Skip to main content

Polymers from Renewable Resources

  • Living reference work entry
  • First Online:
Functional Biopolymers

Abstract

Plastics are an indispensable part of our daily life but also have many applications in electronics, medicine, and environmental protection. Traditional plastic industry consumes about 7% of the global production of fossil fuel. As the nonrenewable fossil fuel will exhaust within the next century, the development of green polymers from renewable natural resources will play an ever-increasing role for future generations toward a sustainable society. Some of natural polymers such as cellulose, for example, have a very long history of use without major modifications. Others are newer. This chapter provides a brief review of alternative plastic materials from renewable sources, such as polysaccharides, lignin, biomass and bio-oils, tannin, cellulose, and many others. The application of those materials is getting wider and wider, and they can replace many of traditional plastics. In addition, the use of much “greener” plastics from renewable resources contributes to reducing the environmental impact of fuels and other petrochemical products and traditional plastics, which are responsible for atmospheric pollution and for the increasing level of greenhouse gases that are the main reasons for global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. M.L. Tschan, E. Brulé, P. Haquette, C.M. Thomas, Synthesis of biodegradable polymers from renewable resources. Polym. Chem. 3, 836–851 (2012)

    Article  CAS  Google Scholar 

  2. (A) A. Corma, S. Iborra, A. Velty, Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2502 (2007). (B) F. Cherubini, The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag. 51, 1412–1421 (2010)

    Google Scholar 

  3. A. Gandini, Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 41(24), 9491–9504 (2008)

    Article  CAS  Google Scholar 

  4. A. Gandini, T.M. Lacerda, From monomers to polymers from renewable resources: recent advances. Prog. Polym. Sci. 48, 1–39 (2015)

    Article  CAS  Google Scholar 

  5. L. Shen, E. Worrell, M. Patel, Present and future development in plastics from biomass. Biofuels Bioprod. Biorefin. 4, 25–40 (2010)

    Article  CAS  Google Scholar 

  6. L. Shen, J. Haufe, M.K. Patel, Product overview and market projection of emerging bio-based plastics. PRO-BIP final report (2009), http://en.european-bioplastics.org/

  7. M.N. Belgacem, A. Gandini (ed.), Monomers, Polymers and Composites from Renewable Resources (Elsevier, 2008), pp. 17–115. ISBN: 978-0-08-045316-3. Chapters 2–5

    Google Scholar 

  8. (A) L. Avérous, E. Pollet, Biodegradable polymers. Environmental Silicate Nano-Biocomposites, eds. by L. Avérous, E. Pollet (Springer, London, 2012), pp. 13–39. (B) R.P. Babu, K. O’Connor, R. Seeram, Current progress on bio-based polymers and their future trends. Prog. Biomater. 2, 1–16 (2013)

    Google Scholar 

  9. A.J.F. Carvalho, Chapter 15: Starch: major sources, properties and applications as thermoplastic materials, in Monomers, Polymers and Composites from Renewable Resources, ed. by M.N. Belgacem, A. Gandini (Elsevier, 2008), pp. 321–342. ISBN: 978-0-08-045316-3

    Google Scholar 

  10. M. Henriksson, L.A. Berglund, P. Isaksson, T. Lindstrom, T. Nishino, Biomacromolecules 9, 1579 (2008)

    Article  CAS  Google Scholar 

  11. A.J.F. Carvalho, A.A.S. Curvelo, A. Gandini, Ind. Crop. Prod. 21, 331 (2005)

    Article  CAS  Google Scholar 

  12. J.L. Willet, R.L. Shogren, Polymer 43, 5935 (2002)

    Article  Google Scholar 

  13. M.N. Belgacem, A. Gandini, Compos. Interface 12, 41 (2005)

    Article  CAS  Google Scholar 

  14. T. Heinze, T. Liebert, Prog. Polym. Sci. 26, 1689 (2001)

    Article  CAS  Google Scholar 

  15. (a) P. Tomasik, C.H. Schilling, Adv. Carbohydr. Chem. Biochem. 59, 175 (2004). (b) K.F. Gotlieb, A. Capelle (eds.), Starch DeriVatization; Fascinating and Unique Industrial Opportunities (Wageningen Academic Publ., Wageningen, 2005)

    Google Scholar 

  16. (a) C.S.R. Freire, A.J.D. Silvestre, C. Pascoal Neto, M.N. Belgacem, A.J. Gandini, Appl. Polym. Sci. 100, 1093 (2006). (b) D. Pasquini, M.N. Belgacem, A. Gandini, A.A.S. Curvelo, J. Colloid Interf. Sci. 295, 79 (2006)

