Skip to main content

Fungal Endophytes from Medicinal Plants as a Potential Source of Bioactive Secondary Metabolites and Volatile Organic Compounds: An Overview

  • Reference work entry
  • First Online:
Book cover Endophytes and Secondary Metabolites

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

In this chapter, we provide a general overview of secondary metabolites, especially easily volatilized molecules, namely, VOCs, isolated and identified from endophytic fungal communities of different medicinal plants. A fungal endophyte spends the whole or part of its life cycle colonizing inter- and/or intracellularly inside the healthy tissues of the host plants, causing no apparent symptoms of disease. Endophytic fungi produce a wide array of secondary metabolites and volatile organic compounds with important biological functions, displaying a broad range of useful antibiotic and pharmaceutical activities as well as immunomodulatory and toxic activities. Some of their biological activities are still unknown to mankind. These microbial metabolites have drawn enormous attention as potential agents of medicinal properties. Fungi are well known for emitting a complex mixture of volatile organic compounds (VOCs). Fungal VOCs commonly form a bioactive interface between plants and numerous microorganisms. Fungi emit plethora of unique volatile compounds that belong to a number of chemical classes including alcohols, aldehydes, acids, ethers, ketones, hydrocarbons, terpenes, and sulfur compounds. VOCs are gases, carbon-based compounds having characteristic odors, and are produced during primary and secondary metabolism. The diverse functions of fungal VOCs can be used in biotechnological applications as biofuel, biocontrol, and mycofumigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, Berlin/Heidelberg/New York, pp 179–197

    Chapter  Google Scholar 

  2. Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173

    Google Scholar 

  3. Bacon CW, White JF (2000) Microbial endophytes. Marcel Dekker, New York, pp 341–388

    Google Scholar 

  4. Strobel GA (2006) Muscodor albus and its biological promise. J Ind Microbiol Biotechnol 33:514–522

    Article  CAS  PubMed  Google Scholar 

  5. Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66

    Article  Google Scholar 

  6. Huang WY, Ca YZ, Hyde KD, Corke H, Sun M (2008) Biodiversity of endophytic fungi associated with 29 traditional Chinese medicinal plants. Fungal Divers 33:61–75

    Google Scholar 

  7. Huang WY, Cai YZ, Surveswaran S, Hyde KD, Corke H, Sun M (2009) Molecular phylogenetic identification of endophytic fungi isolated from three Artemisia species. Fungal Divers 36:69–88

    CAS  Google Scholar 

  8. Oses R, Valenzuela S, Freer J, Sanfuentes E, Rodriguez J (2008) Fungal endophytes in xylem of healthy Chilean trees and their possible role in early wood decay. Fungal Divers 33:77–86

    Google Scholar 

  9. Raghukumar C (2008) Marine fungal biotechnology: an ecological perspective. Fungal Divers 31:19–35

    Google Scholar 

  10. Strobel GA, Long DM (1998) Endophytic microbes embody pharmaceutical potential. ASM News 64:263–268

    Google Scholar 

  11. Carroll GC (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbionts. Ecology 69:2–9

    Article  Google Scholar 

  12. Nisa H, Kamili AN, Nawchoo IA, Shafi S, Shameem N, Bandh SA (2015) Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: a review. Microb Pathog 82:50–59

    Article  CAS  PubMed  Google Scholar 

  13. Priti V, Ramesha BT, Singh S, Ravikanth G, Ganeshaiah KN, Suryanarayanan TS, Shaanker RU (2009) How promising are endophytic fungi as alternative sources of plant secondary metabolites? Curr Sci 97(4):477–478

    Google Scholar 

  14. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural product. Microbiol Mol Biol Rev 67(4):491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771

    Article  CAS  PubMed  Google Scholar 

  16. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  CAS  PubMed  Google Scholar 

  17. Strobel GA, Daisy BH, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    Article  CAS  PubMed  Google Scholar 

  18. Strobel GA, Torczynski R, Bollon A (1997) Acremonium sp. a leucinostatin A producing endophyte of European yew (Taxus baccata). Plant Sci 128:97–108

    Article  CAS  Google Scholar 

  19. Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implication of their occurrence. J Nat Prod 69:509–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Verma VC, Kharwar RN, Strobel GA (2009) Chemical and functional diversity of natural products from plant associated endophytic fungi. Nat Prod Commun 4:1511–1532

    CAS  PubMed  Google Scholar 

  21. Strobel GA (2006) Harnessing endophytes for industrial microbiology. Curr Opin Microbiol 9:240–244

    Article  CAS  PubMed  Google Scholar 

  22. Mitchell AM, Strobel GA, Hess WM, Vargas PN, Ezra D (2008) Muscodorcrispans, a novel endophyte from Ananas ananassoides in the Bolivian Amazon. Fungal Divers 31:37–43

    Google Scholar 

  23. Strobel GA (2002) Microbial gifts from the rain forest. Can J Phytopathol 24:14–20

    Article  Google Scholar 

  24. MacMillan J (2002) Occurrence of gibberellins in vascular plants, fungi and bacteria. J Plant Growth Regul 20:387–442

    Article  CAS  Google Scholar 

  25. Sanders IR (2004) Plant and arbuscular mycorrhizal fungal diversity are we looking at the relevant levels of diversity and are we using the right techniques? New Phytol 164:415–418

    Article  Google Scholar 

  26. Gonthier P, Gennaro M, Nicolotti G (2006) Effect of water stress on endophytic mycota of Quercus robur. Fungal Divers 21:69–80

    Google Scholar 

  27. Krings M, Taylor TN, Hass H, Kerp H, Dotzler N, Hermsen EJ (2007) Fungal endophytes in a 400-million-yr-old land plants: infection pathways, spatial distribution, and host response. New Phytol 174:648–657

    Article  PubMed  Google Scholar 

  28. Rodrigues KF, Samuels GJ (1990) Preliminary study of endophytic fungi in a tropical palm. Mycol Res 94:827–830

    Article  Google Scholar 

  29. Rodrigues KF, Samuels GJ (1992) Idriella species endophytic fungi in palms. Mycotaxon 43:271–276

    Google Scholar 

  30. Liu XY, Xie XM, Duan JX (2007) Colletotrichum yunnanense sp. nov., a new endophytic species from Buxus sp. Mycotaxon 100:137–144

    Google Scholar 

  31. Peterson SW, Vega FE, Posada F, Nagai C (2005) Penicillium coffeae, a new endophytic species isolated from a coffee plant and its phylogenetic relationship to P. fellutanum, P. thiersii and P. brocae based on parsimony analysis of multilocus DNA sequences. Mycologia 97:659–666

    Article  CAS  PubMed  Google Scholar 

  32. Bertoni MD, Cabral D (1991) Ceratopycnidiumbaccharidicola sp. nov., from Baccharis coridifolia in Argentina. Mycol Res 95:1014–1016

    Article  Google Scholar 

  33. Arenal F, Platas G, Pelaez F (2007) A new endophytic species of Preussia (Sporormiaceae) inferred from morphological observations and molecular phylogenetic analysis. Fungal Divers 25:1–17

    Google Scholar 

  34. Jacob M, Bhat DJ (2000) Two new endophytic conidial fungi from India. Cryptogam Mycol 21:81–88

    Article  Google Scholar 

  35. Dhargalkar S, Bhat DJ (2009) Echinosphaeria pteridis sp. nov. and its Vermiculariopsiella anamorph. Mycotaxon 108:115–122

    Article  Google Scholar 

  36. Singh SK, Gaikwad VP, Waingankar VM (2005) A new endophytic Thielaviaicacinacearum (ascomycete) isolated from medicinal plant Nothapodytes nimmoniana. J Basic Appl Mycol 4:68–70

    Google Scholar 

  37. Singh SK, Gaikwad VP, Waingankar VM (2009) A new endophytic ascomycete Gnomoniellapongamiae from healthy leaves of Pongamia pinnata Merr. Indian Phytopathol 62(1):124–125

    Google Scholar 

  38. Mirjalili MH, Farzaneh M, Bonfill M, Rezadoost H, Ghassempour A (2012) Isolation and characterization of Stemphylium sedicola SBU-16 as a new endophytic taxol-producing fungus from Taxus baccata grown in Iran. FEMS Microbiol Lett 328:122–129

    Article  CAS  PubMed  Google Scholar 

  39. Bills GF, Polishook JD (1992) Recovery of endophytic fungi from Chamaecyparis thyoides. Sydowia 44:1–12

    Google Scholar 

  40. Li H, Qing C, Zhang Y, Zhao Z (2005) Screening for endophytic fungi with antitumour and antifungal activities from Chinese medicinal plants. World J Microbiol Biotechnol 21:1515–1519

    Article  Google Scholar 

  41. Hyde KD (2001) Where are the missing fungi? In: Hyde KD (ed) Mycological research. Cambridge University Press, 105:1422–1518

    Google Scholar 

  42. Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655

    Article  Google Scholar 

  43. Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Article  Google Scholar 

  44. Dreyfuss MM, Chapela IH (1994) Potential of fungi in the discovery of novel, low molecular weight pharmaceuticals. In: Gullo VP (ed) The discovery of natural products with therapeutic potential. Butterworth-Heinemann, Stoneham, pp 49–80

    Chapter  Google Scholar 

  45. Frohlich J, Hyde KD (1999) Biodiversity of palm fungi in the tropics: are global fungal diversity estimates realistic? Biodivers Conserv 8:977–1004

    Article  Google Scholar 

  46. Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274

    Article  Google Scholar 

  47. Hammond PM (1992) In: Groombridge B (ed) Global biodiversity: status of the Earth’s living resources. Chapman and Hall, London, pp 17–39

    Google Scholar 

  48. May RM (1994) Conceptual aspects of the quantification of the extent of biological diversity. Philos Trans R Soc Lond Ser B 345:13–20

    Article  CAS  Google Scholar 

  49. Rossman AY (1994) A strategy for an all-taxa inventory of fungal diversity. In: Chen CH, Peng CI (eds) Biodiversity and terrestrial ecosystems, Monograph series no 14. Institute of Botany, Academia Sinica, Taipei, pp 169–194

    Google Scholar 

  50. Arnold AE, Maynard Z, Gilbert GS (2001) Fungal endophytes in dicotyledonous neotropical trees: patterns of abundance and diversity. Mycol Res 105:1502–1507

    Article  Google Scholar 

  51. Cannon PF, Simmons CM (2002) Diversity and host preference of leaf endophytic fungi in the Iwokrama Forest Reserve, Guyana. Mycologia 94:210–220

    Article  PubMed  Google Scholar 

  52. Suryanarayanan TS, Murali TS, Venkatesan G (2002) Occurrence and distribution of fungal endophytes in tropical forests across a rainfall gradient. Can J Bot 80:818–826

    Article  Google Scholar 

  53. Mittermeier RA, Myers N, Gil PR, Mittermeier CG (1999) Hotspots: Earth’s biologically richest and most endangered terrestrial ecoregions. Cemex, Conservation International and Agrupacion Sierra Madre, Monterrey

    Google Scholar 

  54. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xiong ZQ, Yang YY, Zhao N, Wang Y (2013) Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media. BMC Microbiol 13:71–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Brown KB, Hyde KD, Guest DJ (1998) Preliminary studies on endophytic fungal communities of Musa acuminata species complex in Hong Kong and Australia. Fungal Divers 1:27–51

    Google Scholar 

  57. Yeh YH, Kirschner R (2014) Sarocladium spinificis, a new endophytic species from the coastal grass Spinifex littoreus in Taiwan. Bot Stud 55:25

    Article  PubMed  PubMed Central  Google Scholar 

  58. Proudfoot JR (2002) Drugs, leads and drug-likeness: an analysis of some recently launched drugs. Bioorg Med Chem Lett 12:1647–1650

    Article  CAS  PubMed  Google Scholar 

  59. Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    Article  PubMed  Google Scholar 

  60. Schulz B, Boyle C, Draeger S, Rommert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996e1004

    Article  CAS  Google Scholar 

  61. Santos RM, Rodrigues G, Fo E, Rocha WC, Teixeira MFS (2003) Endophytic fungi from Melia azedarach. World J Microbiol Biotechnol 19:767–770

    Article  Google Scholar 

  62. Owen NL, Hundley N (2004) Endophytes e the chemical synthesizers inside plants. Sci Prog 87(2):79–99

    Article  CAS  PubMed  Google Scholar 

  63. Tejesvi MV, Nalini MS, Mahesh B, Parkash SH, Kinni RK, Shetty S (2007) New hopes from endophytic fungal secondary metabolite. Bol Soc Quim Mex 1:19–26

    Google Scholar 

  64. Tenguria RK, Khan FN, Quereshi S (2011) Endophytes e mines of pharmacological therapeutics. World J Sci Technol 1(5):127–149

    CAS  Google Scholar 

  65. Priti V, Ramesha BT, Singh S, Ravikanth G, Ganeshaiah KN, Suryanarayanan TS (2009) How promising are endophytic fungi as alternative sources of plant secondary metabolites? Curr Sci 97:477–478

    Google Scholar 

  66. Herrmann A (2010) The chemistry and biology of volatiles. Wiley, Chichester

    Book  Google Scholar 

  67. Pagans E, Font X, Sanchez A (2006) Emission of volatile organic compounds from composting of different solid wastes: abatement by biofiltration. J Hazard Mater 131:179–186

    Article  CAS  PubMed  Google Scholar 

  68. Hodgson E, Levi PE (1997) A textbook of modern toxicology, 2nd edn. Appleton and Lange, Stamford, pp 1–496

    Google Scholar 

  69. Chiron N, Michelot D (2005) Odeurs de champignons: chimie et rôledans les interactions biotiques- une revue. Cryptogam Mycol 26:299–364

    Google Scholar 

  70. Korpi A, Jarnberg J, Pasanen A-L (2009) Microbial volatile organic compounds. Crit Rev Toxicol 39:139–193

    Article  CAS  PubMed  Google Scholar 

  71. Lemfack MC, Nickel J, Dunkel M, Preissner R, Piechulla B (2014) VOC: a database of microbial volatiles. Nucleic Acids Res 42:D744–D748

    Article  CAS  PubMed  Google Scholar 

  72. Kramer R, Abraham W-R (2012) Volatile sesquiterpenes from fungi: what are they good for? Phytochem Rev 11:15–37

    Article  CAS  Google Scholar 

  73. Kesselmeier J, Kuhn U, Wolf A, Andreae MO, Ciccioli P, Brancaleoni E, Frattoni M, Guenther A, Greenberg J, De Castro VP, de Oliva T, Tavares T, Artaxo P (2000) Atmospheric volatile organic compounds (VOC) at a remote tropical forest site in central Amazonia. Atmos Environ 34:4063–4072

    Article  CAS  Google Scholar 

  74. Leff JW, Fierer N (2008) Volatile organic compound (VOC) emissions from soil and litter samples. Soil Biol Biochem 40:1629–1636

    Article  CAS  Google Scholar 

  75. Bäck J, Aaltonen H, Hellén H, Kajos MK, Patokoski J, Taipale R, Pumpanen J, Heinonsalo J (2010) Variable emissions of microbial volatile organic compounds (VOCs) from root-associated fungi isolated from Scots pine. Atmos Environ 44:3651–3659

    Article  CAS  Google Scholar 

  76. Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842

    Article  CAS  PubMed  Google Scholar 

  77. Junker RR, Tholl D (2013) Volatile organic compound mediated interactions at the plant-microbe interface. J Chem Ecol 39:810–825

    Article  CAS  PubMed  Google Scholar 

  78. Piechulla B, Degenhardt J (2014) The emerging importance of microbial volatile organic compounds. Plant Cell Environ 37:811–812

    Article  CAS  PubMed  Google Scholar 

  79. Bennett JW, Hung R, Lee S, Padhi S (2013) Fungal and bacterial volatile organic compounds; an overview and their role as ecological signaling agents. In: Hock B (ed) The Mycota IX fungal interactions. Springer, Heidelberg/Berlin, pp 373–393

    Google Scholar 

  80. Bitas V, Kim HS, Bennett JW, Kang S (2013) Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol Plant-Microbe Interact 26:835–843

    Article  CAS  PubMed  Google Scholar 

  81. Wheatley RE (2002) The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek 81:357–364

    Article  CAS  PubMed  Google Scholar 

  82. Griffin MA, Spakowicz DJ, Gianoulis TA, Strobel SA (2010) Volatile organic compound production by organisms in the genus Ascocoryne and a re-evaluation of myco-diesel production by NRRL 50072. Microbiology 156:3814–3829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ezra D, Jasper J, Rogers T, Knighton B, Grimsrud E, Strobel GA (2004) Proton-transfer reaction- mass spectroscopy as a technique to measure volatile emissions of Muscodor albus. Plant Sci 166:1471–1477

    Article  CAS  Google Scholar 

  84. Dunn WB, Ellis DI (2005) Metabolomics: current analytical platforms and methodologies. Trends Anal Chem 24:285–294

    Article  CAS  Google Scholar 

  85. Morath SU, Hung R, Bennett JW (2012) Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol Rev 26(2–3):73–83

    Article  Google Scholar 

  86. Spakowicz DJ, Strobel SA (2015) Biosynthesis of hydrocarbons and volatile organic compounds by fungi: bioengineering potential. Appl Microbiol Biotechnol l99:4943–4951

    Article  CAS  Google Scholar 

  87. Bennett JW, Inamdar AA (2015) Are some fungal volatile organic compounds (VOCs) mycotoxins? Toxins 7:3785–3804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Siddiquee S (2017) Fungal volatile organic compounds: emphasis on their plant growth-promoting. In: Choudhary D, Sharma A, Agarwal P, Varma A, Tuteja N (eds) Volatiles and food security. Springer, Singapore

    Google Scholar 

Download references

Acknowledgments

I, Humeera Nisa, would like to thank my research supervisor and mentor, Prof Azra N. Kamili, Head/Director, Department of Environmental Sciences/CORD, University of Kashmir, for her precious attention, valuable suggestions, and constant encouragement throughout the course of my PhD investigations. Only at her first rendezvous with me during the initial period of my MPhil study, several years ago, she foresaw my amateur scientific instincts. And now this work of ours is another effort to work deeper with the fungal endophytes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humeera Nisa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nisa, H., Kamili, A.N. (2019). Fungal Endophytes from Medicinal Plants as a Potential Source of Bioactive Secondary Metabolites and Volatile Organic Compounds: An Overview. In: Jha, S. (eds) Endophytes and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-90484-9_29

Download citation

Publish with us

Policies and ethics