Skip to main content

Hydrogel Properties and Characterization Techniques

  • Living reference work entry
  • First Online:

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

Abstract

The unique structure of hydrogels as materials, including their soft mechanical properties, their typically high water contents, their capacity to respond to changes in their solvent environment, and their tunable and often multi-scale porosity, offers both significant challenges and specific opportunities in terms of their characterization. Herein, we describe the key properties associated with hydrogels (from both qualitative and quantitative perspectives) and review the major analytical techniques used to probe those properties, highlighting the strengths and weaknesses of various available strategies. Chemical, physical, and biological properties are all reviewed, with an emphasis on the techniques developed specific to hydrogels to measure swelling, mechanics, gelation time, and porosity.

This is a preview of subscription content, log in via an institution.

Abbreviations

AAS:

Atomic absorption spectroscopy

DLS:

Dynamic light scattering

FTIR:

Fourier transform infrared spectroscopy

IR:

Infrared spectroscopy

JKR:

Johnson-Kendall-Roberts

NMR:

Nuclear magnetic resonance

NTA:

Nanoparticle tracking analysis

PGSE-NMR:

Pulsed gradient spin-echo nuclear magnetic resonance

SANS:

Small-angle neutron scattering

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

TRPS:

Tunable resistive pulse sensing

UV:

Ultraviolet

Vis:

Visible light (as in UV/vis spectroscopy)

XPS:

X-ray photoelectron spectroscopy

References

  1. L.P. Lindeman, J.Q. Adams, Chemical shifts for the paraffins through C9. Anal. Chem. 43(10), 1245–1252 (1971)

    Article  CAS  Google Scholar 

  2. J.U. Izunobi, C.L. Higginbotham, Polymer molecular weight analysis by 1H NMR spectroscopy. J. Chem. Ed. 88(8), 1098–1104 (2011)

    Article  CAS  Google Scholar 

  3. A.M. Mathur, A.B.. Scranton, Characterization of hydrogels using nuclear magnetic resonance spectroscopy. Biomacromolecules 17, 547–557 (1997)

    Article  CAS  Google Scholar 

  4. C.M. Nolan, L.T. Gelbaum, L.A. Lyon, 1H NMR investigation of thermally triggered insulin release from poly(N-isopropylacrylamide) microgels. Biomacromolecules 7, 2918–2922 (2006)

    Article  CAS  Google Scholar 

  5. S. Van Vlierberghe, B. Fritzinger, J.C. Martins, P. Dubruel, Hydrogel network formation revised: high-resolution magic angle spinning nuclear magnetic resonance as a powerful tool for measuring absolute hydrogel cross-link efficiencies. Appl. Spect. 64(10), 1176–1180 (2010)

    Article  Google Scholar 

  6. D.L. Wise, Handbook of Pharmaceutical Controlled Release Technology (Marcel Dekker, New York, 2000)

    Book  Google Scholar 

  7. Q. Wu, J. Wei, B. Xu, X. Liu, H. Wang, W. Wang, Q. Wang, W. Liu, A robust, highly stretchable supramolecular polymer conductive hydrogel with self-healability and thermo-processability. Sci. Rep. 7, 41566 (2017)

    Article  Google Scholar 

  8. X. Deng, N.M.B. Smeets, C. Sicard, Y. Wang, J.D. Brennan, C.D.M. Filipe, T. Hoare, Poly(oligoethylene glycol methacrylate) dip-coating: turning cellulose paper into a protein-repellent platform for biosensors. J. Am. Chem. Soc. 136(37), 12852–12855 (2014)

    Article  CAS  Google Scholar 

  9. J. Zhu, C. Tang, K. Kottke-Marchant, R.E. Marchant, Design and synthesis of biomimetic hydrogel scaffolds with controlled organization of cyclic RGD peptides. Bioconjug. Chem. 20(2), 333–339 (2009)

    Article  CAS  Google Scholar 

  10. C.S. Fadley, X-ray photoelectron spectroscopy: progress and perspectives. J. Electron. Spect. Rel. Phenom. 178–179, 2–32 (2010)

    Article  Google Scholar 

  11. R.S. Tomar, I. Gupta, R. Singhal, A.K. Nagpal, Synthesis of poly(acrylamide-co-acrylic acid)-based super-absorbent hydrogels by gamma radiation: study of swelling behaviour and network parameters. Des. Monomers Polym. 10(1), 49–66 (2007)

    Article  CAS  Google Scholar 

  12. P.J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, 1953)

    Google Scholar 

  13. J. Hasa, M. Ilavsky, K. Dusek, Deformational, swelling, and potentiometric behavior of ionized poly(methacrylic acid) gels. I. Theory. J. Polym. Sci. Polym. Phys. 13, 253–262 (1975)

