Fungal Endophytes: Rising Tools in Sustainable Agriculture Production

  • Hemraj ChhipaEmail author
  • Sunil K. DeshmukhEmail author
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


Endophytes are the microorganisms that lived inside the plant during their life cycle and develop a mutualistic or symbiotic relationship with the host plant. In mutualistic relation, the plant provides nutrition to endophyte, and in return endophyte supports the plant growth and induces immunity in the host by producing secondary metabolites. These secondary metabolites play a significant role in the inhibition of plant pathogen and pest by inducing plant defense. Some of them take part in the induction of salicylic acid, jasmonic acid, and ethylene pathways which are responsible for plant defense. Different microbes like nitrogen-fixing bacteria and mycorrhizal fungi have been explored for decades in sustainable agricultural practices; some of them are being used at a commercial level. But the role of endophytes in plant stress tolerance (biotic and abiotic) and their commercial utilization is not much explored, and researchers are only screening endophytic microbial potentials in bio-fertilizer and bio-pesticide application at lab scale. The role of bioactive compounds from fungal endophytes in sustainable agriculture is least explored. Exploration of natural phenomena of such fungal endophytes and their compounds in crop production and protection is the need of present scenario which is facing problems of pollution with synthetic chemicals and their detrimental impacts on the environment. In the current chapter, we reviewed the role of fungal endophytes and their bioactive compounds in crop production and protection. Detailed analysis of endophytes and their bioactive compounds in plant protection (antibacterial, antifungal, insecticidal, and nematicidal) and growth promotion under different abiotic stress has been presented. The challenges and limitations in commercial agricultural product development of fungal endophytes are also discussed in the chapter.


Endophytes Fungi Sustainable agriculture Bioactive compounds 


  1. 1.
    Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21(2–3):51–66CrossRefGoogle Scholar
  2. 2.
    Arnold AE (2008) Hidden within our botanical richness, a treasure trove of fungal endophytes. Plant Press 32:13–15Google Scholar
  3. 3.
    Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88(3):541–549CrossRefGoogle Scholar
  4. 4.
    De Bary A (1866) Morphologic und physiologie der plize, Flechten, und Myxomyceten (Hofmeister’s Hand Book of Physiological Botany), vol. 2, LeipzigGoogle Scholar
  5. 5.
    Nadeem A, Hamayun M, Khan SA, Khan AL, Lee IJ, Shin DH (2010) Gibberellin-producing endophytic fungi isolated from Monochoria vaginalis. J Microbiol Biotechnol 20(12): 1744–1749Google Scholar
  6. 6.
    Wang X, Zhang X, Liu L, Xiang M, Wang W, Sun X, Che Y, Guo L, Liu G, Guo L, Wang C, Yin WB, Stadler M, Zhang X, Liu X (2015) Genomic and transcriptomic analysis of the endophytic fungus Pestalotiopsis fici reveals its lifestyle and high potential for synthesis of natural products. BMC Genomics 16:28PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Gazis R, Kuo A, Riley R, LaButti K, Lipzen A, Lin J, Amirebrahimi M, Hesse CN, Spatafora JW, Henrissat B, Hainaut M, Grigoriev IV, Hibbett DS (2016) The genome of Xylona heveae provides a window into fungal endophytism. Fungal Biol 120(1):26–42PubMedCrossRefGoogle Scholar
  8. 8.
    Trémouillaux-Guiller J, Rohr T, Rohr R, Huss VAR (2002) Discovery of an endophytic alga in Ginkgo biloba. Am J Bot 89:727–733PubMedCrossRefGoogle Scholar
  9. 9.
    Müller P, Döring M (2009) Isothermal DNA amplification facilitates the identification of a broad spectrum of bacteria, fungi and protozoa in Eleutherococcus sp. plant tissue cultures. Plant Cell Tissue Organ Cult 98:35–45CrossRefGoogle Scholar
  10. 10.
    Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3): 293–320PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Azevedo JL, Maccheroni W Jr, Pereira JO, de Araújo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3(1):15–16CrossRefGoogle Scholar
  12. 12.
    Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330PubMedCrossRefGoogle Scholar
  13. 13.
    Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A et al (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15(3):e2001793. Scholar
  14. 14.
    Chhipa H, Kaushik N (2017) Fungal and bacterial diversity isolated from Aquilaria malaccensis tree and soil, induces agarospirol formation within 3 months after artificial infection. Front Microbiol 8:1286PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Overbeek van LS, van Doorn J, Wichers JH, van Amerongen A, van Roermund HJW, Willemsen PTJ (2014) The arable ecosystem as battle ground for emergence of new human pathogens. Front Microbiol 5:104CrossRefGoogle Scholar
  16. 16.
    Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17:3489–3499PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, Paniske M (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962PubMedCrossRefGoogle Scholar
  18. 18.
    Schafer P, Kogel KH (2009) The sebacinoid fungus Piriformospora indica, an orchid mycorrhiza which may increase host plant reproduction and fitness. In: Deising H (ed) Plant relationships. Springer, Berlin, pp 99–112Google Scholar
  19. 19.
    Friesen ML (2013) Microbially mediated plant functional traits. In: Molecular microbial ecology 8 of the rhizosphere, vol 1. Wiley, Hoboken, pp 87–102CrossRefGoogle Scholar
  20. 20.
    Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90(6):1829–1845PubMedCrossRefGoogle Scholar
  21. 21.
    Schulz B, Rommert A-K, Dammann U, Aust H-J, Strack D (1999) The endophyte-host interaction: a balanced antagonism? Mycol Res 103:1275–1283CrossRefGoogle Scholar
  22. 22.
    Czarnoleski M, Olejniczak P, Górzyńska K, Kozłowski J, Lembicz M (2012) Altered allocation to roots and shoots in the endophyte-infected seedlings of Puccinellia distans Poaceae. Plant Biol 15(2):264–273PubMedCrossRefGoogle Scholar
  23. 23.
    Redman RS, Kim YO, Woodward CJDA, Greer C, Espino L, Doty SL, Rodriguez RJ (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS One 6:e14823PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Pirttilä AM, Joensuu P, Pospiech H, Jalonen J, Hohtola A (2004) Bud endophytes of Scots pine produce adenine derivatives and other compounds that affect morphology and mitigate browning of callus cultures. Physiol Plant 121:305–312PubMedCrossRefGoogle Scholar
  25. 25.
    Spiering MJ, Greer DH, Schmid J (2006) Effects of the fungal endophyte, Neotyphodium lolii, on net photosynthesis and growth rates of perennial ryegrass (Lolium perenne) are independent of in planta endophyte concentration. Ann Bot 98:379–387PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Vadassery J, Ritter C, Venus Y, Camehl I, Varma A, Shahollari B, Novak O, Strnad M, Ludwig-Mueller J, Oelmueller R (2008) The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. Mol Plant-Microbe Interact 21:1371–1383PubMedCrossRefGoogle Scholar
  27. 27.
    Shi Y, Lou K, Li C (2009) Promotion of plant growth by phytohormone producing endophytic microbes of sugar beet. Biol Fertil Soils 45:645–653CrossRefGoogle Scholar
  28. 28.
    Khan SA, Hamayun M, Khan AL, Lee IJ, Shinwari ZK, Kim JG (2012) Isolation of plant growth promoting endophytic fungi from dicots inhabiting coastals and dunes of Korea. Pak J Bot 44(4):1453–1460Google Scholar
  29. 29.
    Rai M, Rathod D, Agarkar G, Dar M, Brestic M, Pastore GM, Junior MRM (2014) Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture. Symbiosis 62(2):63–79CrossRefGoogle Scholar
  30. 30.
    Hasan HAH (2002) Gibberellin and auxin production by plant root fungi and their biosynthesis under salinity-calcium interaction. Rostlinná Výroba 48:101–106Google Scholar
  31. 31.
    Dai CC, Yu BY, Li X (2008) Screening of endophytic fungi that promote the growth of Euphorbia pekinensis. Afr J Biotechnol 7(19):3505–3510Google Scholar
  32. 32.
    Bhagobaty RK, Joshi SR (2009) Promotion of seed germination of Green gram and Chick pea by Penicillium verruculosum RS7PF, a root endophytic fungus of Potentilla fulgens L. Adv Biotechnol 8:16–18Google Scholar
  33. 33.
    Khan AL, Hamayun M, Ahmad N, Waqas M, Kang SM, Kim YH, Lee IJ (2011) Exophialasp.LHL08 reprograms Cucumis sativus to higher growth under abiotic stresses. Physiol Plant 143(4):329–343PubMedCrossRefGoogle Scholar
  34. 34.
    Waqas M, Khan AL, Hamayun M, Kamran M, Kang SM, Kim YH, Lee IJ (2012) Assessment of endophytic fungi cultural filtrate on soybean seed germination. Afr J Biotechnol 11(85): 15135–15143Google Scholar
  35. 35.
    Waqas M, Khan AL, Kamran M, Hamayun M, Kang SM, Kim YH, Lee IJ (2012) Endophytic fungi produce gibberellins and indole-acetic acid and promotes host-plant growth during stress. Molecules 17:10754–10773PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Khan AL, Lee IJ (2013) Endophytic Penicillium funiculosum LHL06 secretes gibberellin that reprograms Glycine max L. growth during copper stress. BMC Plant Biol 13(1):86PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Hamayun M, Khan SA, Ahmad N, Tang DS, Kang S-M, Sohn EY, Hwang YH, Shin DH, Lee BH, Kim JG, Lee IJ (2009) Cladosporium sphaerospermum as a new plant growth-promoting endophyte from the roots of Glycine max (L.) Merr. World J Microbiol Biotechnol 25:627–632CrossRefGoogle Scholar
  38. 38.
    Hamayun M, Khan SA, Iqbal I, Hwang YH, Shin DH, Sohn EY, Lee BH, Na CI, Lee IJ (2009) Chrysosporium pseudomerdarium produces gibberellins and promotes plant growth. J Microbiol 47:425–430PubMedCrossRefGoogle Scholar
  39. 39.
    Hamayun M, Khan SA, Khan MA, Khan AL, Kang SM, Kim SK, Joo GJ, Lee IJ (2009) Gibberellin production by pure cultures of a new strain of Aspergillus fumigates. World J Microbiol Biotechnol 25:1785–1792CrossRefGoogle Scholar
  40. 40.
    Hamayun M, Khan SA, Kim HY, Chaudhary MF, Hwang YH, Shin DH, Kim IK, Lee BH, Lee IJ (2009) Gibberellin production and plant growth enhancement by newly isolated strain of Scolecobasidium tshawytschae. J Microbiol Biotechnol 19(6):560–565PubMedGoogle Scholar
  41. 41.
    Hamayun M, Khan SA, Iqbal I, Ahmad B, Lee IJ (2010) Isolation of a gibberellin-producing fungus (Penicillium sp. MH7) and growth promotion of Crown Daisy (Chrysanthemum coronarium). J Microbiol Biotechnol 20(1):202–207PubMedGoogle Scholar
  42. 42.
    Hamayun M, Khan SA, Khan AL, Rehman G, Kim YH, Iqbal I, Hussain J, Sohn EY, Lee IJ (2010) Gibberellin production and plant growth promotion from pure cultures of Cladosporium sp. MH-6 isolated from cucumber (Cucumis sativus L.). Mycologia 102(5):989–995PubMedCrossRefGoogle Scholar
  43. 43.
    Khan SA, Hamayun M, Yoon HJ, Kim HY, Suh SJ, Hwang SK, Kim JM, Lee IJ, Choo YS, Yoon UH, Kong WS, Lee BM, Kim JG (2008) Plant growth promotion and Penicillium citrinum. BMC Microbiol 8:231PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Khan SA, Hamayun M, Kim HY, Yoon HJ, Seo JC, Choo YS (2009) A new strain of Arthrinium phaeospermum isolated from Carex kobomugi Ohwi is capable of gibberellins production. Biotechnol Lett 31:283–287PubMedCrossRefGoogle Scholar
  45. 45.
    Khan SA, Hamayun M, Kim HY, Yoon HJ, Lee IJ, Kim JG (2009) Gibberellin production and plant growth promotion by a newly isolated strain of Gliomastix murorum. World J Microbiol Biotechnol 25:829–833CrossRefGoogle Scholar
  46. 46.
    Khan AL, Hamayun M, Kim YH, Kang SM, Lee IJ (2011) Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiol Biochem 49(8):852–862PubMedCrossRefGoogle Scholar
  47. 47.
    Khan AL, Hamayun M, Kim YH, Kang SM, Lee JH, Lee IJ (2011) Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress. Process Biochem 46:440–447CrossRefGoogle Scholar
  48. 48.
    You YH, Yoon H, Kang SM, Shin JH, Choo YS, Lee IJ, Lee JM, Kim JG (2012) Fungal diversity and plant growth promotion of endophytic fungi from six halophytes in Suncheon Bay. J Microbiol Biotechnol 22(11):1549–1556PubMedCrossRefGoogle Scholar
  49. 49.
    Robert-Seilaniantz A, Grant M, Jones JDG (2011) Hormone cross talk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343PubMedCrossRefGoogle Scholar
  50. 50.
    Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25:139–150PubMedCrossRefGoogle Scholar
  51. 51.
    Gao FK, Dai CC, Liu XZ (2010) Mechanisms of fungal endophytes in plant protection against pathogens. Afr J Microbiol Res 4(13):1346–1351Google Scholar
  52. 52.
    Waqas M, Khan AL, Hamayun M, Shahzad R, Kim YH, Choi KS, Lee IJ (2015) Endophytic infection alleviates biotic stress in sunflower through regulation of defence hormones, antioxidants and functional amino acids. Eur J Plant Pathol 141(4):803–824CrossRefGoogle Scholar
  53. 53.
    Bacon CW, Hill NS (1996) Symptomless grass endophytes: products of co evolutionary symbioses and their role in the ecological adaptations of grasses. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants. American Phytopathological Society Press, St. Paul, pp 155–178Google Scholar
  54. 54.
    Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel KH, Schaefer P, Schwarczinger I, Zuccaro A, Skoczowski A (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180:501–510PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Bae H, Sicher RC, Kim MS, Kim S-H, Strem MD, Melnick RL, Bailey BA (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60:3279–3295PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Sun C, Johnson J, Cai D, Sherameti I, Oelmüeller R, Lou B (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought related genes and the plastid-localized CAS protein. J Plant Physiol 167:1009–1017PubMedCrossRefGoogle Scholar
  57. 57.
    Murphy BR, Doohan FM, Hodkinson TR (2015) Fungal root endophytes of a wild barley species increase yield in a nutrient-stressed barley cultivar. Symbiosis 65(1):1–7CrossRefGoogle Scholar
  58. 58.
    Marina S, Angel M, Silva-Flores MA, Cervantes-Badillo MG, Rosales-Saavedra MT, Islas-Osuna MA, Casas-Flores S (2011) The plant growth-promoting fungus Aspergillus ustus promotes growth and induces resistance against different lifestyle pathogens in Arabidopsis thaliana. J Microbiol Biotechnol 21(7):686–696CrossRefGoogle Scholar
  59. 59.
    Khan AL, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH, Lee IJ (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12:3PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Machungo C, Losenge T, Kahangi E, Coyne D, Dubois T, Kimenju J (2009) Effect of endophytic Fusarium oxysporum on growth of tissue-cultured Banana plants. Afr J Hortic Sci 2:160–167Google Scholar
  61. 61.
    Hipol RM (2012) Molecular identification and phylogenetic affinity of two growth promoting fungal endophytes of sweet potato (Ipomea batatas (L.) Lam.) from Baguio City, Philippines. Electron J Biol 8(3):57–61Google Scholar
  62. 62.
    Chen XM, Dong HL, Hu KX, Sun ZR, Chen J, Guo SX (2010) Diversity and antimicrobial and plant-growth-promoting activities of endophytic fungi in Dendrobium loddigesii Rolfe. J Plant Growth Regul 29(3):328–337CrossRefGoogle Scholar
  63. 63.
    Diene O, Takahashi T, Yonekura A, Nitta Y, Narisawa K (2010) A new fungal endophyte, Helminthosporium velutinum, promoting growth of a bioalcohol plant, sweet sorghum. Microbes Environ 25(3):216–219PubMedCrossRefGoogle Scholar
  64. 64.
    Hossain MM, Sultana F, Kubota M, Koyama H, Hyakumachi M (2007) The plant growth-promoting fungus Penicillium simplicissimum GP17-2 induces resistance in Arabidopsis thaliana by activation of multiple defense signals. Plant Cell Physiol 48(12):1724–1736PubMedCrossRefGoogle Scholar
  65. 65.
    Hamayun M, Khan SA, Khan AL, Rehman G, Sohn EY, Shah AA, Kim SK, Joo GJ, Lee IJ (2009) Phoma herbarum as a new gibberellin-producing and plant growth-promoting fungus. J Microbiol Biotechnol 19(10):1244–1249PubMedGoogle Scholar
  66. 66.
    Dolatabadi HK, Goltapeh EM (2013) Effect of inoculation with Piriformospora indica and Sebacina vermifera on growth of selected Brassicaceae plants under greenhouse conditions. J Hortic Res 21(2):115–124CrossRefGoogle Scholar
  67. 67.
    Murphy BR, Doohan FM, Hodkinson TR (2017) A seed dressing combining fungal endophyte spores and fungicides improves seedling survival and early growth in barley and oat. Symbiosis 71(1):69–76CrossRefGoogle Scholar
  68. 68.
    Verma S, Varma A, Rexer K-H et al (1998) Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 90:896–903CrossRefGoogle Scholar
  69. 69.
    Johnson JM, Alex T, Oelmuller R (2014) Piriformospora indica: the versatile and multifunctional root endophytic fungus for enhanced yield and tolerance to biotic and abiotic stress in crop plants. J Trop Agric 52:103–122Google Scholar
  70. 70.
    Vázquez-de-Aldana BR, García-Ciudad A, García-Criado B, Vicente-Tavera S, Zabalgogeazcoa I (2013) Fungal endophyte (Epichloë festucae) alters the nutrient content of Festuca rubra regardless of water availability. PLoS One 8(12):e84539. Balestrini R (ed)CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Plant thermotolerance conferred by fungal endophyte. Science 298:1581PubMedCrossRefGoogle Scholar
  72. 72.
    Anonymous (2003) Fungi shield new host plants from heat and drought. Science 301:1466Google Scholar
  73. 73.
    Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Schulz B (2001) Endophytic fungi: a source of novel biologically active secondary metabolites. In: British Mycological Society, International symposium proceedings: bioactive fungal metabolites – impact and exploitation. University of Wales, Swansea, p 20Google Scholar
  75. 75.
    Lugtenberg BJ, Caradus JR, Johnson LJ (2016) Fungal endophytes for sustainable crop production. FEMS Microbiol Ecol 92:fiw194. Scholar
  76. 76.
    Roberts CA, Marek SM, Niblack TL, Karr AL (1992) Parasitic Meloidogyne and mutualistic Acremonium increase chitinase in tall fescue. J Chem Ecol 18(7):1107–1116PubMedCrossRefGoogle Scholar
  77. 77.
    Wicklow DT, Roth S, Deyrup ST, Gloer JB (2005) A protective endophyte of maize: Acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides. Mycol Res 109(5):610–618PubMedCrossRefGoogle Scholar
  78. 78.
    Lou J, Yu R, Wang X, Mao Z, Fu L, Liu Y, Zhou L (2016) Alternariol 9-methyl ether from the endophytic fungus Alternaria sp. Samif01 and its bioactivities. Braz J Microbiol 47(1):96–101PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Hellwig V, Grothe T, Mayer-Bartschmid A, Endermann R, Geschke FU, Henkel T, Stadler MA (2002) Altersetin, a new antibiotic from cultures of endophytic Alternaria spp. taxonomy, fermentation, isolation, structure elucidation and biological activities. J Antibiot 55:881–892PubMedCrossRefGoogle Scholar
  80. 80.
    Aly AH, Edrada-Ebel R, Wray V, Muller WEG, Kozytska S, Hentschel H, Proksch P, Ebel R (2008) Bioactive metabolites from the endophytic fungus Ampelomyces sp. isolated from the medicinal plant Urospermum picroides. Phytochemistry 69(8):1716–1725PubMedCrossRefGoogle Scholar
  81. 81.
    Cavaglieri LR, Passone A, Etcheverry MG (2004) Correlation between screening procedures to select root endophytes for biological control of Fusarium verticillioides in Zea mays L. Biol Control 31(3):259–267CrossRefGoogle Scholar
  82. 82.
    Xiao J, Zhang Q, Gao YQ, Shi XW, Gao JM (2014) Antifungal and antibacterial metabolites from an endophytic Aspergillus sp. associated with Melia azedarach. Nat Prod Res 28(17): 1388–1392PubMedCrossRefGoogle Scholar
  83. 83.
    Waqas M, Khan AL, Hamayun M, Shahzad R, Kang SM, Kim JG, Lee IJ (2015) Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. J Plant Interact 10(1):280–287CrossRefGoogle Scholar
  84. 84.
    Istifadah N, McGee PA (2006) Endophytic Chaetomium globosum reduces development of tan spot in wheat caused by Pyrenophora tritici-repentis. Australas Plant Pathol 35(4):411–418CrossRefGoogle Scholar
  85. 85.
    Hussain H, Root N, Jabeen F, Al-Harrasi A, Al-Rawahi A, Ahmad M, Hassan Z, Abbas G, Mabood F, Shah A, Badshah A (2014) Seimatoric acid and colletonoic acid: two new compounds from the endophytic fungi, Seimatosporium sp. and Colletotrichum sp. Chin Chem Lett 25(12):1577–1579CrossRefGoogle Scholar
  86. 86.
    Zou WX, Meng JC, Lu H, Chen GX, Shi GX, Zhang TY, Tan RX (2000) Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica. J Nat Prod 63:1529–1530PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Varughese T, Riosa N, Higginbotham S, Arnold AE, Coley PD, Kursar TA, Gerwick WH, Rios LC (2012) Antifungal depsidone metabolites from Cordyceps dipterigena, an endophytic fungus antagonistic to the phytopathogen Gibberella fujikuroi. Tetrahedron Lett 53: 1624–1626PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Strobel GA, Miller RV, Martinez-Miller C, Condron MM, Teplow DB, Hess WM (1999) Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 145(8):1919–1926PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Li JY, Strobel GA, Harper JK, Lobkovsky E, Clardy J (2000) Cryptocin, a potent tetramic acid antimycotic from the endophytic fungus Cryptosporiopsis ef. quercina. Org Lett 2:767–770PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Liarzi O, Bar E, Lewinsohn E, Ezra D (2016) Use of the endophytic fungus Daldinia cf. concentrica and its volatiles as bio-control agents. PLoS One 11(12):e0168242PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Rowan DD (1993) Lolitrems, peramine and paxilline: mycotoxins of the ryegrass/endophyte interaction. Agric Ecosyst Environ 44(1–4):103–122CrossRefGoogle Scholar
  92. 92.
    Johnson LJ, Koulman A, Christensen M, Lane GA, Fraser K, Forester N, Johnson RD, Bryan GT, Rasmussen S (2013) An extracellular siderophore is required to maintain the mutualistic interaction of Epichloë festucae with Lolium perenne. PLoS Pathog 9(5):e1003332PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Popay AJ, Prestidge RA, Rowan DD, Dymock JJ (1990) The role of Acremonium lolii mycotoxins in insect resistance of perennial rye grass (Lolium perenne). In: Quisenberry SS, Joost RE (eds) Proceedings of the international symposium on Acremonium/grass interactions, Baton Rouge, pp 44–48Google Scholar
  94. 94.
    Rowan DD, Dymock JJ, Brimble MA (1990) Effect of fungal metabolite peramine and analogs on feeding and development of Argentine stem weevil (Listronotus bonariensis). J Chem Ecol 16(5):1683–1695PubMedCrossRefGoogle Scholar
  95. 95.
    Baute MA, Deffieux G, Baute R, Neveu A (1978) New antibiotics from the fungus Epicoccum nigrum. J Antibiot 31(11):1099–1101PubMedCrossRefGoogle Scholar
  96. 96.
    Bamford PC, Norris GLF, Ward G (1961) Flavipin production by Epicoccum spp. Trans Br Mycol Soc 44(3):354–356CrossRefGoogle Scholar
  97. 97.
    Brown AE, Finlay R, Ward JS (1987) Antifungal compounds produced by Epicoccum purpurascens against soil-borne plant pathogenic fungi. Soil Biol Biochem 19(6):657–664CrossRefGoogle Scholar
  98. 98.
    Wangun HV, Hertweck C (2007) Epicoccarines A, B and epipyridone: tetramic acids and pyridone alkaloids from an Epicoccum sp. associated with the tree fungus Pholiota squarrosa. Org Biomol Chem 5(11):1702–1705CrossRefGoogle Scholar
  99. 99.
    Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J. Microbiol. Biotechnol. 28:1287–1294.PubMedCrossRefGoogle Scholar
  100. 100.
    Shahasi A, Dubois Y, Viljoen A, Nico L, Ragama P, Niere B (2006) In vitro antagonism of endophytic Fusarium oxysporum isolates against the burrowing nematode Radopholus similis. Nematology 8(4):627–636CrossRefGoogle Scholar
  101. 101.
    Hallmann J, Quadt-Hallmann A, Rodriguez-Kibana R, Kloepper JW (1998) Interactions between Meloidogyne incognita and endophytic bacteria in cotton and cucumber. Soil Biol Biochem 30:925–937CrossRefGoogle Scholar
  102. 102.
    Stinson M, Ezra D, Hess WM, Sears J, Strobel GA (2003) An endophytic Gliocladium sp. of Eucryphia cordifolia producing selective volatile antimicrobial compounds. Plant Sci 165:913–922CrossRefGoogle Scholar
  103. 103.
    Worapong J, Strobel GA, Ford EJ, Li JY, Baird G, Hess WM (2001) Muscodor albus anam. nov, an endophyte from Cinnamomum zeylanicum. Mycotaxon 79:67–79Google Scholar
  104. 104.
    Ezra D, Hess WM, Strobel GA (2004) New endophytic isolates of Muscodor albus, a volatile-antibiotic-producing fungus. Microbiology 150:4023–4031PubMedCrossRefGoogle Scholar
  105. 105.
    Atmosukarto I, Castillo U, Hess WM, Sears J, Strobel G (2005) Isolation and characterization of Muscodor albus I-41.3 s, a volatile antibiotic producing fungus. Plant Sci 169(5):854–861CrossRefGoogle Scholar
  106. 106.
    Mitchell AM, Strobel GA, Moore E, Robison R, Sears J (2010) Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology 156(1):270–277PubMedCrossRefGoogle Scholar
  107. 107.
    Daisy BH, Strobel GA, Castillo U, Ezra D, Sears J, Weaver DK, Runyon JB (2002) Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology 148(11):3737–3741PubMedCrossRefGoogle Scholar
  108. 108.
    Demain AL, Fang A (2000) The natural functions of secondary metabolites. In: History of modern biotechnology, vol I. Springer, Berlin/Heidelberg, pp 1–39Google Scholar
  109. 109.
    Kim S, Shin DS, Lee T, Oh KB (2004) Periconicins, two new fusicoccane diterpenes produced by an endophytic fungus Periconia sp. with antibacterial activity. J Nat Prod 67(3):448–450PubMedCrossRefGoogle Scholar
  110. 110.
    Li JY, Strobel GA (2001) Jesterone and hydroxy-jesterone antioomycete cyclohexenone epoxides from the endophytic fungus Pestalotiopsis jesteri. Phytochemistry 57(2):261–265PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Li JY, Harper JK, Grant DM, Tombe BO, Bashyal B, Hess WM, Strobel GA (2001) Ambuic acid, a highly functionalized cyclohexenone with antifungal activity from Pestalotiopsis spp. and Monochaetia sp. Phytochemistry 56(5):463–468PubMedCrossRefGoogle Scholar
  112. 112.
    Sumarah MW, Adams GW, Berghout J, Slack GJ, Wilson AM, Miller JD (2008) Spread and persistence of a rugulosin-producing endophyte in Picea glauca seedlings. Mycol Res 112:731–736PubMedCrossRefGoogle Scholar
  113. 113.
    Miller JD, Cherid H, Sumarah MW, Adams GW (2009) Horizontal transmission of the Picea glauca foliar endophyte Phialocephala scopiformis CBS 120377. Fungal Ecol 2(2):98–101CrossRefGoogle Scholar
  114. 114.
    Silva GH, Teles HL, Zanardi LM, Young MC, Eberlin MN, Hadad R, Pfenning LH, Costa-Neto CM, Castro-Gamboa I, da Silva Bolzani V, Araújo ÂR (2006) Cadinane sesquiterpenoids of Phomopsis cassiae, an endophytic fungus associated with Cassia spectabilis (Leguminosae). Phytochemistry 67(17):1964–1969PubMedCrossRefGoogle Scholar
  115. 115.
    Schwarz M, Köpcke B, Weber RW, Sterner O, Anke H (2004) 3-Hydroxypropionic acid as a nematicidal principle in endophytic fungi. Phytochemistry 65(15):2239–2245PubMedCrossRefGoogle Scholar
  116. 116.
    Weber D, Sterner O, Anke T, Gorzalczancy S, Martino V, Acevedo C (2004) Phomol, a new antiinflammatory metabolite from an endophyte of the medicinal plant Erythrina crista-galli. J Antibiot 57(9):559–563PubMedCrossRefGoogle Scholar
  117. 117.
    Schafer P, Kogel K-H (2009) The Sebacinoid fungus Piriformospora indica, an orchid mycorrhiza which may increase host plant reproduction and fitness. In: Deising H (ed) Plant relationships. Springer, Berlin, pp 99–112Google Scholar
  118. 118.
    You F, Han T, Wu JZ, Huang BK, Qin LP (2009) Antifungal secondary metabolites from endophytic Verticillium sp. Biochem Syst Ecol 37(3):162–165CrossRefGoogle Scholar
  119. 119.
    Chowdhary K, Kaushik N (2015) Fungal endophyte diversity and bioactivity in the Indian medicinal plant Ocimum sanctum Linn. PLoS One 10(11):e0141444PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Chowdhary K, Kaushik N (2018) Biodiversity study and potential of fungal endophytes of peppermint and effect of their extract on chickpea rot pathogens. Arch Phytopathol Plant Protect 51(3–4):139–155CrossRefGoogle Scholar
  121. 121.
    Fletcher LR (1993) Grazing ryegrass/endophyte associations and their effect on animal health and performance. In: Proceedings of the second international symposium on acremonium/grass interactions: plenary papers. AgResearch, Palmerston North, pp 115–120Google Scholar
  122. 122.
    Fletcher LR, Sutherland BL, Fletcher CG (1999) The impact of endophyte on the health and productivity of sheep grazing ryegrass-based pastures. In: Ryegrass endophyte: an essential New Zealand symbiosis. Grassland research and practice series, Publisher -NZ Grassland Association Inc, New Zealand, 7:11–17Google Scholar
  123. 123.
    Finch SC, Fletcher LR, Babu JV (2012) The evaluation of endophyte toxin residues in sheep fat. N Z Vet J 60(1):56–60PubMedCrossRefGoogle Scholar
  124. 124.
    Kumar M, Yadav V, Tuteja N et al (2009) Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiology 155:780–790PubMedCrossRefGoogle Scholar
  125. 125.
    Fakhro A, Andrade-Linares DR, von Bargen S, Bandte M, Büttner C, Grosch R, Schwarz D, Franken P (2010) Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza 20(3):191–200PubMedCrossRefGoogle Scholar
  126. 126.
    Rabiey M, Ullah I, Shaw MW (2015) The endophytic fungus Piriformospora indica protects wheat from fusarium crown rot disease in simulated UK autumn conditions. Plant Pathol 64:1029–1240CrossRefGoogle Scholar
  127. 127.
    Waller F, Achatz B, Baltruschat H et al (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102:13386–13391PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Favaro LC, de Souza Sebastianes FL, Araújo WL (2012) Epicoccum nigrum P16, a sugarcane endophyte, produces antifungal compounds and induces root growth. PLoS One 7(6):e36826PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Murphy BR, Doohan FM, Hodkinson TR (2014) Yield increase induced by the fungal root endophyte Piriformospora indica in barley grown at low temperature is nutrient limited. Symbiosis 62:29–39CrossRefGoogle Scholar
  130. 130.
    Murphy BR, Doohan FM, Hodkinson TR (2015) Persistent fungal root endophytes isolated from a wild barley species suppress seed-borne infections in a barley cultivar. BioControl 60:281–292CrossRefGoogle Scholar
  131. 131.
    Mejia LC, Rojas EI, Maynard Z, Bael SV, Arnold AE, Hebbar P, Samuels GJ, Robbins N, Herre EA (2008) Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biol Control 46:4–14CrossRefGoogle Scholar
  132. 132.
    Vega FE, Simpkins A, Aime MC et al (2010) Fungal endophyte diversity in coffee plants from Colombia, Hawaii, Mexico and Puerto Rico. Fungal Ecol 3:122–138CrossRefGoogle Scholar
  133. 133.
    Jaber LR, Vidal S (2009) Interactions between an endophytic fungus, aphids, and extrafloral nectaries: do endophytes induce extrafloral-mediated defences in Vicia faba? Funct Ecol 23:707–714CrossRefGoogle Scholar
  134. 134.
    Jallow MFA, Dugassa-Gobena D, Vidal S (2008) Influence of an endophytic fungus on host plant selection by a polyphagous moth via volatile spectrum changes. Arthropod Plant Interact 2:53–62CrossRefGoogle Scholar
  135. 135.
    Sun BT, Akutse KS, Xia XF, Chen JH, Ai X, Tang Y, Wang Q, Feng BW, Goettel MS, You MS (2018) Endophytic effects of Aspergillus oryzae on radish (Raphanus sativus) and its herbivore, Plutella xylostella. Planta 248:705–714PubMedCrossRefGoogle Scholar
  136. 136.
    Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma-plant-pathogen interactions. Soil Biol Biochem 40(1):1–10CrossRefGoogle Scholar
  137. 137.
    Engelberth J, Koch T, Schüler G, Bachmann N, Rechtenbach J, Boland W (2001) Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiol 125:369–377PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Zeilinger S, Gruber S, Bansalb R, Mukherjee PK (2016) Secondary metabolism in Trichoderma-Chemistry meets genomics. Fungal Biol Rev 30:74–90CrossRefGoogle Scholar
  139. 139.
    Mukherjee M, Mukherjee PK, Horwitz BA, Zachow C, Berg G, Zeilinger S (2012) Trichoderma-plant-pathogen interactions: advances in genetics of biological control. Indian J Microbiol 52:522–529PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Redman RS, Freeman S, Clifton DR, Morrel J, Brown G, Rodriguez RJ (1999) Biochemical analysis of plant protection afforded by a nonpathogenic endophytic mutant of Colletotrichum magna. Plant Physiol 119:795PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci U S A 100(26): 15649–15654PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Poling SM, Wicklow DT, Rogers KD, Gloer JB (2008) Acremonium zeae, a protective endophyte of maize, produces dihydroresorcylide and 7-hydroxydihydroresorcylides. J Agric Food Chem 56:3006–3009PubMedCrossRefGoogle Scholar
  143. 143.
    Lee K, Pan JJ, May G (2009) Endophytic Fusarium verticillioides reduces disease severity caused by Ustilago maydis on maize. FEMS Microbiol Lett 299:31–37PubMedCrossRefGoogle Scholar
  144. 144.
    Muthukumarasamy R, Revathi G, Loganathan P (2002) Effect of inorganic N on the population in vitro colonization and morphology of Acetobacter diazotrophicus (syn. Gluconacetobacter diazotrophicus). Plant Soil 243:91–102CrossRefGoogle Scholar
  145. 145.
    Chung KR (2012) Stress response and pathogenicity of the necrotrophic fungal pathogen Alternaria alternata. Scientifica 2012:635431, 17PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Mandal S, Mitra A, Mallick N (2008) Biochemical characterization of oxidative burst during interaction between Solanum lycopersicum and Fusarium oxysporum f. sp. lycopersici. Physiol Mol Plant Pathol 72(1–3):56–61CrossRefGoogle Scholar
  147. 147.
    Dubreuil-Maurizi C, Poinssot B (2012) Role of glutathione in plant signaling under biotic stress. Plant Signal Behav 7(2):210–212PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Cosoveanu A, Gimenez-Marino C, Cabrera Y, Hernandez G, Cabrera R (2014) Endophytic fungi from grapevine cultivars in Canary Islands and their activity against phytopathogenic fungi. Intl J Agric Crop Sci 7(15):1497–1503Google Scholar
  149. 149.
    Cosoveanu A, Martin ET, Marino CG, Reina M, Flavin RM, Cabrera R (2016) Endophytic fungi isolated from Musa acuminata ‘Dwarf Cavendish’ and their activity against phytopathogenic fungi. J Agric Biotechnol 1(01):35–43Google Scholar
  150. 150.
    Santos MS, Orlandelli RC, Polonio JC, dos Santos Ribeiro MA, Sarragiotto MH, Azevedo JL, Pamphile JA (2017) Endophytes isolated from passion fruit plants: molecular identification, chemical characterization and antibacterial activity of secondary metabolites. J Appl Pharm Sci 7(4):38–43Google Scholar
  151. 151.
    Stierle A, Strobel G, Stierle D, Grothaus P, Bignami G (1995) The search for a taxol-producing microorganism among the endophytic fungi of the Pacific yew, Taxus brevifolia. J Nat Prod 58(9):1315–1324PubMedCrossRefGoogle Scholar
  152. 152.
    Schena L, Nigro F, Pentimone I, Ligorio A, Ippolito A (2003) Control of postharvest rots of sweet cherries and table grapes with endophytic isolates of Aureobasidium pullulans. Postharvest Biol Technol 30(3):209–220CrossRefGoogle Scholar
  153. 153.
    Salminen SO, Richmond DS, Grewal SK, Grewal PS (2005) Influence of temperature on alkaloid levels and fall armyworm performance in endophytic tall fescue and perennial ryegrass. Entomol Exp Appl 115(3):417–426CrossRefGoogle Scholar
  154. 154.
    Kusari S, Singh S, Jayabaskaran C (2014) Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol 32(6):297–303PubMedCrossRefGoogle Scholar
  155. 155.
    Franken P (2012) The plant strengthening root endophyte Piriformospora indica: potential application and the biology behind. Appl Microbiol Biotechnol 96:1455–1464PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.College of Horticulture and ForestryAgriculture University KotaJhalawarIndia
  2. 2.TERI-Deakin Nano Biotechnology CentreThe Energy and Resources Institute (TERI)New DelhiIndia

Personalised recommendations