2013)PubMedCrossRefGoogle Scholar
  128. 128.
    A.D. Schlüter, A. Halperin, M. Kroger, D. Vlassopoulos, G. Wegner, B. Zhang, Dendronized polymers: molecular objects between conventional linear polymers and colloidal particles. ACS Macro Lett. 3(10), 991–998 (2014)CrossRefGoogle Scholar
  129. 129.
    T.C.B. McLeish, Macromolecular Engineering: Precise Synthesis, Materials Properties, Applications (Wiley-VCH, Weinheim, 2007)Google Scholar
  130. 130.
    M. Emmelius, G. Horpel, H. Ringsdorf, B. Schmidt, in Polymeric micelles and liposomes as potential drug carriers, Polymers in Medicine II: Biomedical and Pharmaceutical Applications, ed. by E. Chiellini, C. Migliaresi, L. Nicolais (Springer, Boston, 1986), pp. 313–331Google Scholar
  131. 131.
    N. Bait, B. Grassl, C. Derail, A. Benaboura, Hydrogel nanocomposites as pressure-sensitive adhesives for skin-contact applications. Soft Matter 7, 2025–2032 (2011)CrossRefGoogle Scholar
  132. 132.
    R.C. Luo, Z.H. Lim, W. Li, P. Shi, C.H. Chen, Near-infrared light triggerable deformation-free polysaccharide double network hydrogels. Chem. Commun. 50(53), 7052–7055 (2014)CrossRefGoogle Scholar
  133. 133.
    D.L. Taylor, M. In Het, Panhuis, self-healing hydrogels. Adv. Mater. 28(41), 9060–9093 (2016)PubMedCrossRefGoogle Scholar
  134. 134.
    Z. Wei, J.H. Yang, J. Zhou, F. Xu, M. Zrinyi, P.H. Dussault, Y. Osada, Y.M. Chen, Self-healing gels based on constitutional dynamic chemistry and their potential applications. Chem. Soc. Rev. 43(23), 8114–8131 (2014)PubMedCrossRefGoogle Scholar
  135. 135.
    D.C. Tuncaboylu, M. Sahin, A. Argun, W. Opperman, O. Okay, Dynamics and large strain behavior of self-healing hydrogels with and without surfactants. Macromolecules 45(4), 1991–2000 (2012)CrossRefGoogle Scholar
  136. 136.
    Z. Rao, M. Inoue, M. Matsuda, T. Taguchi, Quick self-healing and thermo-reversible liposome gel. Colloids Surf. B: Biointerfaces 82(1), 196–202 (2011)PubMedCrossRefGoogle Scholar
  137. 137.
    G. Akay, A. Hassan-Raeisi, D.C. Tuncaboylu, N. Orakdogen, S. Abdurrahmanoglu, W. Oppermann, O. Okay, Self-healing hydrogels formed in catanionic surfactant solutions. Soft Matter 9(7), 2254–2261 (2013)CrossRefGoogle Scholar
  138. 138.
    D.C. Tuncaboylu, A. Argun, M. Sahin, M. Sari, O. Okay, Structure optimization of self-healing hydrogels formed via hydrophobic interactions. Polymer 53(24), 5513–5522 (2012)CrossRefGoogle Scholar
  139. 139.
    D.C. Tuncaboylu, M. Sari, W. Oppermann, O. Okay, Tough and self-healing hydrogels formed via hydrophobic interactions. Macromolecules 44(12), 4997–5005 (2011)CrossRefGoogle Scholar
  140. 140.
    T. Kakuta, Y. Takashima, M. Nakahata, M. Otsubo, H. Yamaguchi, A. Harada, Preorganized hydrogel: self-healing properties of supramolecular hydrogels formed by polymerization of host-guest-monomers that contain cyclodextrins and hydrophobic guest groups. Adv. Mater. 25(20), 2849–2853 (2013)PubMedCrossRefGoogle Scholar
  141. 141.
    M. Zhang, D. Xu, X. Yan, J. Chen, S. Dong, B. Zheng, F. Huang, Self-healing supramolecular gels formed by crown ether based host-guest interactions. Angew. Chem. Int. Ed. 51(28), 7011–7015 (2012)CrossRefGoogle Scholar
  142. 142.