    Article  CAS  Google Scholar 

  14. A. Katchalsky, I. Michaeli, Polyelectrolyte gels in salt solution. J. Polym. Sci. XV, 69–86 (1955)

    Article  Google Scholar 

  15. T. Hoare, R. Pelton, Functionalized microgel swelling: comparing theory and experiment. J. Phys. Chem. B 111, 11895–11906 (2007)

    Article  CAS  Google Scholar 

  16. J.E. Silva, R. Geryak, D.A. Loney, P.A. Kottke, R.R. Naik, V.V. Tsukruk, A.G. Fedorov, Stick-slip water penetration into capillaries coated with swelling hydrogel. Soft. Matter. 11(29), 5933–5939 (2015)

    Article  CAS  Google Scholar 

  17. M. Patenaude, S. Campbell, D. Kinio, T. Hoare, Tuning gelation time and morphology of injectable hydrogels using ketone-hydrazide cross-linking. Biomacromolecules 15(3), 781–790 (2014)

    Article  CAS  Google Scholar 

  18. T. Gilbert, N.M.B. Smeets, T. Hoare, Injectable interpenetrating network hydrogels via kinetically orthogonal reactive mixing of functionalized polymeric precursors. ACS. Macro. Lett. 4(10), 1104–1109 (2015)

    Article  CAS  Google Scholar 

  19. G. Lin, S. Chang, H. Hao, P. Tathireddy, M. Orthner, J. Magda, F. Solzbacher, Osmotic swelling pressure response of smart hydrogels suitable for chronically-implantable glucose sensors. Sens. Actuators B Chem. 144(1), 332–336 (2010)

    Article  CAS  Google Scholar 

  20. F. Horkaya, M.H. Han, I.S. Han, I.S. Bang, J.J. Maqda, Separation of the effects of pH and polymer concentration on the swelling pressure and elastic modulus of a pH-responsive hydrogel. Polymer 47(21), 7335–7338 (2006)

    Article  Google Scholar 

  21. E. Bakaic, N.M.B. Smeets, H. Dorrington, T. Hoare, “Off-the-shelf” thermoresponsive hydrogel design: tuning hydrogel properties by mixing precursor polymers with different lower-critical solution temperatures. RSC Adv. 5(42), 33364–33376 (2015)

    Article  CAS  Google Scholar 

  22. B. Zhang, H. Tao, B. Wei, Z. Jin, X. Xu, Y. Tian, Characterization of different substituted carboxymethyl starch microgels and their interactions with lysozyme. PLoS One 9(12), e114634 (2014)

    Article  Google Scholar 

  23. L.R. Kesselman, S. Shinwary, P.R. Selvanganapathy, T. Hoare, Synthesis of monodisperse, covalently cross-linked, degradable “smart” microgels using microfluidics. Small 8(7), 1092–1098 (2012)

    Article  CAS  Google Scholar 

  24. A.H. Colby, Y.L. Colson, M.W. Grinstaff, Microscopy and tunable resistive pulse sensing characterization of the swelling of pH-responsive, polymeric expansile nanoparticles. Nanoscale 5(8), 3496–3504 (2013)

    Article  CAS  Google Scholar 

  25. V. Filipe, A. Hawe, W. Jiskoot, Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Pharm. Res. 27(5), 796–810 (2010)

    Article  CAS  Google Scholar 

  26. X. Liu, Y. Yang, Y. Li, X. Niu, B. Zhao, Y. Wang, C. Bao, Z. Xie, Q. Lin, L. Zhu, Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration. Nanoscale 9(13), 4430–4438 (2017)

    Article  CAS  Google Scholar 

  27. O.S. Lawal, J. Storz, H. Storz, D. Lohmann, D. Lechner, W.M. Kulicke, Hydrogels based on carboxymethyl cassava starch cross-linked with di- or polyfunctional carboxylic acids: Synthesis, water absorbent behavior and rheological characterizations. Eur. Polym. J. 45(12), 3399–3408 (2009)

    Article  CAS  Google Scholar 

  28. N.R. Langley, K.E. Polmanteer, Relation of elastic modulus to crosslink and entanglement concentrations in rubber networks. J. Polym. Sci. Polym. Phys. 12, 1023–1034 (1974)

    Article  CAS  Google Scholar 

  29. F. Xu, H. Sheardown, T. Hoare, Reactive electrospinning of degradable poly(oligoethylene glycol methacrylate)-based nanofibrous hydrogel networks. Chem. Commun. 52(7), 1451–1454 (2016)

    Article  CAS  Google Scholar 

  30. A.J. Ranta-Eskola, Use of the hydraulic bulge test in biaxial tensile testing. Int. J. Mech. Sci. 21, 457–465 (1979)

    Article  Google Scholar 

  31. D.C. Lin, B. Yurke, N.A. Langrana, Use of rigid spherical inclusions in Young’s moduli determination: application to DNA-crosslinked gels. J. Biomech. Eng. 127, 571–579 (2005)

    Article  Google Scholar 

  32. M.L. Previtera, U. Chippada, R.S. Schloss, B. Yurke, N.A. Langrana, Mechanical properties of DNA-crosslinked polyacrylamide hydrogels with increasing crosslinker density. Biores. Open Access 1(5), 256–259 (2012)

    Article  CAS  Google Scholar 

  33. K.K. Liu, B.F. Ju, A novel technique for mechanical characterization of thin elastomeric membrane. J. Phys. D. Appl. Phys. 34, L91–L94 (2001)

    Article  CAS  Google Scholar 

  34. C. Yu, A. Kornmuller, C. Brown, T. Hoare, L.E. Flynn, Decellularized adipose tissue microcarriers as a dynamic culture platform for human adipose-derived stem/stromal cell expansion. Biomaterials 120, 66–80 (2017)

    Article  CAS  Google Scholar 

  35. T. Boudou, J. Ohayon, Y. Arntz, G. Finet, C. Picart, P. Tracqui, An extended modeling of the micropipette aspiration experiment for the characterization of the Young’s modulus and Poisson’s ratio of adherent thin biological samples: numerical and experimental studies. J. Biomech. 39(9), 1677–1685 (2006)

    Article  Google Scholar 

  36. X. Peng, J. Huang, H. Deng, C. Xiong, J. Fang, A multi-sphere indentation method to determine Young’s modulus of soft polymeric materials based on the Johnson–Kendall–Roberts contact model. Meas. Sci. Tech. 22(2), 027003 (2011)

    Article  Google Scholar 

  37. A.V. Salsac, L. Zhang, J.M. Gherbezza, Measurement of mechanical properties of alginate beads using ultrasound. 19eme Congres Francais de Mecanique, 2009

    Google Scholar 

  38. I. Lee, K. Akiyoshi, Single molecular mechanics of a cholesterol-bearing pullulan nanogel at the hydrophobic interfaces. Biomaterials 25(15), 2911–2918 (2004)

    Article  CAS  Google Scholar 

  39. K.J. De France, K.J.W. Chan, E.D. Cranston, T. Hoare, Enhanced mechanical properties in cellulose nanocrystal-poly(oligoethylene glycol methacrylate) injectable nanocomposite hydrogels through control of physical and chemical cross-linking. Biomacromolecules 17(2), 649–660 (2016)

    Article  Google Scholar 

  40. X. Hu, J. Fan, C.Y. Yue, Rheological study of crosslinking and gelation in bismaleimide/cyanate ester interpenetrating polymer network. J. Appl. Polym. Sci. 80, 2437–2445 (2000)

    Article  Google Scholar 

  41. L. Weng, X. Chen, W. Chen, Rheological characterization of in situ crosslinkable hydrogels formulated from oxidized dextran and N-carboxyethyl chitosan. Biomacromolecules 8(4), 1109–1115 (2007)

    Article  CAS  Google Scholar 

  42. N.A. Peppas, J.Z. Hilt, A. Khademhosseini, R. Langer, Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18(11), 1345–1360 (2006)

    Article  CAS  Google Scholar 

  43. W. Wu, S. Zhou, Hybrid micro−/nanogels for optical sensing and intracellular imaging. Nano. Rev. 1, 5730 (2010). https://doi.org/10.3402/nano.v1i0.5730

    Article  CAS  Google Scholar 

  44. M. Carme Coll Ferrer, P. Sobolewski, R.J. Composto, D.M. Eckmann, Cellular uptake and intracellular cargo release from dextran based nanogel drug carriers. J. Nanotechnol. Eng. Med. 4(1), 110021–110028 (2013)

    Article  CAS  Google Scholar 

  45. M.C.C. Ferrer, R.C. Ferrier Jr., D.M. Eckmann, R.J. Composto, A facile route to synthesize nanogels doped with silver nanoparticles. J. Nanopart. Res. 15, 1323 (2012). https://doi.org/10.1007/s11051-012-1323-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. B. Sternberg, F.L. Sorgi, L. Huang, New structures in complex formation between DNA and cationic liposomes visualized by freeze-fracture electron microscopy. FEBS Lett. 356, 361–366 (1994)

