Secondary Metabolite Production by Endophytic Fungi: The Gene Clusters, Nature, and Expression

  • Mishra Rashmi
  • V. Venkateswara SarmaEmail author
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


With the recent advancements in drug discovery, the bioprospecting of endophytic fungi for the search of secondary metabolites of pharmaceutical importance and novel medicinal properties has become one of the prime targets. The biosynthetic pathways that are responsible for secondary metabolites have genetic basis for their production. But the expression of the gene clusters responsible for secondary metabolites remains cryptic under laboratory conditions. The large-scale production of these metabolites is severely distressed by its attenuation in axenic cultures. Our insights into these clusters, their regulation, and expression may lead to the mining of more novel bioactive metabolites. This approach of genome mining for the production of novel metabolites is assuring. Major challenges lie in the understanding of the regulatory mechanisms which drive the expression of these cryptic genes. Gaining knowledge on various strategies for the identification as well as induction of these silent clusters is the need of the hour. With the help of multidisciplinary scientific approaches involving bioinformatics, molecular genetics, genome mining, metabolomics, etc., we can explore the hidden treasures of the endophytic fungal diversity.


Bioactive compounds Epigenetic modifications Genome mining Metabolomics 



Biosynthetic gene clusters


Secondary metabolites


  1. 1.
    Nathan C, Cars O (2014) Antibiotic resistance – problems, progress, and prospects. N Engl J Med 371:1761–1763PubMedCrossRefGoogle Scholar
  2. 2.
    Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev Microbiol 11:21CrossRefGoogle Scholar
  3. 3.
    Martins A, Vieira H, Gaspar H, Santos S (2014) Marketed marine natural products in the pharmaceutical and cosmeceutical industries: Tips for success. Mar Drugs 12:1066–1101PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Berdy J (2005) Bioactive microbial metabolites. J Antibiot (Tokyo) 58:1CrossRefGoogle Scholar
  5. 5.
    Petrini O (1991) Fungal endophytes of tree leaves. In: Microbial ecology of leaves. Springer, New York, pp 179–197CrossRefGoogle Scholar
  6. 6.
    Carroll GC (1986) The biology of endophytism in plants with particular reference to woody perennials. In: Microbiology of Phyllosphere. Cambridge University Press, London, pp 203–222Google Scholar
  7. 7.
    Krings M, Taylor TN, Hass H, Kerp H, Dotzler N, Hermsen EJ (2007) Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses. New Phytol 174:648–657CrossRefGoogle Scholar
  8. 8.
    Sun X, Guo L-D (2012) Endophytic fungal diversity: review of traditional and molecular techniques. Mycology 3:65–76Google Scholar
  9. 9.
    Rodriguez RJ, White Jr JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330CrossRefGoogle Scholar
  10. 10.
    Sun X, Guo L-D, Hyde KD (2011) Community composition of endophytic fungi in Acer truncatum and their role in decomposition. Fungal Divers 47:85–95CrossRefGoogle Scholar
  11. 11.
    Mishra R, Sarma VV (2017) Mycoremediation of heavy metal and hydrocarbon pollutants by endophytic Fungi. In: Mycoremediation and environmental sustainability. Springer, pp 133–151Google Scholar
  12. 12.
    Yim G, Wang HH (2007) Antibiotics as signalling molecules. Philos Trans R Soc B Biol Sci 362:1195–1200CrossRefGoogle Scholar
  13. 13.
    Gouda S, Das G, Sen SK, Shin H-S, Patra JK (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 7:1538PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Ludwig-Müller J (2015) Plants and endophytes: equal partners in secondary metabolite production? Biotechnol Lett 37:1325–1334PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Rohlfs M, Albert M, Keller NP, Kempken F (2007) Secondary chemicals protect mould from fungivory. Biol Lett 3:523–525PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Nicoletti R, Fiorentino A (2015) Plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta. Agriculture 5:918–970CrossRefGoogle Scholar
  17. 17.
    Stierle AA, Stierle DB (2015) Bioactive secondary metabolites produced by the fungal endophytes of conifers. Nat Prod Commun 10:1671PubMedPubMedCentralGoogle Scholar
  18. 18.
    Schulz B, Boyle C, Draeger S, Römmert A-K, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004CrossRefGoogle Scholar
  19. 19.
    Martinez-Klimova E, Rodríguez-Peña K, Sánchez S (2017) Endophytes as sources of antibiotics. Biochem Pharmacol 134:1–17PubMedCrossRefGoogle Scholar
  20. 20.
    Mishra R, Meena H, Meena C, Kushveer JS, Busi S, Murali A, Sarma VV (2018) Anti-quorum sensing and antibiofilm potential of Alternaria alternata, a foliar endophyte of Carica papaya, evidenced by QS assays and in-silico analysis. Fungal Biol. Scholar
  21. 21.
    Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism – from biochemistry to genomics. Nat Rev Microbiol 3:937PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Brakhage AA, Bergmann S, Schuemann J, Scherlach K, Schroeckh V, Hertweck C (2009) Fungal genome mining and activation of silent gene clusters. In: Physiology and genetics. Springer, Berlin, Heidelberg. pp 297–303CrossRefGoogle Scholar
  23. 23.
    Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites–strategies to activate silent gene clusters. Fungal Genet Biol 48:15–22CrossRefGoogle Scholar
  24. 24.
    Netzker T, Fischer J, Weber J, Mattern DJ, König CC, Valiante V, Schroeckh V, Brakhage AA (2015) Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front Microbiol 6:299PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Wiemann P, Keller NP (2014) Strategies for mining fungal natural products. J Ind Microbiol Biotechnol 41:301–313PubMedCrossRefGoogle Scholar
  26. 26.
    Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39:W339–W346PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Cimermancic P, Medema MH, Claesen J, Kurita K, Brown LCW, Mavrommatis K, Pati A, Godfrey PA, Koehrsen M, Clardy J (2014) Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158:412–421PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    MacCabe AP, Riach MB, Unkles SE, Kinghorn JR (1990) The Aspergillus nidulans npeA locus consists of three contiguous genes required for penicillin biosynthesis. EMBO J 9:279–287PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Smith DJ, Burnham MKR, Edwards J, Earl AJ, Turner G (1990) Cloning and heterologous expression of the penicillin biosynthetic gene cluster from Penicillium chrysogenum. Nat Biotechnol 8:39CrossRefGoogle Scholar
  30. 30.
    Kimura M, Tokai T, Takahashi-Ando N, Ohsato S, Fujimura M (2007) Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathways, genes, and evolution. Biosci Biotechnol Biochem 71:2105–2123PubMedCrossRefGoogle Scholar
  31. 31.
    Wisecaver JH, Rokas A (2015) Fungal metabolic gene clusters – caravans traveling across genomes and environments. Front Microbiol 6:161PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Smith DJ, Burnham MK, Bull JH, Hodgson JE, Ward JM, Browne P, Brown J, Barton B, Earl AJ, Turner G (1990) Beta-lactam antibiotic biosynthetic genes have been conserved in clusters in prokaryotes and eukaryotes. EMBO J 9:741–747PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Deepika VB, Murali TS, Satyamoorthy K (2016) Modulation of genetic clusters for synthesis of bioactive molecules in fungal endophytes: a review. Microbiol Res 182:125–140PubMedCrossRefGoogle Scholar
  34. 34.
    Nei M (2003) Genome evolution: let’s stick together. Heredity (Edinb) 90:411CrossRefGoogle Scholar
  35. 35.
    Medema MH, Van Raaphorst R, Takano E, Breitling R (2012) Computational tools for the synthetic design of biochemical pathways. Nat Rev Microbiol 10:191PubMedCrossRefGoogle Scholar
  36. 36.
    Nielsen JC, Nielsen J (2017) Development of fungal cell factories for the production of secondary metabolites: linking genomics and metabolism. Synth Syst Biotechnol 2:5–12PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Gao X, Chooi Y-H, Ames BD, Wang P, Walsh CT, Tang Y (2011) Fungal indole alkaloid biosynthesis: genetic and biochemical investigation of the tryptoquialanine pathway in Penicillium aethiopicum. J Am Chem Soc 133:2729–2741PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Chooi Y-H, Cacho R, Tang Y (2010) Identification of the viridicatumtoxin and griseofulvin gene clusters from Penicillium aethiopicum. Chem Biol 17:483–494PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Yeh H-H, Ahuja M, Chiang Y-M, Oakley CE, Moore S, Yoon O, Hajovsky H, Bok J-W, Keller NP, Wang CCC (2016) Resistance gene-guided genome mining: serial promoter exchanges in Aspergillus nidulans reveal the biosynthetic pathway for fellutamide B, a proteasome inhibitor. ACS Chem Biol 11:2275–2284PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Tang X, Li J, Millán-Aguiñaga N, Zhang JJ, O’Neill EC, Ugalde JA, Jensen PR, Mantovani SM, Moore BS (2015) Identification of thiotetronic acid antibiotic biosynthetic pathways by target-directed genome mining. ACS Chem Biol 10:2841–2849PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Bergmann S, Schümann J, Scherlach K, Lange C, Brakhage AA, Hertweck C (2007) Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol 3:nchembio869CrossRefGoogle Scholar
  42. 42.
    Chiang Y-M, Chang S-L, Oakley BR, Wang CCC (2011) Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms. Curr Opin Chem Biol 15:137–143PubMedCrossRefGoogle Scholar
  43. 43.
    Bertrand S, Schumpp O, Bohni N, Bujard A, Azzollini A, Monod M, Gindro K, Wolfender J-L (2013) Detection of metabolite induction in fungal co-cultures on solid media by high-throughput differential ultra-high pressure liquid chromatography–time-of-flight mass spectrometry fingerprinting. J Chromatogr A 1292:219–228PubMedCrossRefGoogle Scholar
  44. 44.
    Estrada AER, Hegeman A, Kistler HC, May G (2011) In vitro interactions between Fusarium verticillioides and Ustilago maydis through real-time PCR and metabolic profiling. Fungal Genet Biol 48:874–885CrossRefGoogle Scholar
  45. 45.
    Schroeckh V, Scherlach K, Nützmann H-W, Shelest E, Schmidt-Heck W, Schuemann J, Martin K, Hertweck C, Brakhage AA (2009) Intimate bacterial–fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci 106:14558–14563CrossRefGoogle Scholar
  46. 46.
    Mela F, Fritsche K, De Boer W, Van Veen JA, De Graaff LH, Van Den Berg M, Leveau JHJ (2011) Dual transcriptional profiling of a bacterial/fungal confrontation: Collimonas fungivorans versus Aspergillus niger. ISME J 5:1494PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Fischer J, Schroeckh V, Brakhage AA (2016) Awakening of fungal secondary metabolite gene clusters. In: Gene expression systems in fungi: advancements and applications. Springer, Cham, pp 253–273CrossRefGoogle Scholar
  48. 48.
    Rateb ME, Hallyburton I, Houssen WE, Bull AT, Goodfellow M, Santhanam R, Jaspars M, Ebel R (2013) Induction of diverse secondary metabolites in Aspergillus fumigatus by microbial co-culture. RSC Adv 3:14444–14450CrossRefGoogle Scholar
  49. 49.
    Li C, Wang J, Luo C, Ding W, Cox DG (2014) A new cyclopeptide with antifungal activity from the co-culture broth of two marine mangrove fungi. Nat Prod Res 28:616–621PubMedCrossRefGoogle Scholar
  50. 50.
    Chiang Y-M, Lee K-H, Sanchez JF, Keller NP, Wang CCC (2009) Unlocking fungal cryptic natural products. Nat Prod Commun 4:1505PubMedPubMedCentralGoogle Scholar
  51. 51.
    Bode HB, Bethe B, Höfs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. Chembiochem 3:619–627PubMedCrossRefGoogle Scholar
  52. 52.
    Lin Z, Zhu T, Wei H, Zhang G, Wang H, Gu Q (2009) Spicochalasin A and new Aspochalasins from the marine-derived fungus Spicaria elegans. Eur J Org Chem 2009:3045–3051CrossRefGoogle Scholar
  53. 53.
    Andersen MR, Nielsen JB, Klitgaard A, Petersen LM, Zachariasen M, Hansen TJ, Blicher LH, Gotfredsen CH, Larsen TO, Nielsen KF (2013) Accurate prediction of secondary metabolite gene clusters in filamentous fungi. Proc Natl Acad Sci 110:E99–E107PubMedCrossRefGoogle Scholar
  54. 54.
    Gerke J, Bayram Ö, Feussner K, Landesfeind M, Shelest E, Feussner I, Braus GH (2012) Breaking the silence: protein stabilization uncovers silenced biosynthetic gene clusters in the fungus Aspergillus nidulans. Appl Environ Microbiol 78:8234–8244PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Kennedy J, Turner G (1996) δ-(l-α-Aminoadipyl)-l-cysteinyl-d-valine synthetase is a rate limiting enzyme for penicillin production in Aspergillus nidulans. Mol Gen Genet MGG 253:189–197PubMedCrossRefGoogle Scholar
  56. 56.
    Sanchez JF, Somoza AD, Keller NP, Wang CCC (2012) Advances in Aspergillus secondary metabolite research in the post-genomic era. Nat Prod Rep 29:351–371PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Gacek A, Strauss J (2012) The chromatin code of fungal secondary metabolite gene clusters. Appl Microbiol Biotechnol 95:1389–1404PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Bulger M (2005) Hyperacetylated chromatin domains: lessons from heterochromatin. J Biol Chem 280:21689–21692CrossRefGoogle Scholar
  59. 59.
    Lee I, Oh J-H, Shwab EK, Dagenais TRT, Andes D, Keller NP (2009) HdaA, a class 2 histone deacetylase of Aspergillus fumigatus, affects germination and secondary metabolite production. Fungal Genet Biol 46:782–790PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Shwab EK, Bok JW, Tribus M, Galehr J, Graessle S, Keller NP (2007) Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot Cell 6:1656–1664PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Williams RB, Henrikson JC, Hoover AR, Lee AE, Cichewicz RH (2008) Epigenetic remodeling of the fungal secondary metabolome. Org Biomol Chem 6:1895–1897CrossRefGoogle Scholar
  62. 62.
    Ola ARB, Thomy D, Lai D, Brötz-Oesterhelt H, Proksch P (2013) Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis. J Nat Prod 76:2094–2099CrossRefGoogle Scholar
  63. 63.
    Mao X, Xu W, Li D, Yin W, Chooi Y, Li Y, Tang Y, Hu Y (2015) Epigenetic genome mining of an endophytic fungus leads to the pleiotropic biosynthesis of natural products. Angew Chemie Int Ed 54:7592–7596CrossRefGoogle Scholar
  64. 64.
    Sharma VK, Kumar J, Singh DK, Mishra A, Verma SK, Gond SK, Kumar A, Singh N, Kharwar RN (2017) Induction of cryptic and bioactive metabolites through natural dietary components in an endophytic fungus Colletotrichum gloeosporioides (Penz.) Sacc. Front Microbiol 8:1126PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Li YF, Tsai KJS, Harvey CJB, Li JJ, Ary BE, Berlew EE, Boehman BL, Findley DM, Friant AG, Gardner CA (2016) Comprehensive curation and analysis of fungal biosynthetic gene clusters of published natural products. Fungal Genet Biol 89:18–28PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Schmitt EK, Hoff B, Kück U (2004) AcFKH1, a novel member of the forkhead family, associates with the RFX transcription factor CPCR1 in the cephalosporin C-producing fungus Acremonium chrysogenum. Gene 342:269–281PubMedCrossRefGoogle Scholar
  67. 67.
    Ichikawa N, Sasagawa M, Yamamoto M, Komaki H, Yoshida Y, Yamazaki S, Fujita N (2012) DoBISCUIT: a database of secondary metabolite biosynthetic gene clusters. Nucleic Acids Res 41:D408–D414PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Umemura M, Koike H, Nagano N, Ishii T, Kawano J, Yamane N, Kozone I, Horimoto K, Shin-ya K, Asai K (2013) MIDDAS-M: motif-independent de novo detection of secondary metabolite gene clusters through the integration of genome sequencing and transcriptome data. PLoS One 8:e84028PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC, Wolfe KH, Fedorova ND (2010) SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol 47:736–741PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Bumpus SB, Evans BS, Thomas PM, Ntai I, Kelleher NL (2009) A proteomics approach to discovering natural products and their biosynthetic pathways. Nat Biotechnol 27:951PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Gogarten JP, Townsend JP (2005) Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3:679PubMedCrossRefGoogle Scholar
  72. 72.
    Campbell MA, Rokas A, Slot JC (2012) Horizontal transfer and death of a fungal secondary metabolic gene cluster. Genome Biol Evol 4:289–293PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Lim FY, Sanchez JF, Wang CCC, Keller NP (2012) Toward awakening cryptic secondary metabolite gene clusters in filamentous fungi. In: Methods in enzymology. Elsevier, Amsterdam, pp 303–324Google Scholar
  74. 74.
    Knox BP, Keller NP (2015) Key players in the regulation of fungal secondary metabolism. In: Biosynthesis and molecular genetics of fungal secondary metabolites, vol 2. Springer, New York, NY, pp 13–28Google Scholar
  75. 75.
    Chang P-K, Yu J, Bhatnagar D, Cleveland TE (2000) Characterization of the Aspergillus parasiticus major nitrogen regulatory gene, areA. Biochim Biophys Acta (BBA)-Gene Struct Expr 1491:263–266CrossRefGoogle Scholar
  76. 76.
    Trushina N, Levin M, Mukherjee PK, Horwitz BA (2013) PacC and pH–dependent transcriptome of the mycotrophic fungus Trichoderma virens. BMC Genomics 14:138PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Schmitt E, Kempken R, Kück U (2001) Functional analysis of promoter sequences of cephalosporin C biosynthesis genes from Acremonium chrysogenum: specific DNA-protein interactions and characterization of the transcription factor PACC. Mol Gen Genomics 265:508–518CrossRefGoogle Scholar
  78. 78.
    Ronne H (1995) Glucose repression in fungi. Trends Genet 11:12–17PubMedCrossRefGoogle Scholar
  79. 79.
    Jekosch K, Kück U (2000) Glucose dependent transcriptional expression of the cre1 gene in Acremonium chrysogenum strains showing different levels of cephalosporin C production. Curr Genet 37:388–395PubMedCrossRefGoogle Scholar
  80. 80.
    Bayram Ö, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon N-J, Keller NP, Yu J-H (2008) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science (80-) 320:1504–1506CrossRefGoogle Scholar
  81. 81.
    Duran RM, Cary JW, Calvo AM (2007) Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavus is regulated by veA, a gene necessary for sclerotial formation. Appl Microbiol Biotechnol 73:1158PubMedCrossRefGoogle Scholar
  82. 82.
    Hortschansky P, Eisendle M, Al-Abdallah Q, Schmidt AD, Bergmann S, Thön M, Kniemeyer O, Abt B, Seeber B, Werner ER (2007) Interaction of HapX with the CCAAT-binding complex – a novel mechanism of gene regulation by iron. EMBO J 26:3157–3168PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Chang P-K, Ehrlich KC, Yu J, Bhatnagar D, Cleveland TE (1995) Increased expression of Aspergillus parasiticus aflR, encoding a sequence-specific DNA-binding protein, relieves nitrate inhibition of aflatoxin biosynthesis. Appl Environ Microbiol 61:2372–2377PubMedPubMedCentralGoogle Scholar
  84. 84.
    Yu J-H, Butchko RAE, Fernandes M, Keller NP, Leonard TJ, Adams TH (1996) Conservation of structure and function of the aflatoxin regulatory gene aflR from Aspergillus nidulans and A. flavus. Curr Genet 29:549–555PubMedCrossRefGoogle Scholar
  85. 85.
    Woloshuk CP, Foutz KR, Brewer JF, Bhatnagar D, Cleveland TE, Payne GA (1994) Molecular characterization of aflR, a regulatory locus for aflatoxin biosynthesis. Appl Environ Microbiol 60:2408–2414PubMedPubMedCentralGoogle Scholar
  86. 86.
    Fernandes M, Keller NP, Adams TH (1998) Sequence-specific binding by Aspergillus nidulans AflR, a C6 zinc cluster protein regulating mycotoxin biosynthesis. Mol Microbiol 28:1355–1365PubMedCrossRefGoogle Scholar
  87. 87.
    Hong S-Y, Roze LV, Linz JE (2013) Oxidative stress-related transcription factors in the regulation of secondary metabolism. Toxins (Basel) 5:683–702CrossRefGoogle Scholar
  88. 88.
    Roze LV, Chanda A, Wee J, Awad D, Linz JE (2011) Stress-related transcription factor AtfB integrates secondary metabolism with oxidative stress response in aspergilli. J Biol Chem 286:35137–35148PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Reverberi M, Gazzetti K, Punelli F, Scarpari M, Zjalic S, Ricelli A, Fabbri AA, Fanelli C (2012) Aoyap1 regulates OTA synthesis by controlling cell redox balance in Aspergillus ochraceus. Appl Microbiol Biotechnol 95:1293–1304PubMedCrossRefGoogle Scholar
  90. 90.
    Yin W, Amaike S, Wohlbach DJ, Gasch AP, Chiang Y, Wang CCC, Bok JW, Rohlfs M, Keller NP (2012) An Aspergillus nidulans bZIP response pathway hardwired for defensive secondary metabolism operates through aflR. Mol Microbiol 83:1024–1034PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of BiotechnologySchool of Life Sciences, Pondicherry UniversityPuducherryIndia

Personalised recommendations