    M. Nakahata, Y. Takashima, H. Yamaguchi, A. Harada, Redox-responsive self-healing materials formed from host-guest polymers. Nat. Commun. 2, 511 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    A. Phadke, C. Zhang, B. Arman, C.C. Hsu, R.A. Mashelkar, A.K. Lele, M.J. Tauber, G. Arya, S. Varghese, Rapid self-healing hydrogels. Proc. Natl. Acad. Sci. 109(12), 4383–4388 (2012)PubMedCrossRefGoogle Scholar
  144. 144.
    J. Cui, A. del Campo, Multivalent H-bonds for self-healing hydrogels. Chem. Commun. 48(74), 9302–9304 (2012)CrossRefGoogle Scholar
  145. 145.
    H. Zhang, H. Xia, Y. Zhao, Poly(vinyl alcohol) hydrogel can autonomously self-heal. ACS Macro Lett. 1(11), 1233–1236 (2012)CrossRefGoogle Scholar
  146. 146.
    A.P. Nowak, V. Breedveld, L. Pakstis, B. Ozbas, D.J. Pine, D. Pochan, T.J. Deming, Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 417, 424–428 (2002)PubMedCrossRefGoogle Scholar
  147. 147.
    K. Sano, R. Kawamura, T. Tominaga, N. Oda, K. Ijiro, Y. Osada, Self-repairing filamentous actin hydrogel with hierarchical structure. Biomacromolecules 12(12), 4173–4177 (2011)PubMedCrossRefGoogle Scholar
  148. 148.
    Q. Wang, J.L. Mynar, M. Yoshida, T. Aida, High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463(7279), 339–343 (2010)PubMedCrossRefGoogle Scholar
  149. 149.
    K. Haraguchi, K. Uyama, H. Tanimoto, Self-healing in nanocomposite hydrogels. Macromol. Rapid Commun. 32(16), 1253–1258 (2011)PubMedCrossRefGoogle Scholar
  150. 150.
    J. Liu, G. Song, C. He, H. Wang, Self-healing in tough graphene oxide composite hydrogels. Macromol. Rapid Commun. 34(12), 1002–1007 (2013)PubMedCrossRefGoogle Scholar
  151. 151.
    X. Yu, X. Cao, L. Chen, H. Lan, B. Liu, T. Yi, Thixotropic and self-healing triggered reversible rheology switching in a peptide-based organogel with a cross-linked nano-ring pattern. Soft Matter 8(12), 3329–3334 (2012)CrossRefGoogle Scholar
  152. 152.
    P. Mukhopadhyay, N. Fujita, A. Takada, T. Kishida, M. Shirakawa, S. Shinkai, Regulation of a real-time self-healing process in organogel tissues by molecular adhesives. Angew. Chem. Int. Ed. 49(36), 6338–6342 (2010)CrossRefGoogle Scholar
  153. 153.
    M.C. Roberts, A. Mahalingam, M.C. Hanson, P.F. Kiser, Chemorheology of phenylboronate−salicylhydroxamate cross-linked hydrogel. Macromolecules 41(22), 8832–8840 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    M.C. Roberts, M.C. Hanson, A.P. Massey, E.A. Karren, P.F. Kiser, Dynamically restructuring hydrogel networks formed with reversible covalent crosslinks. Adv. Mater. 19(18), 2503–2507 (2007)CrossRefGoogle Scholar
  155. 155.
    L. He, D.E. Fullenkamp, J.G. Rivera, P.B. Messersmith, pH responsive self-healing hydrogels formed by boronate-catechol complexation. Chem. Commun. 47(26), 7497–7499 (2011)CrossRefGoogle Scholar
  156. 156.
    J.I. Jay, K. Langheinrich, M.C. Hanson, A. Mahalingam, P.F. Kiser, Unequal stoichiometry between crosslinking moieties affects the properties of transient networks formed by dynamic covalent crosslinks. Soft Matter 7(12), 5826–5835 (2011)CrossRefGoogle Scholar
  157. 157.
    J. Canadell, H. Goossens, B. Klumperman, Self-healing materials based on disulfide links. Macromolecules 44(8), 2536–2541 (2011)CrossRefGoogle Scholar
  158. 158.
    M. Pepels, I. Filot, B. Klumperman, H. Goossens, Self-healing systems based on disulfide–thiol exchange reactions. Polym. Chem. 4(18), 4955–4965 (2013)CrossRefGoogle Scholar
  159. 159.
    B. Yang, Y. Zhang, X. Zhang, L. Tao, S. Li, Y. Wei, Facilely prepared inexpensive and biocompatible self-healing hydrogel: a new injectable cell therapy carrier. Polym. Chem. 3(12), 3235–3238 (2012)CrossRefGoogle Scholar
  160. 160.
    M. Dowlut, D.G. Hall, An improved class of sugar-binding boronic acids, soluble and capable of complexing glycosides in neutral water. J. Am. Chem. Soc. 128, 4226–4227 (2006)PubMedCrossRefGoogle Scholar
  161. 161.
    Z.M. Wu, X.G. Zhang, C.X. Li, S.M. Zhang, R.N. Dong, D.M. Yu, Disulfide-crosslinked chitosan hydrogel for cell viability and controlled protein release. Eur. J. Pharm. Sci. 37(3–4), 198–206 (2009)PubMedCrossRefGoogle Scholar
  162. 162.
    G. Deng, F. Li, H. Yu, F. Liu, C. Liu, W. Sun, H. Jiang, Y. Chen, Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol–gel transitions. ACS Macro Lett. 1(2), 275–279 (2012)CrossRefGoogle Scholar
  163. 163.
    F. Liu, F. Li, G. Deng, Y. Cheng, B. Zhang, J. Zhang, C.Y. Liu, Rheological images of dynamic covalent polymer networks and mechanisms behind mechanical and self-healing properties. Macromolecules 45(3), 1636–1645 (2012)CrossRefGoogle Scholar
  164. 164.
    G. Deng, C. Tang, F. Li, H. Jiang, Y. Chen, Covalent cross-linked polymer gels with reversible sol−gel transition and self-healing properties. Macromolecules 43(3), 1191–1194 (2010)CrossRefGoogle Scholar
  165. 165.
    Y. Amamoto, J. Kamada, H. Otsuka, A. Takahara, K. Matjaszewski, Repeatable photoinduced self-healing of covalently cross-linked polymers through reshuffling of trithiocarbonate units. Angew. Chem. Int. Ed. 50(7), 1660–1663 (2011)CrossRefGoogle Scholar
  166. 166.
    R. Nicolaÿ, J. Kamada, A. Van Wassen, K. Matjaszewski, Responsive gels based on a dynamic covalent trithiocarbonate cross-linker. Macromolecules 43(9), 4355–4361 (2010)CrossRefGoogle Scholar
  167. 167.
    K. Imato, M. Nishihara, T. Kanehara, Y. Amamoto, A. Takahara, H. Otsuka, Self-healing of chemical gels cross-linked by diarylbibenzofuranone-based trigger-free dynamic covalent bonds at room temperature. Angew. Chem. Int. Ed. 51(5), 1138–1142 (2012)CrossRefGoogle Scholar
  168. 168.
    Y. Amamoto, H. Otsuka, A. Takahara, Self-healing of covalently cross-linked polymers by reshuffling thiuram disulfide moieties in air under visible light. Adv. Mater. 24(29), 3975–3980 (2012)PubMedCrossRefGoogle Scholar
  169. 169.
    P. Reutenauer, E. Buhler, P.J. Boul, S.J. Candau, J.M. Lehn, Room temperature dynamic polymers based on Diels-Alder chemistry. Chemistry 15(8), 1893–1900 (2009)PubMedCrossRefGoogle Scholar
  170. 170.
    A.A. Kavitha, N.K. Singha, “Click chemistry” in tailor-made polymethacrylates bearing reactive furfuryl functionality: a new class of self-healing polymeric material. ACS Appl. Mater. Interfaces 1(7), 1427–1436 (2009)PubMedCrossRefGoogle Scholar
  171. 171.
    C. Gaina, O. Urasche, V. Gaina, C.D. Varganici, Thermally reversible cross-linked poly(ether-urethane)s. Express Polym Lett 7(7), 636–650 (2013)CrossRefGoogle Scholar
  172. 172.
    L.R. Kesselman, S. Shinwary, P.R. Selvanganapathy, T. Hoare, Synthesis of monodisperse, covalently cross-linked, degradable “smart” microgels using microfluidics. Small 8(7), 1092–1098 (2012)PubMedCrossRefGoogle Scholar
  173. 173.
    A. Sannino, C. Demitri, M. Madaghiele, Biodegradable cellulose-based hydrogels: design and applications. Materials 2(2), 353–373 (2009)PubMedCentralCrossRefPubMedGoogle Scholar
  174. 174.
    A.H. Colby, Y.L. Colson, M.W. Grinstaff, Microscopy and tunable resistive pulse sensing characterization of the swelling of pH-responsive, polymeric expansile nanoparticles. Nanoscale 5(8), 3496–3504 (2013)PubMedCrossRefGoogle Scholar
  175. 175.
    V. Filipe, A. Hawe, W. Jiskoot, Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm. Res. 27(5), 796–810 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    H. Meng, H. Mohamadian, M. Stubblefield, D. Jerro, S. Ibekwe, S.S. Pang, G. Li, Various shape memory effects of stimuli-responsive shape memory polymers. Smart Mater. Struct. 22(9), 093001 (2013)CrossRefGoogle Scholar
  177. 177.
    R.Z. Alavijeh, P. Shokrollahi, J. Barzin, A thermally and water activated shape memory gelatin physical hydrogel, with a gel point above the physiological temperature, for biomedical applications. J. Mater. Chem. B 5(12), 2302–2314 (2017)CrossRefGoogle Scholar
  178. 178.
    G. Li, H. Zhang, D. Fortin, H. Xia, Y. Zhao, Poly(vinyl alcohol)-poly(ethylene glycol) double-network hydrogel: a general approach to shape memory and self-healing functionalities. Langmuir 31(42), 11709–11716 (2015)PubMedCrossRefGoogle Scholar
  179. 179.
    Y. Han, Y. Bai, Y. Liu, X. Zhai, W. Liu, Zinc ion uniquely induced triple shape memory effect of dipole-dipole reinforced ultra-high strength hydrogels. Macromol. Rapid Commun. 33(3), 225–231 (2012)PubMedCrossRefGoogle Scholar
  180. 180.
    J. Hao, R.A. Weiss, Mechanically tough, thermally activated shape memory hydrogels. ACS Macro Lett. 2(1), 86–89 (2013)CrossRefGoogle Scholar
  181. 181.
    B. Xu, Y. Li, F. Gao, X. Zhai, M. Sun, W. Lu, Z. Cao, W. Liu, High strength multifunctional multiwalled hydrogel tubes: ion-triggered shape memory, antibacterial, and anti-inflammatory efficacies. ACS Appl. Mater. Interfaces 7(30), 16865–16872 (2015)PubMedCrossRefGoogle Scholar
  182. 182.
    A. Yasin, H. Li, Z. Lu, S.u. Rehman, M. Siddig, H. Yang, A shape memory hydrogel induced by the interactions between metal ions and phosphate. Soft Matter 10(7), 972–977 (2014)PubMedCrossRefGoogle Scholar
  183. 183.
    Z.Q. Dong, Y. Cao, Q.J. Yuan, Y.F. Wang, J.H. Li, B.J. Li, S. Zhang, Redox- and glucose-induced shape-memory polymers. Macromol. Rapid Commun. 34(10), 867–872 (2013)PubMedCrossRefGoogle Scholar
  184. 184.
    K. Miyamae, M. Kakahata, Y. Takashima, A. Harada, Self-healing, expansion-contraction, and shape-memory properties of a preorganized supramolecular hydrogel through host-guest interactions. Angew. Chem. Int. Ed. 54(31), 8984–8987 (2015)CrossRefGoogle Scholar
  185. 185.
    G. Li, Q. Yan, H. Xia, Y. Zhao, Therapeutic-ultrasound-triggered shape memory of a melamine-enhanced poly(vinyl alcohol) physical hydrogel. ACS Appl. Mater. Interfaces 7(22), 12067–12073 (2015)PubMedCrossRefGoogle Scholar
  186. 186.
    Y. Fan, W. Zhou, A. Yasin, H. Li, H. Yang, Dual-responsive shape memory hydrogels with novel thermoplasticity based on a hydrophobically modified polyampholyte. Soft Matter 11(21), 4218–4225 (2015)PubMedCrossRefGoogle Scholar
  187. 187.
    W. Feng, W. Zhou, Z. Dai, A. Yasin, H. Yang, Tough polypseudorotaxane supramolecular hydrogels with dual-responsive shape memory properties. J. Mater. Chem. B 4(11), 1924–1931 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringMcMaster UniversityHamiltonCanada

Personalised recommendations