    Article  CAS  Google Scholar 

  47. L.L. Muller, T.J. Jacks, Rapid chemical dehydration of samples for electron microscopic investigations. J. Histochem. Cytochem. 23(2), 107–110 (1975)

    Article  CAS  Google Scholar 

  48. S.M. Liff, N. Kumar, G.H. McKinley, High-performance elastomeric nanocomposites via solvent-exchange processing. Nat. Mater. 6(1), 76–83 (2007)

    Article  CAS  Google Scholar 

  49. H. Bai, A. Polini, B. Delattre, A.P. Tomsia, Thermoresponsive composite hydrogels with aligned macroporous structure by ice-templated assembly. Chem. Mater. 25(22), 4551–4556 (2013)

    Article  CAS  Google Scholar 

  50. M.V. Dinu, M. Pradny, E.S. Dragan, J. Michalek, Ice-templated hydrogels based on chitosan with tailored porous morphology. Carbohydr. Polym. 94(1), 170–178 (2013)

    Article  CAS  Google Scholar 

  51. K.M. Pawelec, A. Husmann, S.M. Best, R.E. Cameron, Understanding anisotropy and architecture in ice-templated biopolymer scaffolds. Mater. Sci. Eng. C Mater. Biol. Appl. 37, 141–147 (2014)

    Article  CAS  Google Scholar 

  52. X. Yang, E. Bakaic, T. Hoare, E.D. Cranston, Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: morphology, rheology, degradation, and cytotoxicity. Biomacromolecules 14(12), 4447–4455 (2013)

    Article  CAS  Google Scholar 

  53. J.J. Crassous, M. Ballauff, Imaging the volume transition in thermosensitive core-shell particles by cryo-transmission electron microscopy. Langmuir 22(6), 2403–2406 (2006)

    Article  CAS  Google Scholar 

  54. G. Fundueanu, C. Nastruzzi, A. Carpov, J. Desbrieres, M. Rinaudo, Physico-chemical characterization of Ca-alginate microparticles produced with different methods. Biomaterials 20, 1427–1435 (1999)

    Article  CAS  Google Scholar 

  55. L. Bromberg, M. Temchenko, T.A. Hatton, Smart microgel studies. Polyelectrolyte and drug-absorbing properties of microgels from polyether-modified poly(acrylic acid). Langmuir 19, 8675–8684 (2003)

    Article  CAS  Google Scholar 

  56. G.M. Eichenbaum, P.F. Kiser, A.V. Dobrynin, S.A. Simon, D. Needham, Investigation of the swelling response and loading of ionic microgels with drugs and proteins: the dependence on cross-link density. Macromolecules 32, 4867–4878 (1999)

    Article  CAS  Google Scholar 

  57. J.-Y. Xiong, J. Narayana, X.-Y. Liu, T.K. Chong, S.B. Chen, T.S. Chung, Topology evolution and gelation mechanism of agarose gel. J. Phys. Chem. B 109, 5638–5643 (2005)

    Article  CAS  Google Scholar 

  58. S.K. Lai, Y.Y. Wang, K. Hida, R. Cone, J. Hanes, Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses. Proc. Natl. Acad. Sci. 107(2), 598–603 (2010)

    Article  CAS  Google Scholar 

  59. W.S. Price, Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: part 1. Concepts Magn. Reson. A 9(5), 299–336 (1997)

    Article  CAS  Google Scholar 

  60. B. Sierra-Martín, M.S. Romero-Cano, T. Cosgrove, B. Vincent, A. Fernandez-Barbero, Solvent relaxation of swelling PNIPAM microgels by NMR. Colloids Surf. A Physicochem. Eng. Asp. 270–271, 296–300 (2005)

    Article  Google Scholar 

  61. P.Y. Ghi, D.J.T. Hill, A.K. Whittaker, PFG-NMR measurements of the self-diffusion coefficients of water in equilibrium poly(HEMA-co-THFMA) hydrogels. Biomacromolecules 3(3), 554–559 (2002)

    Article  CAS  Google Scholar 

  62. L. Galantini, A.A. D’Archivioa, S. Lorab, S. Legnaro, An ESR and PGSE-NMR evaluation of the molecular accessibility of poly (vinyl alcohol) hydrogels. J. Mol. Catal. B 6, 505–508 (1999)

    Article  CAS  Google Scholar 

  63. H.Y.I. Ando, Dynamic behavior of water in hydro-swollen crosslinked polymer gel as studied by PGSE 1H NMR and pulse 1H NMR. Polym. Gels. Netw. 1, 83–92 (1993)

    Article  Google Scholar 

  64. P.C. Griffiths, P. Stilbs, B.Z. Chowdhry, M.J. Snowden, PGSE-NMR studies of solvent diffusion in poly(N-isopropylacrylamide) colloidal microgels. Colloid Polym. Sci. 273, 405–411 (1995)

    Article  CAS  Google Scholar 

  65. A. Guillermo, J.P. Cohen Addad, J.P. Bazile, D. Duracher, A. Elasissari, C. Pichot, NMR investigations into heterogeneous structures of thermosensitive microgel particles. J. Polym. Sci. B Polym. Phys. 38, 889–898 (2000)

    Article  CAS  Google Scholar 

  66. K.A. Heisel, J.J. Goto, V.V. Krishnan, NMR chromatography: molecular diffusion in the presence of pulsed field gradients in analytical chemistry applications. Amer. J. Anal. Chem. 3, 401–409 (2012)

    Article  CAS  Google Scholar 

  67. M. Shibayama, Small-angle neutron scattering on polymer gels: phase behavior, inhomogeneities and deformation mechanisms. Polym. J. 43(1), 18–34 (2010)

    Article  Google Scholar 

  68. S. Takata, T. Norisuye, Small-angle neutron-scattering study on preparation temperature dependence of thermosensitive gels. Macromolecules 35, 4779–4784 (2002)

    Article  CAS  Google Scholar 

  69. J. Tian, T.A.P. Seery, D.L. Ho, R.A. Weiss, Physically cross-linked alkylacrylamide hydrogels: a SANS analysis of the microstructure. Macromolecules 37, 10001–10008 (2004)

    Article  CAS  Google Scholar 

  70. B. Hammouda, D. Ho, S. Kline, SANS from poly(ethylene oxide)/water systems. Macromolecules 35, 8578–8585 (2002)

    Article  Google Scholar 

  71. P. Sheikholeslami, B. Muirhead, D.S. Baek, H. Wang, X. Zhao, D. Sivakumaran, S. Boyd, H. Sheardown, T. Hoare, Hydrophobically-modified poly(vinyl pyrrolidone) as a physically-associative, shear-responsive ophthalmic hydrogel. Exp. Eye Res. 137, 18–31 (2015)

    Article  CAS  Google Scholar 

  72. J.M. González-Méijome, M. Lira, A. Lopez-Alemany, J.B. Almeida, M.A. Parafita, M.F. Refojo, Refractive index and equilibrium water content of conventional and silicone hydrogel contact lenses. Ophthalmic Physiol. Opt. 26, 57–64 (2006)

    Article  Google Scholar 

  73. S.R. Caliari, J.A. Burdick, A practical guide to hydrogels for cell culture. Nat. Methods 13(5), 405–414 (2016)

    Article  CAS  Google Scholar 

  74. J.M. Anderson, Biological responses to materials. Ann. Rev. Mater. Res. 31, 81–110 (2001)

    Article  CAS  Google Scholar 

  75. T.A. Horbett, J.L. Brash, Chapter 1, Proteins at interfaces: current issues and future prospects, in Proteins at Interfaces. ACS Symposium Series, vol 343 (American Chemical Society, Washington, DC (1987), pp. 1–33. https://doi.org/10.1021/bk-1987-0343.ch001

    Google Scholar 

  76. J.L. Brash, T.A. Horbett, Proteins at interfaces, in Proteins at Interfaces II: Fundamentals and Applications, vol 602 (Washington, DC, 1995), pp. 1–23. https://doi.org/10.1021/bk-1995-0602

    Google Scholar 

  77. S.M. Russell, G. Carta, Multicomponent protein adsorption in supported cationic polyacrylamide hydrogels. AICHE J. 51(9), 2469–2480 (2005)

    Article  CAS  Google Scholar 

  78. Q. Garrett, B.K. Milthorpe, Human serum albumin adsorption on hydrogel contact lenses in vitro. Invest. Ophthalmol. Vis. Sci. 37(13), 2594–2602 (1996)

    CAS  PubMed  Google Scholar 

  79. D. Luensmann, M.A. Glasier, F. Zhang, V. Bantseev, T. Simpson, L. Jones, Confocal microscopy and albumin penetration into contact lenses. Invest. Ophthalmol. Vis. Sci. 84(9), 839–847 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd Hoare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Majcher, M.J., Hoare, T. (2018). Hydrogel Properties and Characterization Techniques. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Biopolymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-92066-5_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92066-5_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92066-5

  • Online ISBN: 978-3-319-92066-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics