Endophytic Pseudomonads and Their Metabolites

  • Apekcha BajpaiEmail author
  • Bhavdish N. Johri
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


Plant microbiome is crucial in maintaining both plant health and ecosystem functioning. Rapid advance in next-generation sequencing technology has brought about a paradigm shift in our understanding of plant microbiome. This has especially shed light on selective colonization of microbes in root compartments, i.e., rhizosphere, rhizoplane, and endosphere. A growing body of evidence reveals the predominance of the phylum Proteobacteria in endomicrobiome of several crop plants. Additionally, Pseudomonas is found to be a widely distributed genus within Proteobacteria which exists in both above and below ground plant parts. Pseudomonads are extensively exploited for their metabolic potential and adaptability toward endophytic lifestyle in contrast with their rhizospheric counterpart and fungal endophytes. This together develops a better understanding of the genus Pseudomonas as key determinants in plant health including their role as biocontrol agents. In this chapter, we discuss pseudomonads with endomicrobiome perspectives, their atypical characteristics with respect to rhizospheric microbes, and influence of metabolites in context with their role in plant growth and biocontrol. A comprehensive understanding about selection of endophytic lifestyle will perhaps provide better opportunities to improve plant performance and pathogen resistance.


Pseudomonas Endosphere Biocontrol Plant growth promotion Rhizosphere 


2, 4-DAPG

2, 4-diacetylphloroglucinol




Antibiotic and secondary metabolite cluster analysis


Competition for niches and nutrients


Denaturing gradient gel electrophoresis


Hydrogen cyanide


Indole acetic acid


Induce systemic resistance


Non-ribosomal peptide synthases


Operational taxonomic units


Plant growth promotory rhizobacteria


Take-all disease


Tracking root interaction system



This study was supported by the grants of National Academy of Sciences India, Allahabad (Grant number NAS/201/7/2017-18) to BNJ as NASI Senior Scientist at the Department of Biotechnology, Barkatullah University, Bhopal, Madhya Pradesh, India.


  1. 1.
    Wu X, Monchy S, Taghavi S, Zhu W, Ramos J, van der Lelie D (2011) Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 35(2):299–323PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Reiter B, Wermbter N, Gyamfi S, Schwab H, Sessitsch A (2003) Endophytic Pseudomonas spp. populations of pathogen-infected potato plants analysed by 16S rDNA-and 16S rRNA-based denaturating gradient gel electrophoresis. Plant Soil 257(2):397–405CrossRefGoogle Scholar
  5. 5.
    Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838CrossRefGoogle Scholar
  6. 6.
    Romero FM, Marina M, Pieckenstain FL (2014) The communities of tomato (Solanum lycopersicum L.) leaf endophytic bacteria, analyzed by 16S-ribosomal RNA gene pyrosequencing. FEMS Microbiol Lett 351:187–194PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Shi Y, Yang H, Zhang T, Sun J, Lou K (2014) Illumina-based analysis of endophytic bacterial diversity and space-time dynamics in sugar beet on the north slope of Tianshan mountain. Appl Microbiol Biotechnol 98:6375–6385PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    De Bary HA (1866) Hofmeister’s handbook of physiological botany. Verlag von Wilhelm Engelmann, LeipzigGoogle Scholar
  9. 9.
    Le Cocq K, Gurr SJ, Hirsch PR, Mauchline TH (2017) Exploitation of endophytes for sustainable agricultural intensification. Mol Plant Pathol 18(3):469–473PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268CrossRefGoogle Scholar
  11. 11.
    Truyens S, Weyens N, Cuypers A, Vangronsveld J (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7(1):40–50CrossRefGoogle Scholar
  12. 12.
    Koehorst JJ, Van Dam JC, Van Heck RG, Saccenti E, Dos Santos VAM, Suarez-Diez M, Schaap PJ (2016) Comparison of 432 Pseudomonas strains through integration of genomic, functional, metabolic and expression data. Sci Rep 6:38699PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Li J, Zhao GZ, Huang HY, Qin S, Zhu WY, Zhao LX, Xu LH, Zhang S, Li WJ, Strobel G (2012) Isolation and characterization of culturable endophytic actinobacteria associated with Artemisia annua L. Anton Leeuw 101:515–527CrossRefGoogle Scholar
  14. 14.
    Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Ali S, Duan J, Charles TC, Glick BR (2014) A bioinformatics approach to the determination of genes involved in endophytic behaviour in Burkholderia spp. J Theor Biol 343:193–198PubMedCrossRefGoogle Scholar
  16. 16.
    Christina A, Christapher V, Bhore SJ (2013) Endophytic bacteria as a source of novel antibiotics: an overview. Pharmacogn Rev 7(13):11PubMedPubMedCentralGoogle Scholar
  17. 17.
    Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci 112(8):911–920CrossRefGoogle Scholar
  18. 18.
    Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci 110(16):6548–6553PubMedCrossRefGoogle Scholar
  19. 19.
    Kumar A, Munder A, Aravind R, Eapen SJ, Tümmler B, Raaijmakers JM (2013) Friend or foe: genetic and functional characterization of plant endophytic Pseudomonas aeruginosa. Environ Microbiol 15(3):764–779PubMedCrossRefGoogle Scholar
  20. 20.
    Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Gottel NR, Castro HF, Kerley M, Yang Z, Pelletier DA, Podar M, Karpinets T, Uberbacher ED, Tuskan GA, Vilgalys R, Doktycz MJ (2011) Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl Environ Microbiol 77(17):5934–5944PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Compant S, Clement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678CrossRefGoogle Scholar
  23. 23.
    Malfanova N, Kamilova F, Validov S, Chebotar V, Lugtenberg B (2013) Is l-arabinose important for the endophytic lifestyle of Pseudomonas spp.? Arch Microbiol 195(1):9–17PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Prakamhang J, Minamisawa K, Teamtaisong K, Boonkerd N, Teaumroong N (2009) The communities of endophytic diazotrophic bacteria in cultivated rice (Oryza sativa L.). Appl Soil Ecol 42:141–149CrossRefGoogle Scholar
  25. 25.
    Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant-Microbe Interact 25(1):28–36PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Massalha H, Korenblum E, Malitsky S, Shapiro OH, Aharoni A (2017) Live imaging of root–bacteria interactions in a microfluidics setup. Proc Natl Acad Sci 114(17):4549–4554PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Asif H, Studholme DJ, Khan A, Aurongzeb M, Khan IA, Azim MK (2016) Comparative genomics of an endophytic Pseudomonas putida isolated from mango orchard. Genet Mol Biol 39(3):465–473PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Pérez ML, Collavino MM, Sansberro PA, Mroginski LA, Galdeano E (2016) Diversity of endophytic fungal and bacterial communities in Ilex paraguariensis grown under field conditions. World J Microbiol Biotechnol 32(4):61PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Fisher PJ, Petrini O, Scott HL (1992) The distribution of some fungal and bacterial endophytes in maize (Zea mays L.). New Phytol 122(2):299–305CrossRefGoogle Scholar
  31. 31.
    Wang W, Zhai Y, Cao L, Tan H, Zhang R (2016) Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice (Oryza sativa L.). Microbiol Res 188:1–8PubMedCrossRefGoogle Scholar
  32. 32.
    Adejumo TO, Orole OO (2010) Effect of pH and moisture content on endophytic colonization of maize roots. Sci Res Essays 5(13):1655–1661Google Scholar
  33. 33.
    Peay KG, Kennedy PG, Talbot JM (2016) Dimensions of biodiversity in the Earth mycobiome. Nat Rev Microbiol 14:434–447PubMedCrossRefGoogle Scholar
  34. 34.
    Hoffman MT, Arnold AE (2010) Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Appl Environ Microbiol 76(12):4063–4075PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hassan SED (2017) Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. J Adv Res 8(6):687–695PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19(1):1–30CrossRefGoogle Scholar
  37. 37.
    Harrison L, Teplow DB, Rinaldi M, Strobel G (1991) Pseudomycins, a family of novel peptides from Pseudomonas syringae possessing broad-spectrum antifungal activity. Microbiology 137(12):2857–2865Google Scholar
  38. 38.
    Sorensen KN, Kim KH, Takemoto JY (1996) In vitro antifungal and fungicidal activities and erythrocyte toxicities of cyclic lipodepsinona peptides produced by Pseudomonas syringae pv. syringae. Antimicrob Agents Chemother 40(12):2710–2713PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Miller CM, Miller RV, Garton-Kenny D, Redgrave B, Sears J, Condron MM, Teplow DB, Strobel GA (1998) Ecomycins, unique antimycotics from Pseudomonas viridiflava. J Appl Microbiol 84(6):937–944PubMedCrossRefGoogle Scholar
  40. 40.
    Sheoran N, Nadakkakath AV, Munjal V, Kundu A, Subaharan K, Venugopal V, Rajamma S, Eapen SJ, Kumar A (2015) Genetic analysis of plant endophytic Pseudomonas putida BP25 and chemo-profiling of its antimicrobial volatile organic compounds. Microbiol Res 173:66–78PubMedCrossRefGoogle Scholar
  41. 41.
    Elkahoui S, Djébali N, Yaich N, Azaiez S, Hammami M, Essid R, Limam F (2015) Antifungal activity of volatile compounds-producing Pseudomonas P2 strain against Rhizoctonia solani. World J Microbiol Biotechnol 31(1):175–185PubMedCrossRefGoogle Scholar
  42. 42.
    Pratiwi RH, Hidayat I, Hanafi M, Mangunwardoyo W (2017) Antibacterial compound produced by Pseudomonas aeruginosa strain UICC B-40, an endophytic bacterium isolated from Neesia altissima. J Microbiol 55(4):289–295PubMedCrossRefGoogle Scholar
  43. 43.
    Ma R, Cao Y, Cheng Z, Lei S, Huang W, Li X, Song Y, Tian B (2017) Identification and genomic analysis of antifungal property of a tomato root endophyte Pseudomonas sp. p21. Anton Leeuw 110(3):387–397CrossRefGoogle Scholar
  44. 44.
    Jasim B, Anisha C, Rohini S, Kurian JM, Jyothis M, Radhakrishnan EK (2014) Phenazine carboxylic acid production and rhizome protective effect of endophytic Pseudomonas aeruginosa isolated from Zingiber officinale. World J Microbiol Biotechnol 30(5):1649–1654PubMedCrossRefGoogle Scholar
  45. 45.
    Zhao LF, Xu YJ, Ma ZQ, Deng ZS, Shan CJ, Wei GH (2013) Colonization and plant growth promoting characterization of endophytic Pseudomonas chlororaphis strain Zong1 isolated from Sophora alopecuroides root nodules. Braz J Microbiol 44(2):629–637CrossRefGoogle Scholar
  46. 46.
    Otieno N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745Google Scholar
  47. 47.
    Moran NA (2002) Microbial minimalism: genome reduction in bacterial pathogens. Cell 108:583–586PubMedCrossRefGoogle Scholar
  48. 48.
    Laugraud A, Young S, Gerard E, O’Callaghan M, Wakelin S (2017) Draft genome sequence of a kale (Brassica oleracea L.) root endophyte, Pseudomonas sp. strain C9. Genome Announc 5:e00163–e00117. Scholar
  49. 49.
    Lafi FF, AlBladi ML, Salem NM, Al-Banna L, Alam I, Bajic VB, Hirt H, Saad MM (2017) Draft genome sequence of the plant growth–promoting Pseudomonas punonensis strain D1-6 isolated from the desert plant Erodium hirtum in Jordan. Genome Announc 5:e01437–e01416. Scholar
  50. 50.
    Moreira AS, Germaine KJ, Lloyd A, Lally RD, Galbally PT, Ryan D, Dowling DN (2016) Draft genome sequence of three endophyte strains of Pseudomonas fluorescens isolated from Miscanthus giganteus. Genome Announc 4(5):e00965–e00916PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Müller H, Zachow C, Alavi M, Tilcher R, Krempl PM, Thallinger GG, Berg G (2013) Complete genome sequence of the sugar beet endophyte Pseudomonas poae RE* 1-1-14, a disease-suppressive bacterium. Genome Announc 1(2):e00020–e00013PubMedCentralCrossRefGoogle Scholar
  52. 52.
    Brown SD, Utturkar SM, Klingeman DM, Johnson CM, Martin SL, Land ML, Lu TS, Schadt CW, Doktycz MJ, Pelletier DA (2012) Twenty-one genome sequences from Pseudomonas species and 19 genome sequences from diverse bacteria isolated from the rhizosphere and endosphere of Populus deltoides. J Bacteriol 194(21):991–5993CrossRefGoogle Scholar
  53. 53.
    Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, vander Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Song T, Zhang W, Wei C, Jiang T, Xu H, Cao Y, Cao Y, Qiao D (2015) Isolation and characterization of agar-degrading endophytic bacteria from plants. Curr Microbiol 70(2):275–281PubMedCrossRefGoogle Scholar
  55. 55.
    Pham VT, Rediers H, Ghequire MG, Nguyen HH, De Mot R, Vanderleyden J, Spaepen S (2017) The plant growth-promoting effect of the nitrogen-fixing endophyte Pseudomonas stutzeri A15. Arch Microbiol 199(3):513–517PubMedCrossRefGoogle Scholar
  56. 56.
    Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39CrossRefGoogle Scholar
  57. 57.
    Yan Y, Ping S, Peng J et al (2010) Global transcriptional analysis of nitrogen fixation and ammonium repression in root-associated Pseudomonas stutzeri A1501. BMC Genomics 11:11PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Bahroun A, Jousset A, Mhamdi R, Mrabet M, Mhadhbi H (2017) Anti-fungal activity of bacterial endophytes associated with legumes against Fusarium solani: assessment of fungi soil suppressiveness and plant protection induction. Appl Soil Ecol 124:131–140CrossRefGoogle Scholar
  59. 59.
    Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68(8):3795–3801PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Khare E, Arora NK (2010) Effect of indole-3-acetic acid (IAA) produced by Pseudomonas aeruginosa in suppression of charcoal rot disease of chickpea. Curr Microbiol 61(1):64–68PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Chen B, Luo S, Wu Y, Ye J, Wang Q, Xu X, Pan F, Khan KY, Feng Y, Yang X (2017) The effects of the endophytic bacterium Pseudomonas fluorescens Sasm05 and IAA on the plant growth and cadmium uptake of sedum alfredii Hance. Front Microbiol 8:2538PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Gamalero E, Glick BR (2012) Plant growth-promoting bacteria and metal phytoremediation. In: Anjum NA, Pereira ME, Ahmad I, Duarte AC, Umar S, Khan NA (eds) Phytotechnologies: remediation of environmental contaminants. CRC, Boca Raton, pp 361–376CrossRefGoogle Scholar
  63. 63.
    Zhao H, Chen K, Li K, Du W, He S, Liu HW (2003) Reaction of 1-amino-2-methylene cyclo propane-1-carboxylate with 1- aminocyclopropane-1-carboxylate deaminase: analysis and mechanistic implications. Biochemist 42:2089–2103. Scholar
  64. 64.
    Honma M, Kawai J, Yamada M (1993) Identification of the sulfhydryl group of 1-amino cyclopropane-1-carboxylate deaminase. Biosci Biotechnol Biochem 57:2090–3000. Scholar
  65. 65.
    Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712. Scholar
  66. 66.
    Ma W, Guinel FC, Glick BR (2003) Rhizobium leguminosarum biovarviciae 1-amino cyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl Environ Microbiol 69:4396–4402. Scholar
  67. 67.
    Li J, Glick BR (2001) Transcriptional regulation of the Enterobacter cloacae UW41-aminocyclopropane-1-carboxylate (ACC) deaminase gene (AcdS). Can J Microbiol 47:259–267. Scholar
  68. 68.
    Singh RP, Shelke GM, Kumar A, Jha PN (2015) Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Front Microbiol 6:937PubMedPubMedCentralGoogle Scholar
  69. 69.
    Sharma A, Johri BN, Sharma AK, Glick BR (2003) Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol Biochem 35(7):887–894CrossRefGoogle Scholar
  70. 70.
    Meyer JM, Stintzi A, Coulanges V, Shivaji S, Voss JA, Taraz K, Budzikiewicz H (1998) Siderotyping of fluorescent pseudomonads: characterization of Pyoverdines of Pseudomonas fluorescens and Pseudomonas putida strains from Antarctica. Microbiology 144:3119–3126. Scholar
  71. 71.
    Budzikiewicz H, Schafer M, Fernandez DU, Matthijs S, Cornelis P (2007) Characterization of the chromophores of pyoverdines and related siderophores by electrospray tandem mass spectrometry. Biometals 20:135–144PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Yeterian E, Martin LW, Guillon L, Journet L, Lamont IL, Schalk IJ (2010) Synthesis of the siderophore pyoverdine in Pseudomonas aeruginosa involves a periplasmic maturation. Amino Acids 38:1447–1459PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Parker DL, Morita T, Mozafarzadeh ML, Verity R, McCarthy JK, Tebo BM (2007) Inter-relationships of MnO2 precipitation, siderophore-Mn-(III) complex formation, siderophore degradation, and iron limitation in Mn-(II)-oxidizing bacterial cultures. Geochim Cosmochim Acta 71:5672–5683CrossRefGoogle Scholar
  74. 74.
    Duckworth OW, Markarian DS, Parker DL, Harrington JM (2017) A two-column flash chromatography approach to pyoverdin production from Pseudomonas putida GB1. J Microbiol Methods 135:11–13PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 9(1):174PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Park KH, Lee CY, Son HJ (2009) Mechanism of insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 isolated from ginseng rhizosphere and its plant growth-promoting activities. Lett Appl Microbiol 49(2):222–228PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Chen W, Yang F, Zhang L, Wang J (2016) Organic acid secretion and phosphate solubilizing efficiency of Pseudomonas sp. PSB12: effects of phosphorus forms and carbon sources. Geomicrobiol J 33(10):870–877CrossRefGoogle Scholar
  78. 78.
    Gómez-Lama Cabanás C, Schilirò E, Valverde-Corredor A, Mercado-Blanco J (2014) The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots. Front Microbiol 5:427PubMedPubMedCentralGoogle Scholar
  79. 79.
    Schellenberger U, Oral J, Rosen BA, Wei JZ, Zhu G, Xie W, McDonald MJ, Cerf DC, Diehn SH, Crane VC, Sandahl GA (2016) A selective insecticidal protein from Pseudomonas for controlling corn rootworms. Science 354:634–637, p.aaf6056PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Trippe K, McPhail K, Armstrong D, Azevedo M, Banowetz G (2013) Pseudomonas fluorescens SBW25 produces furanomycin, a non-proteinogenic amino acid with selective antimicrobial properties. BMC Microbiol 13(1):111PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Singh PI, Bharate S (2006) Phloroglucinol compounds of natural origin. Nat Prod Rep 23:558–591CrossRefGoogle Scholar
  82. 82.
    Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97(2):250–256PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Mendes R, Kruijt M, De Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332(6033):1097–1100CrossRefGoogle Scholar
  84. 84.
    Patel JK, Archana G (2017) Engineered production of 2, 4-diacetylphloroglucinol in the diazotrophic endophytic bacterium Pseudomonas sp. WS5 and its beneficial effect in multiple plant-pathogen systems. Appl Soil Ecol 124:34–44CrossRefGoogle Scholar
  85. 85.
    Rochat L, Péchy-Tarr M, Baehler E, Maurhofer M, Keel C (2010) Combination of fluorescent reporters for simultaneous monitoring of root colonization and antifungal gene expression by a biocontrol pseudomonad on cereals with flow cytometry. Mol Plant-Microbe Interact 23(7):949–961PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Guttenberger N, Blankenfeldt W, Breinbauer R (2017) Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products. Bioorg Med Chem 25(22):6149–6166PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Briard B, Bomme P, Lechner BE, Mislin GLA, Lair V, Prévost MC, Latgé JP, Haas H, Beauvais A (2015) Pseudomonas aeruginosa manipulates redox and iron homeostasis of its microbiota partner Aspergillus fumigatus via phenazines. Sci Rep 5:8220PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Tupe SG, Kulkarni RR, Shirazi F, Sant DG, Joshi SP, Deshpande MV (2015) Possible mechanism of antifungal phenazine-1-carboxamide from Pseudomonas sp. against dimorphic fungi Benjaminiella poitrasii and human pathogen Candida albicans. J Appl Microbiol 118(1):39–48PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Zhou L, Jiang H, Jin K, Sun S, Zhang W, Zhang X, He YW (2015) Isolation, identification and characterization of rice rhizobacterium Pseudomonas aeruginosa PA1201 producing high level of biopesticide “Shenqinmycin” and phenazine-1-carboxamide. Wei Sheng Wu Xue Bao 55(4):401–411PubMedPubMedCentralGoogle Scholar
  90. 90.
    Nowak-Thompson B, Chaney N, Wing JS, Gould SJ, Loper JE (1999) Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol 181(7):2166–2174PubMedPubMedCentralGoogle Scholar
  91. 91.
    Dwivedi D, Johri BN (2003) Antifungals from fluorescent pseudomonads: biosynthesis and regulation. Curr Sci 85:1693–1703Google Scholar
  92. 92.
    Thomas MG, Burkart MD, Walsh CT (2002) Conversion of l-proline to pyrrolyl-2-carboxyl-S-PCP during undecylprodigiosin and pyoluteorin biosynthesis. Chem Biol 9(2):171–184PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Yan Q, Philmus B, Chang JH, Loper JE (2017) Novel mechanism of metabolic co-regulation coordinates the biosynthesis of secondary metabolites in Pseudomonas protegens. eLife 6:e22835. Scholar
  94. 94.
    Hammer PE, Hill DS, Lam ST, Van Pée KH, Ligon JM (1997) Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Appl Environ Microbiol 63(6):2147–2154PubMedPubMedCentralGoogle Scholar
  95. 95.
    Park JY, Oh SA, Anderson AJ, Neiswender J, Kim JC, Kim YC (2011) Production of the antifungal compounds phenazine and pyrrolnitrin from Pseudomonas chlororaphis O6 is differentially regulated by glucose. Lett Appl Microbiol 52(5):532–537PubMedCrossRefGoogle Scholar
  96. 96.
    Mendes R, Pizzirani-Kleiner AA, Araujo WL, Raaijmakers JM (2007) Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl Environ Microbiol 73(22):7259–7267PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Nandi M, Selin C, Brassinga AKC, Belmonte MF, Fernando WD, Loewen PC, De Kievit TR (2015) Pyrrolnitrin and hydrogen cyanide production by Pseudomonas chlororaphis strain PA23 exhibits nematicidal and repellent activity against Caenorhabditis elegans. PLoS One 10(4):e0123184PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Kilani J, Fillinger S (2016) Phenylpyrroles: 30 years, two molecules and (nearly) no resistance. Front Microbiol 7:2014PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Pillonel C, Meyer T (1997) Effect of phenylpyrroles on glycerol accumulation and protein kinase activity of Neurospora crassa. Pest Sci 49(3):229–236CrossRefGoogle Scholar
  100. 100.
    Reis RS, Pereira AG, Neves BC, Freire DM (2011) Gene regulation of rhamnolipid production in Pseudomonas aeruginosa–a review. Bioresour Technol 102(11):6377–6384PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Tavares LF, Silva PM, Junqueira M, Mariano DC, Nogueira FC, Domont GB, Freire DM, Neves BC (2013) Characterization of rhamnolipids produced by wild-type and engineered Burkholderia kururiensis. Appl Microbiol Biotechnol 97(5):1909–1921PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Řezanka T, Siristova L, Sigler K (2011) Rhamnolipid-producing thermophilic bacteria of species Thermus and Meiothermus. Extremophiles 15(6):697PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Yan X, Sims J, Wang B, Hamann MT (2014) Marine actinomycete Streptomyces sp. ISP2-49E, a new source of Rhamnolipid. Biochem Syst Ecol 55:292–295PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Deziel E, Lepine F, Milot S, Villemur R (2003) RhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology 149:2005–2013PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Du J, Zhang A, Hao JA, Wang J (2017) Biosynthesis of di-rhamnolipids and variations of congeners composition in genetically-engineered Escherichia coli. Biotechnol Lett 39(7):1041–1048PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Blumer C, Haas D (2000) Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 173:170–177PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Tashi-Oshnoei F, Harighi B, Abdollahzadeh J (2017) Isolation and identification of endophytic bacteria with plant growth promoting and biocontrol potential from oak trees. For Pathol 47(5). Scholar
  108. 108.
    Bakker PA, Pieterse CM, Van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97(2):239–243PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    De Vleesschauwer D, Djavaheri M, Bakker PA, Höfte M (2008) Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response. Plant Physiol 148(4):1996–2012PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Kraemer SA, Soucy JPR, Kassen R (2017) Antagonistic interactions of soil pseudomonads are structured in time. FEMS Microbiol Ecol 93(5):fix046CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyBarkatullah UniversityBhopalIndia

Personalised recommendations