    Google Scholar 

  17. M. Castellano, P. Fabbri, A. Gandini, M.N. Belgacem, J. Colloid Interf. Sci. 273, 505 (2004)

    Article  CAS  Google Scholar 

  18. (a) K. Petzold, A. Koschella, D. Klemm, B. Heublein, Cellulose. 10, 251 (2003). (b) W. Mormann, Cellulose. 10, 271 (2003)

    Google Scholar 

  19. (a) C. Goussé, H. Chanzy, G. Escoffier, L. Soubeyrand, E. Fleury, Polymer. 43, 2645 (2002). (b) C. Goussé, H. Chanzy, M.L. Cerrada, Macromolecules. 41, 2008, 9503 Fleury, E. Polymer 45, 1569 (2004). (c) M. Andresen, L.S. Johansson, B.S. Tanem, P. Stenius, Cellulose. 13, 665 (2006)

    Google Scholar 

  20. P. Fabbri, G. Champon, M. Castellano, M.N. Belgacem, A. Gandini, Polym. Int. 53, 7 (2004)

    Article  CAS  Google Scholar 

  21. S. Boufi, A. Gandini, Cellulose 8, 303 (2001)

    Article  CAS  Google Scholar 

  22. A. Gandini, A.A.S. Curvelo, D. Pasquini, A. de Menezes, J. Polymer. 46, 10611 (2005)

    Article  CAS  Google Scholar 

  23. A. Gandini, A.A.S. Curvelo, D. Pasquini, A. de Menezes, J. Biomacromolecules 8, 2047 (2007)

    Article  Google Scholar 

  24. (a) A.G. Cunha, C.S.R. Freire, A.J.D. Silvestre, C. Pacoal Neto, A. Gandini, J. Colloid Interf. Sci. 301, 333 (2006). (b) A.G. Cunha, C.S.R. Freire, A.J.D. Silvestre, C. Pacoal Neto, A. Gandini, E. Orblin, P. Fardim, Biomacromolecules. 8, 1347 (2007). (c) A.G. Cunha, C.S.R. Freire, A.J.D. Silvestre, C. Pacoal Neto, A. Gandini, E. Orblin, P. Fardim, Langmuir. 23, 10801 (2007). (d) A.G. Cunha, C.S.R. Freire, A.J.D. Silvestre, C. Pacoal Neto, A. Gandini, E. Orblin, P. Fardim, J. Colloid Interf. Sci. 316, 360 (2007)

    Google Scholar 

  25. M.N. Belgacem, A. Gandini (ed.), Chapter 9: Lignins: major sources, structure and properties, in Monomers, Polymers and Composites from Renewable Resources, ed. by G.H. Gellerstedt (Elsevier, 2008). pp 201–224. ISBN: 978-0-08-045316-3

    Google Scholar 

  26. Chapter 10: Lora, Industrial commercial lignins: sources, properties and applications, in Monomers, Polymers and Composites from Renewable Resources, ed. by M.N. Belgacem, A. Gandini (Elsevier, 2008). pp. 225–236. ISBN: 978-0-08-045316-3

    Google Scholar 

  27. T.Q. Hu (ed.), Chemical Modification, Properties and Usage of Lignin, ACS Symp. Ser. (Kluwer, New York, 2007), p. 954

    Google Scholar 

  28. (a) S. Kubo, J.F. Kadla, J. Polym. EnViron. 13, 97 (2005). (b) J.L. Braun, K.M. Holtman, J.F. Kadla, Carbon. 43, 385 (2005)

    Google Scholar 

  29. (51) A. Gandini, A.F. Sousa, A.J.D. Silvestre, C. Pascoal Neto, submitted for publication

    Google Scholar 

  30. (a) H. Pelletier, N. Belgacem, A. Gandini, J. Appl. Polym. Sci. 99, 3218 (2006). (b) H. Pelletier, A. Gandini, Eur. J. Lipid Sci. Technol. 108, 411 (2006)

    Google Scholar 

  31. A. Moubarik, A. Allal, A. Pizzi, F. Charrier, B. Charrier. Characterization of a formaldehyde-free cornstarch-tannin wood adhesive for interior plywood. Eur. J. Wood Wood Prod. 68(4), 427–433 (2009). Springer

    Google Scholar 

  32. A. Moubarik, B. Charrier, A. Allal, F. Charrier, A. Pizzi. Development and optimization of a new formaldehyde-free cornstarch and tannin wood adhesive. Eur. J. Wood Wood Prod. 68(2), 167–177 (2009). Springer

    Google Scholar 

  33. (a) M.N. Belgacem, A. Gandini, Prog. Polym. Sci. 22, 1203 (1997). (b) C. Moreau, A. Gandini, M.N. Belgacem, Top. Catal. 27, 9 (2004). (c) A. Gandini, M.N. Belgacem Furan Derivatives and Furan Chemistry at the Service of Macromolecular Materials. In ref 1, Chapter 6

    Google Scholar 

  34. K. Masutani, Y. Kimura, Chapter 1: PLA synthesis. From the monomer to the polymer, In Alfonso Jiménez, Mercedes Peltzer, Roxana Ruseckaite, (eds). Poly(lactic acid) Science and Technology: Processing, Properties, Additives and Applications (2014). The Royal Society of Chemistry, pp. 1–36. https://pubs.rsc.org/en/content/ebook/978-1-84973-879-8

  35. J. Spiridon, V. I. Popa, Chapter 12: Hemicelluloses: major sources, properties and applications, in Monomers, Polymers and Composites from Renewable Resources, ed. by M.N. Belgacem, A. Gandini (Elsevier, 2008). pp. 289–305. ISBN: 978-0-08-045316-3

    Google Scholar 

  36. C. Pavier, A. Gandini, Eur. Polym. J. 36, 1653 (2000)

    Article  CAS  Google Scholar 

  37. E. Pecoraro, D. Manzani, Y. Messadeqq, S.J.L. Ribeiro, Chapter 17: Bacterial cellulose from glucanace-tobacter xylinus: preparation, properties and applications, in Monomers, Polymers and Composites from Renewable Resources, ed. by M.N. Belgacem, A. Gandini (Elsevier, 2008). ISBN: 978-0-08-045316-3

    Google Scholar 

  38. (a) E.E. Brown, M.-P.G. Laborie, Biomacromolecules 8, 3074 (2007). (b) S. Ifuku, M. Nogi, K. Abe, K. Handa, F. Nakatsubo, H. Yano, Biomacromolecules 8, 1973 (2007). (c) M. Pommet, J. Juntaro, J.Y.Y. Heng, A. Mantalaris, A.F. Lee, K. Wilson, G. Kalinka, M.S.P. Shaffer, A. Bismarck, Biomacromolecules 9, 1643 (2008)

    Google Scholar 

  39. P.A. Wilbon, F. Chu, C. Tang, Progress in renewable polymers from natural terpenes, Terpenoids, and rosin. Macromol. Rapid Commun. 34, 8–37 (2013)

    Article  CAS  Google Scholar 

  40. M. Rinaudo, Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31, 603–632 (2006)

    Article  CAS  Google Scholar 

  41. C. Peniche, W. Argüelles-Monal, F. Goycoolea, Chitin and chitosan: major sources, properties and applications in Monomers, Polymers and Composites from Renewable Resources (2008) pp. 517–542. https://doi.org/10.1016/B978-0-08-045316-3.00025-9

    Chapter  Google Scholar 

  42. N. Kazami et al., A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid. Carbohydr. Polym. 132(2015), 304–310 (2015)

    Article  CAS  Google Scholar 

  43. G. Roberts, Thirty years of progress in chitin and chitosan. Prog. Chem. Appl. Chitin Deriv. 13(13), 1–15 (2008)

    Google Scholar 

  44. NASA, www.climate.nasa.gov/effects. IPCC 2007, Summary for Policymakers, in Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, UK, 2007), p. 17

  45. S.-O. Fernandez-Kim, Physicochemical and Functional Properties of Crawfish Chitosan as Affected by Different Processing Protocols, B.S. Thesis, Seoul National University, 2004

    Google Scholar 

  46. E. Salleh, I. Muhamad, N. Khairuddin, Preparation, characterization and antimicrobial analysis of antimicrobial starch based film incorporated with chitosan and lauric acid. Asian Chitin J. 3, 55–68 (2007)

    Google Scholar 

  47. B. Carreno-Gomez, R. Duncan, Evaluation of the biological properties of soluble chitosan and chitosan microspheres. Int. J. PharmacoEconomics 148, 231–240 (1997)

    Article  CAS  Google Scholar 

  48. W.R. Chen, R.L. Adams, R. Carubelli, R.E. Nordquist, Laser-photosensitizer assisted immunotherapy: a novel modality for cancer treatment. Cancer Lett. 115, 25–30 (1997)

    Article  CAS  Google Scholar 

  49. K. Nishimura, S. Nishimura, N. Nishi, I. Saiki, S. Tokura, I. Azuma, Immunological activity of chitin and its derivatives. Vaccine 2, 93–99 (1984)

    Article  CAS  Google Scholar 

  50. J. Venkatesan, S.-K. Kim, Chitosan composites for bone tissue engineering – an overview. Mar. Drugs 8, 2252–2266 (2010)

    Article  CAS  Google Scholar 

  51. K. Rezwan, Q. Chen, J. Blaker, A.R. Boccaccini, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27, 3413–3431 (2006)

    Article  CAS  Google Scholar 

  52. D.K. Singh, A.R. Ray, Biomedical applications of chitin, chitosan, and their derivatives. J. Macromol. Sci. C 40, 69–83 (2000)

    Article  Google Scholar 

  53. R. Jayakumar, D. Menon, K. Manzoor, S. Nair, H. Tamura, Biomedical applications of chitin and chitosan based nanomaterials – A short review. Carbohydr. Polym. 82, 227–232 (2010)

    Article  CAS  Google Scholar 

  54. L.G. Griffith, G. Naughton, Tissue engineering–current challenges and expanding opportunities. Sci. Signal. 295, 1009 (2002)

    CAS  Google Scholar 

  55. M.-H. Ho, P.-Y. Kuo, H.-J. Hsieh, T.-Y. Hsien, L.-T. Hou, J.-Y. Lai, D.-M. Wang, Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 25, 129–138 (2004)

    Article  CAS  Google Scholar 

  56. Z. Li, L. Yubao, Y. Aiping, P. Xuelin, W. Xuejiang, Z. Xiang, Preparation and in vitro investigation of chitosan/nano-hydroxyapatite composite used as bone substitute materials. J. Mater. Sci. 16, 213–219 (2005)

    Google Scholar 

  57. R. Hejazi, M. Amiji, Chitosan-based gastrointestinal delivery systems. J. Control. Release 89, 151–165 (2003)

    Article  CAS  Google Scholar 

  58. W. Tiyaboonchai, Chitosan nanoparticles: a promising system for drug delivery. Naresuan Univ, J 11, 51–66 (2003)

    Google Scholar 

  59. M. Prabaharan, J. Mano, Chitosan-based particles as controlled drug delivery systems. Drug Deliv. 12, 41–57 (2004)

    Article  Google Scholar 

  60. S. Surini, H. Akiyama, M. Morishita, T. Nagai, K. Takayama, Release phenomena of insulin from an implantable device composed of a polyion complex of chitosan and sodium hyaluronate. J. Control. Release 90, 291 (2003)

    Article  CAS  Google Scholar 

  61. M.V. Bernado, M.D. Blanco, R.L. Sastre, C. Teijon, J.M. Teijon, Sustained release of bupivacaine from devices based on chitosan. II Farmaco 58, 1187 (2003)

    Article  Google Scholar 

  62. A. Domard, M. Domard, Chitosan: Structure-Properties Relationship and Biomedical Applications, Polymeric Biomaterials, 2nd edn., ed. by S. Dumitriu (Marcel Dekker, New York, 2003)

    Google Scholar 

  63. W.C. Lin, T.Y. Liu, M.C. Yang, Hemocompatibility of polyacrylonitrile dialysis membrane immobilized with chitosan and heparin conjugate. Biomaterials 25(10), 1947–57 (2004)

    Article  CAS  Google Scholar 

  64. P.K. Dutta, P. Vishwanathan, L. Mimrot, M.N.V. Ravikumar, Use of chitosan-amine-oxide gel as drug carriers. J. Polym. Mater. 14, 531 (1997)

    Google Scholar 

  65. Refer Website: www.vanson.com

  66. Refer Website: www.bae.scsu.edu

  67. M. Mucha, Rheological characteristics of semi-dilute chitosan solutions. Marcomole Chem. Phys. 198, 471 (1997)

    CAS  Google Scholar 

  68. S.M. Husdon, D.W. Jenkins, Chitin and Chitosan, Encyclopedia of Polymer Science and Technology, 3rd edn. (Wiley Interscience, New York) (Online version, www.interscience.com)

  69. R.S. Juang, C.Y. Ju, Kinetics of sorption Cu (II)- ethylenediaminetetraacetic acid chelate anions on crosslinked, polyaminated chitosan beads. Ind. Eng. Chem. Res. 37, 3463 (1998)

    Article  CAS  Google Scholar 

  70. K.D. Bhavani, P.K. Dutta, Physico-chemical adsorption properties on chitosan for dyehouse effluent. Am. Dyestuff Rep. 88, 53 (1999)

    CAS  Google Scholar 

  71. Refer Website: www.dawn.com

  72. M.H. Ottoy, K.M. Varum, B.E. Christensen, M.W. Anthonsen, O. Smidsrod, Preparative and analytical size-exclusion chromatography of chitosans. Carbohydr. Polym. 31, 253 (1996)

    Article  Google Scholar 

  73. J. Rhee, M. Jung, K. Paeng, Evaluation of chitin and chitosan as a sorbent for the preconcentration of phenol and chlorophenols in water. Anal. Sci. 14, 1089 (1998)

    Article  CAS  Google Scholar 

  74. P.K. Dutta, M.N.V. Ravikumar, J. Dutta, Chitin and chitosan for versatile applications. JMS Polym. Rev. C42, 307 (2000)

    Google Scholar 

  75. M. G. Peter, A. Dormad, R. A. A. Muzzarelli (eds.), Advances in Chitin Science, vol IV (Universitat Postdam, Postdam, 2005)

    Google Scholar 

  76. J.M.V. Blanshard, Starch granule structure and function: a physiochemical approach, in Starch: Properties and Potential, ed. by T. Galliard (Wiley for SCI, Chichester, 1987), pp. 16–54

    Google Scholar 

  77. Y.I. Matveev, V.Y. Grinberg, V.B. Tolstoguzov, The plasticizing effect of water on proteins, polysaccharides and their mixtures: glassy state of biopolymers, food and seeds. Food Hydrocoll. 14, 425–437 (2000)

    Article  CAS  Google Scholar 

  78. A. Carvalho, A. Job, N. Alves, A. Curvelo, A. Gandini, Thermoplastic starch/natural rubber blends. Carbohydr. Polym. 53, 95–99 (2003)

    Article  CAS  Google Scholar 

  79. H. Tsuji, Y. Ikada, Stereocomplex formation between enantiomeric poly(lactic acid)s: XI – mechanical properties and morphology of solution-cast film. Polymer 40, 6699–6708 (1999)

    Article  CAS  Google Scholar 

  80. H. Tsuji, Autocatalytic hydrolysis of amorphous-made polylactides: effects of l-lactide content, tacticity, and enantiomeric polymer blending. Polymer 43, 1789–1796 (2002)

    Article  CAS  Google Scholar 

  81. C.C. Chen, J.Y. Chueh, H. Tseng, H.M. Huang, S.Y. Lee, Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials 24, 1167–1173 (2003)

    Article  CAS  Google Scholar 

  82. H. Shinoda, Y. Asou, T. Kashima, T. Kato, Y. Tseng, T. Yagi, Amphiphilic biodegradable copolymer, poly(aspartic acid co-lactide): acceleration of degradation rate and improvement of thermal stability for poly(lactic acid), poly(butylene succinate) and poly(e-caprolactone). Polym Degrad Stabil 80, 241–250 (2003)

    Article  CAS  Google Scholar 

  83. I. Ohkoshi, H. Abe, Y. Doi, Miscibility and solid-state structures for blends of poly((S)-lactide) with atactic poly((R,S)-3-hydroxybutyrate). Polymer 41, 5985–5992 (2000)

    Article  CAS  Google Scholar 

  84. Y. He, N. Asakawa, J. Li, Y. Inoue, Effects of low molecular weight compounds with hydroxyl groups on properties of poly(l-lactic acid). J. Appl. Polym. Sci. 82, 640–649 (2001)

    Article  CAS  Google Scholar 

  85. T. Ke, X. Sun, Effect of moisture content and heat treatment on the physical properties of starch and poly(lactic acid) blends. J. Appl. Polym. Sci. 81, 3069–3082 (2001)

    Article  CAS  Google Scholar 

  86. T. Ke, X. Sun, Melting behavior and crystallization kinetics of starch and poly(lactic acid) composites. J. Appl. Polym. Sci. 89, 1203–1211 (2003)

    Article  CAS  Google Scholar 

  87. H. Wang, X. Sun, P. Seib, Strengthening blends of poly(lactic acid) and starch with methylenediphenyl diisocyanate. J. Appl. Polym. Sci. 82, 1761–1767 (2001)

    Article  CAS  Google Scholar 

  88. J.F. Zhang, X. Sun, Mechanical and thermal properties of poly(lactic acid)/starch blends with dioctyl maleate. J. Appl. Polym. Sci. 94, 1697–1704 (2004)

    Article  CAS  Google Scholar 

  89. T. Ke, X.S. Sun, Starch, poly(lactic acid), and poly(vinyl alcohol) blends. J. Polym. Environ. 11(1), 7–14 (2003)

    Article  CAS  Google Scholar 

  90. R.L. Shogren, W.M. Doane, D. Garlotta, J.W. Lawton, J.L. Willett, Biodegradation of starch/polylactic acid/poly(hydroxyester– ether) composite bars in soil. Polym. Degrad. Stab. 79, 405–411 (2003)

    Article  CAS  Google Scholar 

  91. J.L. Willett, R.L. Shogren, Processing and properties of extruded starch/polymer foams. Polymer 43, 5935–5947 (2002)

    Article  CAS  Google Scholar 

  92. J.L. Willett, M.A. Kotnis, G.S. O’Brien, G.F. Fanta, S.H. Gordon, Properties of starch–graft–poly(glycidyl methacrylate)– PHBV composites. J. Appl. Polym. Sci. 70, 1121–1127 (1998)

    Article  CAS  Google Scholar 

  93. M. Maekawa, R. Pearce, R.H. Marchessault, R.S.J. Manley, Miscibility and tensile properties of poly(b-hydroxybutyrate)- cellulose propionate blend. Polymer 40, 1501–1505 (1999)

    Article  CAS  Google Scholar 

  94. L. Wang, R.L. Shogren, C. Carriere, Preparation and properties of thermoplastic starch–polyester laminate sheets by coextrusion. Polym. Eng. Sci. 40(2), 499–506 (2000)

    Article  CAS  Google Scholar 

  95. M. Wollerdorfer, H. Bader, Influence of natural fibers on the mechanical properties of biodegradable polymers. Ind. Crop. Prod. 8, 105–112 (1998)

    Article  CAS  Google Scholar 

  96. K. Matsui, F. Larotonda, S. Paes, D. Luiz, A. Pires, J. Laurindo, Cassava bagasse–Kraft paper composites: analysis of influence of impregnation with starch acetate on tensile strength and water absorption properties. Carbohydr. Polym. 55, 237–243 (2004)

    Article  CAS  Google Scholar 

  97. J.W. Lawton, R.L. Shogren, K.F. Tiefenbacher, Aspen fiber addition improves the mechanical properties of baked cornstarch foams. Ind. Crop. Prod. 19, 41–47 (2004)

    Article  CAS  Google Scholar 

  98. G.M. Ganjyal, N. Reddy, Y.Q. Yang, M.A. Hanna, Biodegradable packaging foams of starch acetate blended with corn stalk fibers. J. Appl. Polym. Sci. 93, 2627–2633 (2004)

    Article  CAS  Google Scholar 

  99. U. Funke, W. Bergthaller, M.G. Lindhauer, Processing and characterization of biodegradable products based on starch. Polym. Degrad. Stab. 59, 293–296 (1998)

    Article  CAS  Google Scholar 

  100. R.A. Shanks, A. Hodzic, S. Wong, Thermoplastic biopolyester natural fiber composites. J. Appl. Polym. Sci. 91(4), 2114–2121 (2004)

    Article  CAS  Google Scholar 

  101. H.M. Park, X. Li, C.Z. Jin, C.Y. Park, W.J. Cho, C.S. Ha, Preparation and properties of biodegradable thermoplastic starch/clay hybrids. Macromol. Mater. Eng. 287(8), 553–558 (2002)

    Article  CAS  Google Scholar 

  102. S.A. McGlashan, P.J. Halley, Preparation and characterization of biodegradable starch-based nanocomposite materials. Polym. Int. 52, 1767–1773 (2003)

    Article  CAS  Google Scholar 

  103. S.B. Kalambur, S.S.H. Rizvi, Starch-based nanocomposites by reactive extrusion processing. Polym. Int. 53(10), 1413–1416 (2004)

    Article  CAS  Google Scholar 

  104. J.-H. Chang, Y.U. An, G.S. Sur, Poly(lactic acid) nanocomposites with various organoclays: I – thermomechanical properties, morphology, and gas permeability. J Polym Sci Part B Polym Phys 41(1), 94–103 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria V. Volkis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Goldsborough, H., Volkis, V.V. (2018). Polymers from Renewable Resources. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Biopolymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-92066-5_13-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92066-5_13-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92066-5

  • Online ISBN: 978-3-319-92066-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics