Endophytic Fungi: A Cryptic Fountainhead for Biodiversity, Functional Metabolites, Host Stress Tolerance, and Myco-mediated Nanoparticles (Nps) Synthesis

  • Jay Hind Nishad
  • Arti Singh
  • Veer Singh Gautam
  • Dharmendra Kumar
  • Jitendra Kumar
  • R. N. KharwarEmail author
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


The view on association of higher plants and fungi from past few decades confirms the belief that all plants foster their own endophytic fungal diversity as a host, and all plant species studied till date are found to harbor one or more endophytes. The diversity of endophytic fungi can have deep impressions on plant communities through adding fitness to their concerned host conferring tolerance against abiotic and biotic stresses. While endophytes have been outlined to biosynthesize a wide array of molecules, genome sequencing of such organisms has revealed that these have the potential to provide many more secondary metabolites than usual. Recently, various methods have been advanced to aid in the activation of cryptic biosynthetic pathways. Since the most important medicinal compound taxol (paclitaxel) has been isolated from the endophytic fungus therefore, more plant mimetic compounds may be expected from this hidden microbial source. Various enzymes (amylase, lipase, cellulase, protease, lactase, pectinases, peroxidase, catalase, and penicillinase) and toxins (aflatoxin, zearalenone, ochratoxin, citrinin, T-2 toxin, and fumonisins) may be isolated from this repertoire. Cell-free extract of many endophytic fungal isolates may also be utilized to synthesize the nanoparticles like copper (Cu), silver (Ag), platinum (Pt), and gold (Au) from respective metal salt solutions. This chapter also discusses different approaches such as co-culture of microbes, altering growth media and culture conditions, genetic as well as epigenetic strategies for obtaining the biochemical treasure hidden within these unique microbes.


Cryptic metabolites Nanoparticles Epigenetics Biodiversity Stress resistance Natural product 



Absiscic acid


Silver nanoparticles






2, 2-Diphenyl-1-picrylhydrazyl


Gibberellic acid


Histone deacetylases


Indole acetic acid


Jasmonic acid


Rat prolactinoma


Salicylic acid


Suberoylanilide hydroxamic acid


Volatile organic compound



Authors are thankful to the Head and Coordinator, CAS and DST-FIST in Botany, Institute of Science, BHU, Varanasi, India, for providing essential facilities and supports. Authors appreciably acknowledge the helps of ISLS and DST-PURSE, UGC-UPE, BHU, Varanasi, India, for minor help, respectively. RNK expresses his gratefulness to Department of Science and Technology, SERB, New Delhi, for the project [SB/EMEQ-121/2014].


  1. 1.
    de Bary A (1866) Morphologie und physiologie der pilze, flechten und Myxomyceten. W. Engelmann, LeipzigGoogle Scholar
  2. 2.
    Petrini O (1986) Taxonomy of endophytic fungi of aerial plant tissues. In: Fokkema NJ, van den Heuvel J (eds) Microbiology of the phyllosphere. Cambridge University Press, CambridgeGoogle Scholar
  3. 3.
    Bacon CW, Porter JK, Robbins JD, Luttrell ES (1977) Epichloe typhina from toxic tall fescue grasses. Appl Environ Microbiol 34(5):576–581PubMedPubMedCentralGoogle Scholar
  4. 4.
    Kharwar RN, Verma VC, Strobel G, Ezra D (2008) The endophytic fungal complex of Catharanthus roseus (L.) G. Don. Curr Sci 25:228–233Google Scholar
  5. 5.
    Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260(5105):214–216Google Scholar
  6. 6.
    Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kuma R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124(41):12108–12109PubMedGoogle Scholar
  7. 7.
    Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 28(4):313–318Google Scholar
  8. 8.
    Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14(22):3303–3305Google Scholar
  9. 9.
    Lewis DH (1985) Symbiosis and mutualism: crisp concepts and soggy semantics. In: Boucher DH (ed) The biology of mutualism: Ecology and evolution. Oxford University Press, OxfordGoogle Scholar
  10. 10.
    Sun X, Guo LD (2012) Endophytic fungal diversity: review of traditional and molecular techniques. Mycology 3(1):65–76Google Scholar
  11. 11.
    Davey ML, Currah RS (2006) Interactions between mosses (Bryophyta) and fungi. Can J Bot 84:1509–1519Google Scholar
  12. 12.
    Müller CB, Krauss J (2005) Symbiosis between grasses and asexual fungal endophytes. Curr Opin Plant Biol 8:450–456PubMedGoogle Scholar
  13. 13.
    Petrini O, Stone J, Carroll FE (1982) Endophytic fungi in evergreen shrubs in western Oregon: a preliminary study. Can J Bot 60:789–796Google Scholar
  14. 14.
    Guo LD, Huang GR, Wang Y (2008) Seasonal and tissue age influences on endophytic fungi of Pinus tabulaeformis (Pinaceae) in Dongling Mountain, Beijing. J Integr Plant Biol 50:997–1003Google Scholar
  15. 15.
    Albrectsen BR, Bjorken L, Varad A, Hagner A, Wedin M, Karlsson J, Jansson S (2010) Endophytic fungi in European aspen (Populus tremula) leaves: diversity, detection, and a suggested correlation with herbivory resistance. Fungal Divers 41:17–28Google Scholar
  16. 16.
    Sun X, Guo LD, Hyde KD (2011) Community composition of endophytic fungi in Acer truncatum and their role in decomposition. Fungal Divers 47:85–95Google Scholar
  17. 17.
    Tanney JB, Renaud JB, Miller JD, McMullin DR (2018) New 1, 3-benzodioxin-4-ones from Synnemapestaloides ericacearum sp. nov., a biosynthetic link to remarkable compounds within the Xylariales. PLoS One 13(6):e0198321PubMedPubMedCentralGoogle Scholar
  18. 18.
    Helaly SE, Thongbai B, Stadler M (2018) Diversity of biologically active secondary metabolites from endophytic and saprotrophic fungi of the Ascomycete order Xylariales. Nat Prod Rep 35(9):992–1014Google Scholar
  19. 19.
    Wang M, Liu F, Crous PW, Cai L (2017) Phylogenetic reassessment of Nigrospora: ubiquitous endophytes, plant and human pathogens. Persoonia 39:118PubMedPubMedCentralGoogle Scholar
  20. 20.
    Guarnaccia V, Groenewald JZ, Polizzi G, Crous PW (2017) High species diversity in Colletotrichum associated with citrus diseases in Europe. Persoonia 39:32PubMedPubMedCentralGoogle Scholar
  21. 21.
    Cosoveanu A, Rodriguez Sabina S, Cabrera R (2018) Fungi as endophytes in Artemisia thuscula: juxtaposed elements of diversity and phylogeny. J Fungi 4(1):17Google Scholar
  22. 22.
    Newman J, Thomas-Alyea KE (2012) Electrochemical systems. Wiley, New YorkGoogle Scholar
  23. 23.
    Huang M, Li J, Liu L, Yin S, Wang J, Lin Y (2016) Phomopsichin A–D; four new chromone derivatives from mangrove endophytic fungus Phomopsis sp. Mar Drugs 14(11):215PubMedCentralGoogle Scholar
  24. 24.
    Xia X, Kim S, Liu C, Shim SH (2016) Secondary metabolites produced by an endophytic fungus Pestalotiopsis sydowiana and their 20S proteasome inhibitory activities. Molecules 21(7):944. Scholar
  25. 25.
    Shah A, Rather MA, Hassan QP, Aga MA, Mushtaq S, Shah AM, Hussain A, Baba SA, Ahmad Z (2017) Discovery of antimicrobial and antitubercular molecules from Fusarium solani: an endophyte of Glycyrrhiza glabra. J Appl Microbiol 122(5):1168–1176PubMedGoogle Scholar
  26. 26.
    Liu Y, Chen S, Liu Z, Lu Y, Xia G, Liu H, … She Z (2015) Bioactive metabolites from mangrove endophytic fungus Aspergillus sp. 16-5B. Mar Drugs 13(5):3091–3102PubMedPubMedCentralGoogle Scholar
  27. 27.
    Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28(7): 1208–1228Google Scholar
  28. 28.
    Brodey CL, Rainey PB, Tester M, Johnstone K (1991) Bacterial blotch disease of the cultivated mushroom is caused by an ion channel forming lipodepsipeptide toxin. Mol Plant-Microbe Interact 4(4):407–411Google Scholar
  29. 29.
    Elkin S, Geddes D (2003) Pseudomonal infection in cystic fibrosis: the battle continues. Expert Rev Anti-Infect Ther 1(4):609–618PubMedGoogle Scholar
  30. 30.
    Brady SF, Wagenaar MM, Singh MP, Janso JE, Clardy J (2000) The cytosporones, new octaketide antibiotics isolated from an endophytic fungus. Org Lett 2(25):4043–4046PubMedGoogle Scholar
  31. 31.
    Singh M, Janso JE, Brady SF (2007) Cytoskyrins and cytosporones produced by Cytospora sp. CR200: taxonomy, fermentation and biological activities. Mar Drugs 5(3):71–84PubMedPubMedCentralGoogle Scholar
  32. 32.
    Zhang CL, Zheng BQ, Lao JP, Mao LJ, Chen SY, Kubicek CP, Lin FC (2008) Clavatol and patulin formation as the antagonistic principle of Aspergillus clavatonanicus, an endosphytic fungus of Taxus mairei. Appl Microbiol Biotechnol 78(5):833–840PubMedGoogle Scholar
  33. 33.
    Ding G, Liu S, Guo L, Zhou Y, Che Y (2008) Antifungal metabolites from the plant endophytic fungus Pestalotiopsis foedan. J Nat Prod 71(4):615–618PubMedGoogle Scholar
  34. 34.
    Guo B, Dai JR, Ng S, Huang Y, Leong C, Ong W, Carté BK (2000) Cytonic acids A and B: novel tridepside inhibitors of hCMV protease from the endophytic fungus Cytonaema species. J Nat Prod 63(5):602–604PubMedGoogle Scholar
  35. 35.
    Li GH, Yu ZF, Li X, Wang XB, Zheng LJ, Zhang KQ (2007) Nematicidal metabolites produced by the endophytic fungus Geotrichum sp. AL4. Chem Biodivers 4(7):1520–1524Google Scholar
  36. 36.
    Wang X, Tan T, Mao ZG, Lei N, Wang ZM, Hu B, … Wang HJ (2015) The marine metabolite SZ-685C induces apoptosis in primary human nonfunctioning pituitary adenoma cells by inhibition of the Akt pathway in vitro. Mar Drugs 13(3):1569–1580PubMedPubMedCentralGoogle Scholar
  37. 37.
    Tansuwan S, Pornpakakul S, Roengsumran S, Petsom A, Muangsin N, Sihanonta P, Chaichit N (2007) Antimalarial benzoquinones from an endophytic fungus, Xylaria sp. J Nat Prod 70(10): 1620–1623PubMedGoogle Scholar
  38. 38.
    Lin ZJ, Lu ZY, Zhu TJ, Fang YC, Gu QQ, Zhu WM (2008) Penicillenols from Penicillium sp. GQ-7, an endophytic fungus associated with Aegiceras corniculatum. Chem Pharm Bull 56(2):217–221PubMedGoogle Scholar
  39. 39.
    Svoboda GH (1961) Alkaloids of Vinca rosea (Catharanthus roseus). IX. Extraction and characterization of leurosidine and leurocristine. Lloydia 24:173–178Google Scholar
  40. 40.
    Zhang L, Guo B, Li H, Zeng S, Shao H, Gu S, Wei R (2000) Preliminary study on the isolation of endophytic fungus of Catharanthus roseus and its fermentation to produce products of therapeutic value. Chin Tradit Herb Drugs 31(11):805–807Google Scholar
  41. 41.
    Verma VC, Lobkovsky E, Gange AC, Singh SK, Prakash S (2011) Piperine production by endophytic fungus Periconia sp. isolated from Piper longum L. J Antibiot 64(6):427PubMedGoogle Scholar
  42. 42.
    Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012) An endophytic fungus from Azadirachta indica A. Juss., that produces azadirachtin. World J Microbiol Biotechnol 28(3):1287–1294Google Scholar
  43. 43.
    Jennifer Mordue A, Simmonds MS, Ley SV, Blaney WM, Mordue W, Nasiruddin M, Nisbet AJ (1998) Actions of azadirachtin, a plant allelochemical, against insects. Pestic Sci 54(3):277–284Google Scholar
  44. 44.
    Wall ME, Wani MC, Cook CE, Palmer KH, McPhail AA, Sim GA (1966) Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc 88(16):3888–3890Google Scholar
  45. 45.
    Ling-Hua M, Zhi-Yong L, Pommier Y (2003) Non-camptothecin DNA topoisomerase I inhibitors in cancer therapy. Curr Top Med Chem 3(3):305–320Google Scholar
  46. 46.
    Bjornsti MA, Benedetti P, Viglianti GA, Wang JC (1989) Expression of human DNA topoisomerase I in yeast cells lacking yeast DNA topoisomerase I: restoration of sensitivity of the cells to the antitumor drug camptothecin. Cancer Res 49(22):6318–6323PubMedGoogle Scholar
  47. 47.
    Fulzele DP, Satdive RK, Pol BB (2001) Growth and production of camptothecin by cell suspension cultures of Nothapodytes foetida. Planta Med 67(2):150–152PubMedGoogle Scholar
  48. 48.
    Rehman S, Shawl AS, Kour A, Andrabi R, Sudan P, Sultan P, Verma V, Qazi GN (2008) An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Appl Biochem Microbiol 44(2):203–209Google Scholar
  49. 49.
    Kusari S, Zühlke S, Spiteller M (2009) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72(1):2–7PubMedGoogle Scholar
  50. 50.
    Bok JW, Chiang YM, Szewczyk E, Reyes-Dominguez Y, Davidson AD, Sanchez JF, Lo H, Watanabe K, Strauss J, Okley BR, Wang CC, Keller NP (2009) Chromatin-level regulation of biosynthetic gene clusters. Nat Chem Biol 5(7):462PubMedPubMedCentralGoogle Scholar
  51. 51.
    Bode HB, Zeeck A (2000) Sphaerolone and dihydrosphaerolone, two bisnaphthyl-pigments from the fungus Sphaeropsidales sp. F-24′ 707. Phytochemistry 54(6):597–601PubMedGoogle Scholar
  52. 52.
    Bode HB, Zeeck A (2000) UV mutagenesis and enzyme inhibitors as tools to elucidate the late biosynthesis of the spirobisnaphthalenes. Phytochemistry 55(4):311–316PubMedGoogle Scholar
  53. 53.
    Williams GR, Sampson MA, Shutler D, Rogers RE (2008) Does fumagillin control the recently detected invasive parasite Nosema ceranae in western honey bees (Apis mellifera)? J Invertebr Pathol 99(3):342–344PubMedGoogle Scholar
  54. 54.
    Sharma VK, Kumar J, Singh DK, Mishra A, Verma SK, Gond SK, Kharwar RN (2017) Induction of cryptic and bioactive metabolites through natural dietary components in an endophytic fungus Colletotrichum gloeosporioides (Penz.) Sacc. Front Microbiol 8:1126PubMedPubMedCentralGoogle Scholar
  55. 55.
    Li G, Kusari S, Golz C, Laatsch H, Strohmann C, Spiteller M (2017) Epigenetic modulation of endophytic Eupenicillium sp. LG41 by a histone deacetylase inhibitor for production of decalin-containing compounds. J Nat Prod 80(4):983–988PubMedGoogle Scholar
  56. 56.
    Nützmann HW, Reyes-Dominguez Y, Scherlach K, Schroeckh V, Horn F, Gacek A, Schumann J, Hrtweck C, Strauss J, Brakhage AA (2011) Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. Proc Natl Acad Sci 108(34):14282–14287PubMedGoogle Scholar
  57. 57.
    Schroeckh V, Scherlach K, Nützmann HW, Shelest E, Schmidt-Heck W, Schuemann J, Martin K, Hertweck C, Brakhage AA (2009) Intimate bacterial–fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci 106(34): 14558–14563PubMedGoogle Scholar
  58. 58.
    Qadri M, Nalli Y, Jain SK, Chaubey A, Ali A, Strobel GA, Vishwakarma RA, Riyaz-Ul-Hassan S (2017) An insight into the secondary metabolism of Muscodor yucatanensis: small-molecule epigenetic modifiers induce expression of secondary metabolism-related genes and production of new metabolites in the endophyte. Microb Ecol 73(4):954–965PubMedGoogle Scholar
  59. 59.
    Ul-Hassan SR, Strobel GA, Booth E, Knighton B, Floerchinger C, Sears J (2012) Modulation of volatile organic compound formation in the Mycodiesel-producing endophyte Hypoxylon sp. CI-4. Microbiology 158(2):465–473PubMedGoogle Scholar
  60. 60.
    Nagabhyru P, Dinkins RD, Wood CL, Bacon CW, Schardl CL (2013) Tall fescue endophyte effects on tolerance to water-deficit stress. BMC Plant Biol 13(1):127PubMedPubMedCentralGoogle Scholar
  61. 61.
    Reverberi M, Punelli M, Scala V, Scarpari M, Uva P, Mentzen WI, Dolezal A, Woloshuk C, Pinzari F, Fabbri AA, Fanelli C, Payne AG (2013) Genotypic and phenotypic versatility of Aspergillus flavus during maize exploitation. PLoS One 8(7):68735Google Scholar
  62. 62.
    Asaf S, Hamayun M, Khan AL, Waqas M, Khan MA, Jan R, Lee IJ, Hussain A (2018) Salt tolerance of Glycine max. L induced by endophytic fungus Aspergillus flavus CSH1, via regulating its endogenous hormones and antioxidative system. Plant Physiol Biochem 128:13–23PubMedGoogle Scholar
  63. 63.
    Ghaffari MR, Ghabooli M, Khatabi B, Hajirezaei MR, Schweizer P, Salekdeh GH (2016) Metabolic and transcriptional response of central metabolism affected by root endophytic fungus Piriformospora indica under salinity in barley. Plant Mol Biol 90(6):699–717PubMedGoogle Scholar
  64. 64.
    Zhang W, Wang J, Xu L, Wang A, Huang L, Du, H, … Oelmüller R (2018) Drought stress responses in maize are diminished by Piriformospora indica. Plant Signal Behav 13(1):e1414121Google Scholar
  65. 65.
    Yuan J, Sun K, Deng-Wang MY, Dai CC (2016) The mechanism of ethylene signaling induced by endophytic fungus Gilmaniella sp. AL12 mediating sesquiterpenoids biosynthesis in Atractylodes lancea. Front Plant Sci 7:361. Scholar
  66. 66.
    Bamisile BS, Dash CK, Akutse KS, Keppanan R, Wang L (2018) Fungal endophytes: beyond herbivore management. Front Microbiol 9:544PubMedPubMedCentralGoogle Scholar
  67. 67.
    Vinayarani G, Prakash HS (2018) Fungal endophytes of turmeric (Curcuma longa L.) and their biocontrol potential against pathogens Pythium aphanidermatum and Rhizoctonia solani. World J Microbiol Biotechnol 34(3):49PubMedGoogle Scholar
  68. 68.
    Neethu S, Midhun SJ, Sunil MA, Soumya S, Radhakrishnan EK, Jyothis M (2018) Efficient visible light induced synthesis of silver nanoparticles by Penicillium polonicum ARA 10 isolated from Chetomorpha antennina and its antibacterial efficacy against Salmonella enterica sero-var typhimurium. J Photochem Photobiol B Biol 180:175–185Google Scholar
  69. 69.
    Vijayanandan AS, Balakrishnan RM (2018) Biosynthesis of cobalt oxide nanoparticles using endophytic fungus Aspergillus nidulans. J Environ Manag 218:442–450Google Scholar
  70. 70.
    Manjunath HM, Joshi CG, Raju NG (2016) Biofabrication of gold nanoparticles using marine endophytic fungus–Penicillium citrinum. IET Nanobiotechnol 11(1):40–44Google Scholar
  71. 71.
    Slawson RM, Trevors JT, Lee H (1992) Silver accumulation and resistance in Pseudomonas stutzeri. Arch Microbiol 158(6):398–404Google Scholar
  72. 72.
    Zhao G, Stevens SE (1998) Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals 11(1):27–32PubMedGoogle Scholar
  73. 73.
    Singh DK, Kumar J, Sharma VK, Verma SK, Singh A, Kumari P, Kharwar RN (2018) Mycosynthesis of bactericidal silver and polymorphic gold nanoparticles: physicochemical variation effects and mechanism. Nanomedicine 13(2):191–207PubMedGoogle Scholar
  74. 74.
    Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5(4):382–386PubMedGoogle Scholar
  75. 75.
    Devi LS, Joshi SR (2014) Evaluation of the antimicrobial potency of silver nanoparticles biosynthesized by using an endophytic fungus, Cryptosporiopsis ericae PS4. J Microbiol 52(8):667–674PubMedGoogle Scholar
  76. 76.
    Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5(1):33–40PubMedGoogle Scholar
  77. 77.
    Netala VR, Bethu MS, Pushpalatha B, Baki VB, Aishwarya S, Rao JV, Tartte V (2016) Biogenesis of silver nanoparticles using endophytic fungus Pestalotiopsis microspora and evaluation of their antioxidant and anticancer activities. Int J Nanomedicine 11:5683PubMedPubMedCentralGoogle Scholar
  78. 78.
    Ahmad Siddiqui E, Ahmad A, Julius A, Syed A, Khan S, Kharat M, Pai K, Kadoo N, Gupta V (2016) Biosynthesis of anti-proliferative gold nanoparticles using endophytic Fusarium oxysporum strain isolated from neem (A. indica) leaves. Curr Top Med Chem 16(18): 2036–2042Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jay Hind Nishad
    • 1
  • Arti Singh
    • 1
  • Veer Singh Gautam
    • 1
  • Dharmendra Kumar
    • 1
  • Jitendra Kumar
    • 1
  • R. N. Kharwar
    • 1
    Email author
  1. 1.Mycopathology and Microbial Technology Laboratory, CAS in Botany, Institute of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations