A Thorough Comprehension of Host Endophytic Interaction Entailing the Biospherical Benefits: A Metabolomic Perspective

  • Shatrupa Ray
  • Jyoti Singh
  • Rahul Singh Rajput
  • Smriti Yadav
  • Surendra Singh
  • Harikesh Bahadur SinghEmail author
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


Endophytism is the phenomenon of in planta residency and mutualistic association of microbes with hosts without causing any disease symptoms. The multifaceted attributes of endophytes include plant growth promotion as well as resistance of the host to several forms of abiotic or biotic stresses. Moreover, endophytes are reported to manipulate the rhizospheric microbiota as well as the microbiota present within plants so as to amplify the host beneficial mechanisms. Endophyte mediated host beneficial traits become far more significant owing to the differential recruitment of endophytes by host under varying root exudate profile, host’s age, as well as host-endophyte compatibility. However, in spite of such beneficial attributes, our understanding of endophytes is still quite limited and inadequate. Thus, the true potential of endophytes can be particularly harnessed when we gain a thorough insight on the molecular mechanisms responsible for mutualistic host-endophyte interaction. In this chapter, we present an exhaustive investigation of endophyte-plant interaction, beginning from chemotactic attraction of the supposed endophytic microflora from soil to establishment of endophytism. We will also focus on the endophyte-directed metabolite biosynthesis aiding in effective host functioning.


Endophytes Host-microbe interaction Secondary metabolites Endophytic diversity Pharmaceutical benefits 


  1. 1.
    Smith P, House JI, Bustamante M, Sobocká J, Harper R, Pan G, West PC, Clark JM, Adhya T, Rumpel C, Paustian K (2016) Global change pressures on soils from land use and management. Glob Chang Biol 22(3):1008–1028PubMedCrossRefGoogle Scholar
  2. 2.
    Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39CrossRefGoogle Scholar
  3. 3.
    Jain A, Singh A, Chaudhary A, Singh S, Singh HB (2014) Modulation of nutritional and antioxidant potential of seeds and pericarp of pea pods treated with microbial consortium. Food Res Int 64:275–282PubMedCrossRefGoogle Scholar
  4. 4.
    Saxena A, Raghuwanshi R, Singh HB (2016) Elevation of defense network in chilli against Colletotrichum capsici by phyllospheric Trichoderma strain. J Plant Growth Regul 35(2): 377–389CrossRefGoogle Scholar
  5. 5.
    Conrath U, Beckers GJ, Langenbach CJ, Jaskiewicz MR (2015) Priming for enhanced defense. Annu Rev Phytopathol 53:97–119PubMedCrossRefGoogle Scholar
  6. 6.
    Ray S, Singh S, Sarma BK, Singh HB (2016) Endophytic Alcaligenes isolated from horticultural and medicinal crops promotes growth in okra (Abelmoschus esculentus). J Plant Growth Regul 35(2):401–412CrossRefGoogle Scholar
  7. 7.
    Ray S, Singh V, Bisen K, Keswani C, Singh S, Singh HB (2017) Endophyto- microbiont: a multifaceted beneficial interaction. In: Singh HB, Sarma BK, Keswani C (eds) Advances in PGPR research, 1st edn. CABI, WallingfordGoogle Scholar
  8. 8.
    Zucchi TD, Almeida LG, Dossi FC, Cônsoli FL (2010) Secondary metabolites produced by Propionicimonas sp. (ENT-18) induce histological abnormalities in the sclerotia of Sclerotiniasclerotiorum. BioControl 55(6):811–819CrossRefGoogle Scholar
  9. 9.
    Casella TM, Eparvier V, Mandavid H, Bendelac A, Odonne G, Dayan L, Duplais C, Espindola LS, Stien D (2013) Antimicrobial and cytotoxic secondary metabolites from tropical leaf endophytes: isolation of antibacterial agent pyrrocidine C from Lewia infectoria SNB-GTC2402. Phytochemistry 96:370–377PubMedCrossRefGoogle Scholar
  10. 10.
    Mookherjee A, Singh S, Maiti MK (2018) Quorum sensing inhibitors: can endophytes be prospective sources. Arch Microbiol 200(2):355–369PubMedCrossRefGoogle Scholar
  11. 11.
    Bulgarelli D, Schlaeppi K, Spaepen S, Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838CrossRefGoogle Scholar
  12. 12.
    Reinhold-Hurek B, Bünger W, Burbano CS, Sabale M, Hurek T (2015) Roots shaping their microbiome: global hotspots for microbial activity. Annu Rev Phytopathol 53:403–424PubMedCrossRefGoogle Scholar
  13. 13.
    Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci U S A 112(8):911–992CrossRefGoogle Scholar
  14. 14.
    Carvalho TL, Ballesteros HG, Thiebaut F, Ferreira PC, Hemerly AS (2016) Nice to meet you: genetic, epigenetic and metabolic controls of plant perception of beneficial associative and endophytic diazotrophic bacteria in non-leguminous plants. Plant Mol Biol 90(6):561–574PubMedCrossRefGoogle Scholar
  15. 15.
    Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Del Rio TG (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 6:488–486Google Scholar
  16. 16.
    Liu H, Carvalhais LC, Schenk PM, Dennis PG (2017) Effects of jasmonic acid signaling on the wheat microbiome differs between body sites. Sci Rep 7:41766PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Blossfeld S, Gansert D, Thiele B, Kuhn AJ, Lösch R (2011) The dynamics of oxygen concentration, pH value, and organic acids in the rhizosphere of Juncus spp. Soil Biol Biochem 43:1186–1197CrossRefGoogle Scholar
  18. 18.
    Naether A, Foesel BU, Naegele V, Wüst PK, Weinert J, Bonkowski M (2012) Environmental factors affect acidobacterial communities below the subgroup level in grassland and forest soils. Appl Environ Microbiol 78:7398–7406PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Bianco C, Imperlini E, Calogero R, Senatore B, Amoresano A, Carpentieri A, Pucci P, Defez R (2006) Indole-3-acetic acid improves Escherichia coli’s defences to stress. Arch Microbiol 185:373–382PubMedCrossRefGoogle Scholar
  20. 20.
    Ali S, Duan J, Charles TC, Glick BR (2014) A bioinformatics approach to the determination of genes involved in endophytic behavior in Burkholderia spp. J Theor Biol 343:193–198CrossRefGoogle Scholar
  21. 21.
    Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443PubMedCrossRefGoogle Scholar
  22. 22.
    Piromyou P, Songwattana P, Greetatorn T, Okubo T, Kakizaki KC, Prakamhang J (2015) The Type III secretion system (T3SS) is a determinant for rice-endophyte colonization by non-photosynthetic Bradyrhizobium. Microbes Environ 30:291–300PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Trdá L, Fernandez O, Boutrot F, Héloir MC, Kelloniemi J et al (2014) The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin-derived epitopes from the endophytic growth-promoting bacterium Burkholderia phytofirmans and plant pathogenic bacteria. New Phytol 201(4):1371–1384PubMedCrossRefGoogle Scholar
  24. 24.
    Taghavi S, Van Der Lelie D, Hoffman A, Zhang YB, Walla MD, Vangronsveld J, Newman L, Monchy S (2010) Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genet 6(5):e1000943PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Dunwell JM, Khuri S (2004) Cupins: the most functionally diverse protein superfamily. Phytochemistry 65:7–17PubMedCrossRefGoogle Scholar
  26. 26.
    Martin RG, Rosner JL (2001) The AraC transcriptional activators. Curr Opin Microbiol 4:132–137PubMedCrossRefGoogle Scholar
  27. 27.
    Maddocks SE, Oyston PCF (2008) Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology 154:3609–3623PubMedCrossRefGoogle Scholar
  28. 28.
    Hyeon JE, Kang DH, Kim YI, You SK, Han SO (2012) GntR-type transcriptional regulator PckR negatively regulates the expression of phosphoenol pyruvate carboxykinase in Corynebacterium glutamicum. J Bacteriol 194:2181–2188PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Elgrably-Weiss M, Schlosser-Silverman E, Rosenshine I, Altuvia S (2006) DeoT, a DeoR-type transcriptional regulator of multiple target genes. FEMS Microbiol Lett 254:141–148PubMedCrossRefGoogle Scholar
  30. 30.
    Froehlich J, Petrini O (2000) Endophytic fungi associated with palms. Mycol Res 104(10): 1202–1212CrossRefGoogle Scholar
  31. 31.
    Suryanarayanan TS, Vijaykrishna D (2001) Fungal endophytes of aerial roots of Ficus benghalensis. Fungal Divers 8:155–161Google Scholar
  32. 32.
    Rosenblueth MH, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837CrossRefGoogle Scholar
  33. 33.
    Romero FM, Marina M, Pieckenstain FL (2014) The communities of tomato (Solanumlycopersicum L.) leaf endophytic bacteria, analyzed by 16S-ribosomal RNA gene pyrosequencing. FEMS Microbiol Lett 351(2):187–194PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Gouda S, Das G, Sen SK, Shin HS, Patra JK (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 7:1538PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Jia M, Chen L, Xin HL, Zheng CJ, Rahman K, Han T, Qin LP (2016) A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front Microbiol 7:906PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Huang WY, Cai YZ, Xing J, Corke H, Sun M (2007) A potential antioxidant resource: endophytic fungi from medicinal plants. Econ Bot 61:14–30CrossRefGoogle Scholar
  37. 37.
    Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21(2–3):51–66CrossRefGoogle Scholar
  38. 38.
    Kumaresan V, Suryanarayanan TS (2001) Occurrence and distribution of endophytic fungi in a mangrove community. Mycol Res 105:1388–1391CrossRefGoogle Scholar
  39. 39.
    Chiang HM, Chen HC, Wu CS, Wu PY, Wen KC (2015) Rhodiola plants: chemistry and biological activity. J Food Drug Anal 23:359–369PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Kavitha C, Rajamani K, Vadivel E (2010) Coleus forskohlii-A comprehensive review on morphology, phytochemistry and pharmacological aspects. J Med Plants Res 4:278–285Google Scholar
  41. 41.
    Pateraki I, Andersen-Ranberg J, Hamberger B, Heskes AM, Martens HJ, Zerbe P, Bach SS, Møller BL, Bohlmann J, Hamberger B (2014) Manoyl oxide (13R), the biosynthetic precursor of forskolin, is synthesized in specialized root cork cells in Coleus forskohlii. Plant Physiol 164:1222–1236PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Gazis R, Chaverri P (2010) Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol 3(3):240–254CrossRefGoogle Scholar
  43. 43.
    Wang XJ, Min CL, Ge M, Zuo RH (2014) An endophytic sanguinarine-producing fungus from Macleaya cordata, Fusarium proliferatum BLH51. Curr Microbiol 68:336–341PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Wang D, Zhu J, Wang S, Wang X, Ou Y, Wei D, Xueping L (2011) Antitussive, expectorant and anti-inflammatory alkaloids from Bulbus Fritillariae Cirrhosae. Fitoterapia 82: 1290–1294PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Cui Y, Yi D, Bai X, Sun B, Zhao Y, Zhang Y (2012) Ginkgolide B produced endophytic fungus (Fusarium oxysporum) isolated from Ginkgo biloba. Fitoterapia 83(5):913–920PubMedCrossRefGoogle Scholar
  46. 46.
    Gordon J, Knowlton N, Relman DA, Rohwer F, Youle M (2013) Superorganisms and holobionts. Microbe 8(4):152–153Google Scholar
  47. 47.
    Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206CrossRefGoogle Scholar
  48. 48.
    Badri DV, Quintana N, El Kassis EG, Kim HK, Choi YH, Sugiyama A, Verpoorte R, Martinoia E, Manter DK, Vivanco JM (2009) An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiol 151:2006–2017PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Yamada K, Saijo Y, Nakagami H, Takano Y (2016) Regulation of sugar transporter activity for antibacterial defense in Arabidopsis. Science 354:1427–1430PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Mas A, Jamshidi S, Lagadeuc Y, Eveillard D, Vandenkoornhuyse P (2016) Beyond the black queen hypothesis. ISME J 10(9):2085–2091PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Sánchez-Cañizares C, Jorrín B, Poole PS, Tkacz A (2017) Understanding the holobiont: the interdependence of plants and their microbiome. Curr Opin Microbiol 38:188–196PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D, Bibbs L, Eads J, Richardson TH, Noordewier M, Rappé MS (2005) Genome streamlining in a cosmopolitan oceanic bacterium. Science 309(5738):1242–1245PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Wink M, van Wyk BE (2010) Mind-altering and poisonous plants of the world. Timber Press, PortlandGoogle Scholar
  54. 54.
    Tan RX, Zou WX (2003) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18(4):448–459CrossRefGoogle Scholar
  55. 55.
    Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771CrossRefGoogle Scholar
  56. 56.
    Strobel G, Stierle A, Stierle D, Hess WM (1993) Taxomyces andreanae, a proposed new taxon for a Bulbilliferous hyphomycete associated with Pacific yew (Taxusbrevifolia). Mycotaxon 47:71–80Google Scholar
  57. 57.
    Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69(8):1121–1124PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Puri SC, Nazir A, Chawla R, Arora R, Riyaz-ul-Hasan S (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 122(4):494–510PubMedCrossRefGoogle Scholar
  59. 59.
    Kusari S, Lamshöft M, Spiteller M (2009) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol 107(3):1019–1030PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytesfoetida that produces camptothecin. J Nat Prod 68(12):1717–1719CrossRefGoogle Scholar
  61. 61.
    Kusari S, Zuhlke S, Spiteller M (2011) Effect of artificial reconstitution of the interaction between the plant Camptotheca acuminata and the fungal endophyte Fusarium solani on camptothecin biosynthesis. J Nat Prod 74(4):764–775PubMedCrossRefGoogle Scholar
  62. 62.
    Shweta S, Zuehlke S, Ramesha BT, Priti V, Kumar PM (2010) Endophytic fungal strains of Fusarium solani from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxy camptothecin. Phytochemistry 71(1):117–122PubMedCrossRefGoogle Scholar
  63. 63.
    Kusari S, Lamshöft M, Zühlke S, Spiteller M (2008) An endophytic fungus from Hypericumperforatum that produces hypericin. J Nat Prod 71(2):159–162PubMedCrossRefGoogle Scholar
  64. 64.
    Kusari S, Zühlke S, Borsch T, Spiteller M (2009) Positive correlations between hypericin and putative precursors detected in the quantitative secondary metabolite spectrum of Hypericum. Phytochemistry 70(10):1222–1232PubMedCrossRefGoogle Scholar
  65. 65.
    Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294PubMedCrossRefGoogle Scholar
  66. 66.
    Mousa WK, Raizada MN (2013) The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Front Microbiol 4(65):1–18Google Scholar
  67. 67.
    Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67(4):491–502PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Schutz B (2001) Endophytic fungi: a source of novel biologically active secondary metabolites. In: Proceedings of international symposium on bioactive fungal metabolites impact and exploitation. British Mycological Society, University of Wales, SwanseaGoogle Scholar
  69. 69.
    Tejesvi MV, Kini KR, Prakash HS, Subbiah V, Shetty HS (2007) Genetic diversity and antifungal activity of species of Pestalotiopsis isolated as endophytes from medicinal plants. Fungal Divers 24(3):1–18Google Scholar
  70. 70.
    Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69(3):509–526PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Tyler VE (1994) Herb of choice – the therapeutic use of phytomedicinals. Pharmaceutical Products, New YorkGoogle Scholar
  72. 72.
    Wichtl M, Bisset NG (2000) Herbal drugs and phytopharmaceuticals. CRC Press, Boca RatonGoogle Scholar
  73. 73.
    Rätsch C (2005) The encyclopedia of psychoactive plants: ethnopharmacology and its applications. Park Street Press, South ParisGoogle Scholar
  74. 74.
    Russo E (2001) Handbook of psychotropic herbs: a scientific analysis of herbal remedies for psychiatric conditions. Haworth Press, BinghamptonGoogle Scholar
  75. 75.
    Rochfort S, Panozzo J (2007) Phytochemicals for health the role of pulses. J Agric Food Chem 55:7981–7994PubMedCrossRefGoogle Scholar
  76. 76.
    Van Wyk BE, Wink M (2015) Phytomedicines, herbal drugs and poisons. University of Chicago Press, ChicagoGoogle Scholar
  77. 77.
    Bown D (1995) The RHS encyclopedia of herbs and their uses. Dorling Kindersley, LondonGoogle Scholar
  78. 78.
    Bérdy J (2005) Bioactive microbial metabolites – a personal view. J Antibiot 58:1–26PubMedCrossRefGoogle Scholar
  79. 79.
    Shwab EK, Keller NP (2008) Regulation of secondary metabolite production in filamentous ascomycetes. Mycol Res 112(2):225–230PubMedCrossRefGoogle Scholar
  80. 80.
    Card S, Johnson L, Teasdale S, Caradus J (2016) Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents. FEMS Microbiol Ecol 92(8):fiw114PubMedCrossRefGoogle Scholar
  81. 81.
    Manawasinghe IS, Phillips AJL, Hyde KD, Chethana KWT, Zhang W, Zhao WS, Yan JY, Li X (2016) Mycosphere essays 14: assessing the aggressiveness of plant pathogenic Botryosphaeriaceae. Mycosphere 7:883–892CrossRefGoogle Scholar
  82. 82.
    Zaidi KU, Mani A, Ali AS, Ali SA (2013) Evaluation of tyrosinase producing endophytic fungi from Calotropis gigantea, Azadirachta indica, Ocimum tenuiflorum and Lantana camara. Annu Rev Res Biol 3:389–396Google Scholar
  83. 83.
    Makkar HPS, Francis G, Becker K (2007) Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems. Animal 1:1371–1391PubMedCrossRefGoogle Scholar
  84. 84.
    Alvin A, Miller KI, Neilan BA (2014) Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 169:483–495PubMedCrossRefGoogle Scholar
  85. 85.
    Kharwar RN, Verma VC, Kumar A, Gond SK, Harper JK, Hess WM, Lobkovosky E, Ma C, Ren Y, Strobel GA (2009) Javanicin, an antibacterial naphthoquinone from an endophytic fungus of neem, Chloridium sp. Curr Microbiol 58:233–238PubMedCrossRefGoogle Scholar
  86. 86.
    Uma SR, Ramesha BT, Ravikanth G, Rajesh PG, Vasudeva R, Ganeshaiah KN (2008) Chemical profiling of Nothapodytes nimmoniana for camptothecin, an important anticancer alkaloid: towards the development of a sustainable production system in bioactive molecules and medicinal plants. In: Ramawat KG, Merillon JM (eds) Bioactive molecules and medicinal plants. Springer, BerlinGoogle Scholar
  87. 87.
    Zhao J, Shan T, Mou Y, Zhou L (2011) Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev Med Chem 11(2):159–168PubMedCrossRefGoogle Scholar
  88. 88.
    Cui JL, Guo TT, Ren ZX, Zhang NS, Wang ML (2015) Diversity and antioxidant activity of culturable endophytic fungi from alpine plants of Rhodiola crenulata, R. angusta, and R. sachalinensis. PLoS One 10(3):e0118204PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Wagenaar MM, Corwin J, Strobel G, Clardy J (2000) Three new cytochalasins produced by an endophytic fungus in the genus Rhinocladiella. J Nat Prod 63(12):1692–1695PubMedCrossRefGoogle Scholar
  90. 90.
    Pupo MT (2006) Microbial natural products: a promising source of bioactive compounds. In: Taft CA (ed) Modern biotechnology in medicinal chemistry and industry. Research Signpost, ThiruvananthapuramGoogle Scholar
  91. 91.
    Zhang P, Zhou PP, Yu LJ (2009) An endophytic taxol-producing fungus from Taxus media, Cladosporium cladosporioides MD2. Curr Microbiol 59(3):227PubMedCrossRefGoogle Scholar
  92. 92.
    Jalgaonwala RE, Mahajan RT (2011) Evaluation of hydrolytic enzyme activities of endophytes from some indigenous medicinal plants. IJAT 7(6):1733–1741Google Scholar
  93. 93.
    Yang X, Zhang L, Guo B, Guo S (2004) Preliminary study of vincristine-producing endophytic fungus isolated from leaves of Catharanthus roseus. China Trade Herb Drugs 35:79–81Google Scholar
  94. 94.
    Harper JK, Arif AM, Ford EJ, Strobel GA, Porco JA, Tomer DP, Oneill KL, Heider EM, Grant DM (2003) Pestacin: a 1,3-dihydroisobenzofuran from Pestalotiopsis microspore possessing antioxidant and antimycotics activities. Tetrahedron 59:2471–2476CrossRefGoogle Scholar
  95. 95.
    Strobel G, Ford E, Worapong J, Harper JK, Arif AM, Grant DM, Fung PC, Chau RM (2002) Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry 60(2):179–183PubMedCrossRefGoogle Scholar
  96. 96.
    Wu SH, Chen YW, Shao SC, Wang LD, Li ZY, Yang LY, Li SL, Huang R (2008) Ten-membered lactones from Phomopsis sp., an endophytic fungus of Azadirachta indica. J Nat Prod 71:731–734PubMedCrossRefGoogle Scholar
  97. 97.
    Jiao P, Swenson DC, Gloer JB, Wicklow DT (2006) Chloriolide, a 12-Membered Macrolide from Chloridium virescens var. chlamydosporum (NRRL 37636). J Nat Prod 69(4):636–639PubMedCrossRefGoogle Scholar
  98. 98.
    Li GH, Yu ZF, Li X, Wang XB, Zheng LJ, Zhang KQ (2007) Nematicidal metabolites produced by the endophytic fungus Geotrichum sp. AL4. Chem Biodivers 4(7):1520–1524PubMedCrossRefGoogle Scholar
  99. 99.
    Wu W, Dai H, Bao L, Ren B, Lu J, Luo Y, Guo L, Zhang L, Liu H (2011) Isolation and structural elucidation of proline-containing cyclopentapeptides from an endolichenic Xylaria sp. J Nat Prod 74(5):1303–1308PubMedCrossRefGoogle Scholar
  100. 100.
    Kaur HP, Singh B, Kaur A, Kaur S (2013) Antifeedent and toxic activity of endophytic Alternaria alternata against tobacco caterpillar Spodoptera litura. J Pest Sci 86:543–550CrossRefGoogle Scholar
  101. 101.
    Kaur HP, Singh B, Thakur A, Kaur A, Kaur S (2015) Studies on immunomodulatory effect of endophytic fungus Alternaria alternata on Spodoptera litura. J Asia Pac Entomol 18:67–75CrossRefGoogle Scholar
  102. 102.
    Yan DH, Song X, Li H, Luo T, Dou G, Strobel G (2018) Antifungal activities of volatile secondary metabolites of four Diaporthe strains isolated from Catharanthus roseus. J Fungi 4(2):65–81PubMedCentralCrossRefPubMedGoogle Scholar
  103. 103.
    Zhan J, Burns AM, Liu MX, Faeth SH, Gunatilaka AAL (2007) Search for cell motility and angiogenesis inhibitors with potential anticancer activity: beauvericin and other constituents of two endophytic strains of Fusariumoxysporum. J Nat Prod 70:227–232PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Aly AH, Edrada-Ebel R, Indriani ID, Wray V, Muller WEG, Totzke F, Zirrglebel U, Schachtele C, Kubbutat MHG, Lin WH, Proksch P, Ebel R (2008) Cytotoxic metabolites from the fungal endophyte Alternaria sp. and their subsequent detection in its host plant Polygonumsenegalense. J Nat Prod 71(6):972–980PubMedCrossRefGoogle Scholar
  105. 105.
    Isaka M, Chinthanom P, Boonruangprapa T, Rungjindamai N, Pinruan U (2010) Eremophilane type sesquiterpenes from the fungus Xylaria sp. BCC 21097. J Nat Prod 73:683–687PubMedCrossRefGoogle Scholar
  106. 106.
    Budhiraja A, Nepali K, Sapra S, Gupta S, Kumar S, Dhar KL (2012) Bioactive metabolites from an endophytic fungus of Aspergillus species isolated from seeds of Gloriosa superba. Linn. Med Chem Res 22:323–329CrossRefGoogle Scholar
  107. 107.
    Verma VC, Gond SK, Kumar A, Kharwar RN, Strobel G (2007) The endophytic mycoflora of bark, leaf, and stem tissues of Azadirachta indica A. Juss (Neem) from Varanasi (India). Microb Ecol 54:119–125PubMedCrossRefGoogle Scholar
  108. 108.
    Debbab A, Aly AH, Edrada-Ebel R, Muller WE, Mosaddak M, Hakikj A, Ebel R, Proksch P (2009) Bioactive secondary metabolites from the endophytic fungus Chaetomium sp. isolated from Salvia officinalis growing in Morocco. Biotechnol Agron Soc Environ 13(2):229–234Google Scholar
  109. 109.
    Thongchai T, Srisakul C, Wanwikar R, Waya SP (2012) Antifungal activity of 3-methylcarbazoles from Streptomyces sp. LJK109; an endophyte in Alpinia galanga. J Appl Pharm Sci 02(03):124–128Google Scholar
  110. 110.
    Xiao JL, Qiang Z, Zhang AL, Gao JM (2012) Metabolites from Aspergillus fumigatus, an endophytic fungus associated with Melia azedarach, and their antifungal, antifeedant, and toxic activities. J Agric Food Chem 60(13):3424–3431CrossRefGoogle Scholar
  111. 111.
    Bahabadi SE, Sharifi M, Chashmi NA, Murata J, Satake H (2014) Significant enhancement of lignan accumulation in hairy root cultures of Linum album using biotic elicitors. Acta Physiol Plant 36:3325–3331CrossRefGoogle Scholar
  112. 112.
    Awad V, Kuvalekar A, Harsulkar A (2014) Microbial elicitation in root cultures of Taverniera cuneifolia (Roth) Arn. for elevated glycyrrhizic acid production. Ind Crop Prod 54:13–16CrossRefGoogle Scholar
  113. 113.
    Ahlawat S, Saxena P, Alam P, Wajid S, Abdin MZ (2014) Modulation of artemisinin biosynthesis by elicitors, inhibitor, and precursor in hairy root cultures of Artemisia annua L. J Plant Interact 9:811–824CrossRefGoogle Scholar
  114. 114.
    Ming QL, Su C, Zheng C, Jia M, Zhang Q, Zhang H, Rahman K, Han T, Qin L (2013) Elicitors from the endophytic fungus Trichoderma atroviride promote Salvia miltiorrhiza hairy root growth and tanshinone biosynthesis. J Exp Bot 64:5687–5694PubMedCrossRefGoogle Scholar
  115. 115.
    Toghueo RMK, Sahal D, Zabalgogeazcoa Í, Baker B, Boyom FF (2018) Conditioned media and organic elicitors underpin the production of potent antiplasmodial metabolites by endophytic fungi from Cameroonian medicinal plants. Parasitol Res 117:2473–2485PubMedCrossRefGoogle Scholar
  116. 116.
    Zhang H, Bai X, Zhang M, Chen J, Wang H, Pandey K, Kamble B (2018) Bioactive natural products from endophytic microbes. Nat Prod J 8(2):86–108Google Scholar
  117. 117.
    Oppong J, Kwame R (2017) Antibacterial secondary metabolites from an endophytic fungus, Fusarium solani JK10. Fitoterapia 119:108–114PubMedCrossRefGoogle Scholar
  118. 118.
    Wagenaar MM, Clardy J (2001) Dicerandrols, new antibiotic and cytotoxic dimers produced by the fungus Phomopsis longicolla isolated from an endangered mint. J Nat Prod 64(8): 1006–1009PubMedCrossRefGoogle Scholar
  119. 119.
    Marinho AM, Rodrigues-Filho E, Moitinho MDLR, Santos LS (2005) Biologically active polyketides produced by Penicillium janthinellum isolated as an endophytic fungus from fruits of Melia azedarach. J Braz Chem Soc 16(2):280–283CrossRefGoogle Scholar
  120. 120.
    Tsuchinari M, Shimanuki K, Hiramatsu F, Murayama T, Koseki T, Shiono Y (2007) Fusapyridons A and B, novel pyridone alkaloids from an endophytic fungus, Fusarium sp. YG-45. Z Naturforsch B 62(9):1203–1207CrossRefGoogle Scholar
  121. 121.
    Kjer J, Wray V, Edrada-Ebel R, Ebel R, Pretsch A, Lin W, Proksch P (2009) Xanalteric acids I and II and related phenolic compounds from an endophytic Alternaria sp. isolated from the mangrove plant Sonneratia alba. J Nat Prod 72(11):2053–2057PubMedCrossRefGoogle Scholar
  122. 122.
    Pinheiro EAA, Carvalho JM, dos Santos DCP, Feitosa ADO, Marinho PSB, Guilhon GMSP, deSouza ADL, daSilva FMA, Marinho AMDR (2013) Antibacterial activity of alkaloids produced by endophytic fungus Aspergillus sp. EJC08 isolated from medical plant Bauhinia guianensis. Nat Prod Res 27(18):1633–1638PubMedCrossRefGoogle Scholar
  123. 123.
    Subban K, Subramani R, Johnpaul M (2013) A novel antibacterial and antifungal phenolic compound from the endophytic fungus Pestalotiopsis mangiferae. Nat Prod Res 27(16): 1445–1449PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shatrupa Ray
    • 1
  • Jyoti Singh
    • 1
    • 2
  • Rahul Singh Rajput
    • 1
  • Smriti Yadav
    • 1
  • Surendra Singh
    • 2
  • Harikesh Bahadur Singh
    • 1
    Email author
  1. 1.Department of Mycology and Plant Pathology, Institute of Agricultural SciencesBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of Botany, Institute of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations