Skip to main content

Endophytes as a Source of High-Value Phytochemicals: Present Scenario and Future Outlook

  • Reference work entry
  • First Online:
Endophytes and Secondary Metabolites

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Endophytes, a group of microorganisms that reside within plants, are promising eco-friendly source of high-valued bioactive phytochemicals that are produced by their host. Some of the well-known examples of phytochemicals produced by endophytes are Taxol, camptothecin, azadirachtin, podophyllotoxin, vinca alkaloids, cinchona alkaloids rohitukine, and many others. The molecular machinery for production of phytochemicals in endophytes is likely acquired from the host plant. After growing in axenic conditions for a few generations, the endophyte generally undergoes attenuation, and the production of phytochemical may reduce to a great extent or stop completely. Genome sequencing of several endophytes revealed that complete biosynthetic pathways for production of phytochemicals may not be present or if present the genes may not be homologous to the plant genes. Other possible reasons for attenuation as well as experimental methods through which the issue of attenuation may be addressed have also been discussed in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Verdine GL (1996) The combinatorial chemistry of nature. Nature 384(6604 Suppl):11–13

    CAS  PubMed  Google Scholar 

  2. Gandhi SG, Mahajan V, Bedi YS (2015) Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants. Planta 241(2):303–317

    Article  CAS  PubMed  Google Scholar 

  3. Uniyal SK (2013) Bark removal and population structure of Taxus wallichiana Zucc. in a temperate mixed conifer forest of western Himalaya. Environ Monit Assess 185(4):2921–2928

    Article  CAS  PubMed  Google Scholar 

  4. Mahajan V, Sharma N, Kumar S, Bhardwaj V, Ali A, Khajuria RK, Bedi YS, Vishwakarma RA, Gandhi SG (2015) Production of rohitukine in leaves and seeds of Dysoxylum binectariferum: an alternate renewable resource. Pharm Biol 53(3):446–450

    Article  CAS  PubMed  Google Scholar 

  5. DeBary A (1866) Morphologie und Physiologie der Pilze, Flechten, und Myxomyceten. Vol. 2 Hofmeister’s Handbook of physiological botany. Engelmann, Leipzig

    Google Scholar 

  6. George C (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69(1):2–9

    Article  Google Scholar 

  7. Petrini O (1991) Fungal endophytes of tree leaves. Springer, New York

    Book  Google Scholar 

  8. Stone J, Bacon C, White JJ (2000) An overview of endophytic microbes: endophytism defined. In: microbial endophytes, Marcel-Dekker, New York. pp 3–30

    Google Scholar 

  9. Guerin P (1898) Sur la présence d’un champignon dans l’ivraie. J Bot 12:230–238

    Google Scholar 

  10. Bacon CW, Porter JK, Robbins JD, Luttrell ES (1977) Epichloe typhina from toxic tall fescue grasses. Appl Environ Microbiol 34(5):576–581

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Rodriguez RJ, Redman RS, Henson JM (2004) The role of fungal symbioses in the adaptation of plants to high stress environments. Mitig Adapt Strateg Glob Chang 9(3):261–272

    Article  Google Scholar 

  12. Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim Y-O, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2(4):404

    Article  PubMed  Google Scholar 

  13. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67(2):257–268

    Article  CAS  PubMed  Google Scholar 

  14. Staniek A, Woerdenbag HJ, Kayser O (2008) Endophytes: exploiting biodiversity for the improvement of natural product-based drug discovery. J Plant Interact 3(2):75–93

    Article  CAS  Google Scholar 

  15. Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41(1):1–16

    Article  Google Scholar 

  16. Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28(7): 1208–1228

    Article  CAS  PubMed  Google Scholar 

  17. Kusari S, Spiteller M (2012) Metabolomics of endophytic fungi producing associated plant secondary metabolites: progress, challenges and opportunities. In: Metabolomics. InTech, Rijeka

    Google Scholar 

  18. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260(5105):214–216

    Article  CAS  PubMed  Google Scholar 

  19. Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69(8):1121–1124

    Article  CAS  PubMed  Google Scholar 

  20. Puri SC, Nazir A, Chawla R, Arora R, Riyaz-ul-Hasan S, Amna T, Ahmed B, Verma V, Singh S, Sagar R (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 122(4):494–510

    Article  CAS  PubMed  Google Scholar 

  21. Kusari S, Lamshöft M, Spiteller M (2009) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol 107(3):1019–1030

    Article  CAS  PubMed  Google Scholar 

  22. Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces Camptothecin. J Nat Prod 68(12):1717–1719

    Article  CAS  PubMed  Google Scholar 

  23. Kusari S, Zühlke S, Spiteller M (2009) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72(1):2–7

    Article  CAS  PubMed  Google Scholar 

  24. Shweta S, Zuehlke S, Ramesha B, Priti V, Kumar PM, Ravikanth G, Spiteller M, Vasudeva R, Shaanker RU (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71(1):117–122

    Article  CAS  PubMed  Google Scholar 

  25. Kusari S, Lamshöft M, Zühlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71(2):159–162

    Article  CAS  PubMed  Google Scholar 

  26. Kusari S, Zühlke S, Kosuth J, Cellarova E, Spiteller M (2009) Light-independent metabolomics of endophytic Thielavia subthermophila provides insight into microbial hypericin biosynthesis. J Nat Prod 72(10):1825–1835

    Article  CAS  PubMed  Google Scholar 

  27. Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28(3):1287–1294

    Article  CAS  PubMed  Google Scholar 

  28. Horwitz SB, Cohen D, Rao S, Ringel I, Shen H-J, Yang C (1993) Taxol: mechanisms of action and resistance. J Natl Cancer Inst Monogr 15:55–61

    Google Scholar 

  29. McGuire WP, Rowinsky EK, Rosenshein NB, Grumbine FC, Ettinger DS, Armstrong DK, Donehower RC (1989) Taxol: a unique antineoplastic agent with significant activity in advanced ovarian epithelial neoplasms. Ann Intern Med 111(4):273–279

    Article  CAS  PubMed  Google Scholar 

  30. Einzig AI, Wiernik PH, Schwartz EL (1992) Taxol: a new agent active in melanoma and ovarian cancer. In: New drugs, concepts and results in cancer chemotherapy. Springer, Boston

    Google Scholar 

  31. Markman M (1991) Taxol: an important new drug in the management of epithelial ovarian cancer. Yale J Biol Med 64(6):583

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wani M (1972) Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 19:2325–2326

    Google Scholar 

  33. Majumder A, Jha S (2009) Biotechnological approaches for the production of potential anticancer leads podophyllotoxin and paclitaxel: an overview. J Biol Sci 1(1):46–69

    Google Scholar 

  34. Kwak S-S, Choi M-S, Park Y-G, Yoo J-S, Liu J-R (1995) Taxol content in the seeds of Taxus spp. Phytochemistry 40(1):29–32

    Article  CAS  Google Scholar 

  35. Bedi Y, Ogra R, kiran k, Kaul B, Kapil R (1996) Yew (Taxus spp.). A new look on utilization, cultivation and conservation. In: Supplement to cultivation and utilization of medicinal plants. Regional Research Laboratory Jammu-Tawi (India). pp 443–456

    Google Scholar 

  36. Strobel GA, Hess W, Li J-Y, Ford E, Sears J, Sidhu RS, Summerell B (1997) Pestalotiopsis guepinii, a taxol-producing endophyte of the Wollemi pine, Wollemia nobilis. Aust J Bot 45(6):1073–1082

    Article  CAS  Google Scholar 

  37. Gangadevi V, Muthumary J (2009) Taxol production by Pestalotiopsis terminaliae, an endophytic fungus of Terminalia arjuna (arjun tree). Biotechnol Appl Biochem 52(1):9–15

    Article  CAS  PubMed  Google Scholar 

  38. Senthil Kumaran R, Muthumary J, Hur B (2008) Production of taxol from Phyllosticta spinarum, an endophytic fungus of Cupressus sp. Eng Life Sci 8(4):438–446

    Article  CAS  Google Scholar 

  39. Kim S (1999) Screening of taxol-producing endophytic fungi from Ginkgo biloba and Taxus cuspidate in Korea. Agric Chem Biotechnol 42:97–99

    CAS  Google Scholar 

  40. Kumaran RS, Muthumary J, Kim E-K, Hur B-K (2009) Production of taxol from Phyllosticta dioscoreae, a leaf spot fungus isolated from Hibiscus rosa-sinensis. Biotechnol Bioprocess Eng 14(1):76

    Article  CAS  Google Scholar 

  41. Sun D, Ran X, Wang J (2008) Isolation and identification of a taxol-producing endophytic fungus from Podocarpus. Acta Microbiol Sin 48(5):589–595

    CAS  Google Scholar 

  42. Gangadevi V, Murugan M, Muthumary J (2008) Taxol determination from Pestalotiopsis pauciseta, a fungal endophyte of a medicinal plant. Chin J Biotechnol 24(8):1433–1438

    Article  CAS  Google Scholar 

  43. Venkatachalam R, Subban K, Paul MJ (2008) Taxol from Botryodiplodia theobromae (BT 115) – AN endophytic fungus of Taxus baccata. J Biotechnol 136:S189–S190

    Article  Google Scholar 

  44. Chakravarthi B, Das P, Surendranath K, Karande AA, Jayabaskaran C (2008) Production of paclitaxel by Fusarium solani isolated from Taxus celebica. J Biosci 33(2):259

    Article  CAS  PubMed  Google Scholar 

  45. Deng BW, Liu KH, Chen WQ, Ding XW, Xie XC (2009) Fusariumásolani, Tax-3, a new endophytic taxol-producing fungus from Taxus chinensis. World J Microbiol Biotechnol 25(1):139

    Article  CAS  Google Scholar 

  46. Liu K, Ding X, Deng B, Chen W (2009) Isolation and characterization of endophytic taxol-producing fungi from Taxus chinensis. J Ind Microbiol Biotechnol 36(9):1171

    Article  CAS  PubMed  Google Scholar 

  47. Zhou X, Wang Z, Jiang K, Wei Y, Lin J, Sun X, Tang K (2007) Screening of taxol-producing endophytic fungi from Taxus chinensis var. mairei. Appl Biochem Microbiol 43(4):439–443

    Article  CAS  Google Scholar 

  48. Guo BH, Wang Y, Zhou X, Hu K, Tan F, Miao Z, Tang K (2006) An endophytic Taxol-producing fungus BT2 isolated from Taxus Chinensis var. mairei. Afr J Biotechnol 5(10):875–877

    Google Scholar 

  49. Wu L-S, Hu C-L, Han T, Zheng C-J, Ma X-Q, Rahman K, Qin L-P (2013) Cytotoxic metabolites from Perenniporia tephropora, an endophytic fungus from Taxus chinensis var. mairei. Appl Microbiol Biotechnol 97(1):305–315

    Article  CAS  PubMed  Google Scholar 

  50. Zhang P, Zhou P-P, Yu L-J (2009) An endophytic taxol-producing fungus from Taxus media, Cladosporium cladosporioides MD2. Curr Microbiol 59(3):227

    Article  CAS  PubMed  Google Scholar 

  51. Strobel GA, Hess WM, Ford E, Sidhu R, Yang X (1996) Taxol from fungal endophytes and the issue of biodiversity. J Ind Microbiol 17(5–6):417–423

    CAS  Google Scholar 

  52. Qiu D, Huang M, Fang X, Zhu C, Zhu Z (1994) Isolation of an endophytic fungus associated with Taxus yunnanensis Cheng et LK Fu. Acta Mycol Sin 13(4):314–316

    Google Scholar 

  53. Li J-y, Strobel G, Sidhu R, Hess W, Ford EJ (1996) Endophytic taxol-producing fungi from bald cypress, Taxodium distichum. Microbiology 142(8):2223–2226

    Article  PubMed  Google Scholar 

  54. Shrestha K, Strobel GA, Shrivastava SP, Gewali MB (2001) Evidence for paclitaxel from three new endophytic fungi of Himalayan yew of Nepal. Planta Med 67(04):374–376

    Article  CAS  PubMed  Google Scholar 

  55. Li JY, Sidhu RS, Ford E, Long D, Hess W, Strobel G (1998) The induction of taxol production in the endophytic fungus – Periconia sp. from Torreya grandifolia. J Ind Microbiol Biotechnol 20(5):259–264

    Article  CAS  Google Scholar 

  56. Guo B, Li H, Zhang L (1998) Isolation of an fungus producing vinblastine. J Yunnan Univ (Nat Sci) 20(3):214–215

    CAS  Google Scholar 

  57. Zhang L, Guo B, Li H, Zeng S, Shao H, Gu S, Wei R (2000) Preliminary study on the isolation of endophytic fungus of Catharanthus roseus and its fermentation to produce products of therapeutic value. Chin Tradit Herb Drug 31(11):805–807

    CAS  Google Scholar 

  58. Kour A, Shawl AS, Rehman S, Sultan P, Qazi PH, Suden P, Khajuria RK, Verma V (2008) Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World J Microbiol Biotechnol 24(7):1115–1121

    Article  CAS  Google Scholar 

  59. Liang Z, Zhang J, Zhang X, Li J, Zhang X, Zhao C (2015) Endophytic fungus from Sinopodophyllum emodi (Wall.) Ying that produces podophyllotoxin. J Chromatogr Sci 54(2):175–178

    PubMed  Google Scholar 

  60. Zeng S, Ke Y, Fang B, Zhang L-q (2005) Diversity and correlation of endophytic fungi and rhizosphere fungi isolated from Diphylleia sinensis. J Zhuzhou Inst Technol 19(001):25–27

    Google Scholar 

  61. Li C (2007) Fermentation conditions of Sinopodophyllum hexandrum endophytic fungus on production of podophyllotoxin. Food Ferment Ind 33(9):28

    Google Scholar 

  62. Li W, Zhou J, Lin Z, Hu Z (2007) Study on fermentation condition for production of huperzine A from endophytic fungus 2F09P03B of Huperzia serrata. Chin Med Biotechnol 2(4): 254–259

    Google Scholar 

  63. Ju Z, Wang J, Pan S (2009) Isolation and preliminary identification of the endophytic fungi which produce Hupzine A from four species in Hupziaceae and determination of Huperzine A by HPLC. Fudan Univ J Med Sci 4:017

    Google Scholar 

  64. Zhou X, Zheng W, Zhu H (2009) Identification of a taxol-producing endophytic fungus EFY-36. Afr J Biotechnol 8(11):2623–2625

    Google Scholar 

  65. Kumara PM, Zuehlke S, Priti V, Ramesha BT, Shweta S, Ravikanth G, Vasudeva R, Santhoshkumar TR, Spiteller M, Shaanker RU (2012) Fusarium proliferatum, an endophytic fungus from Dysoxylum binectariferum Hook. f, produces rohitukine, a chromane alkaloid possessing anti-cancer activity. Antonie Van Leeuwenhoek 101(2):323–329

    Article  CAS  Google Scholar 

  66. Maehara S, Simanjuntak P, Kitamura C, Ohashi K, Shibuya H (2011) Cinchona alkaloids are also produced by an endophytic filamentous fungus living in Cinchona plant. Chem Pharm Bull 59(8):1073–1074

    Article  CAS  Google Scholar 

  67. Duan L, Liwei G, Hong Y (2009) Isolation and identification of producing endophytic fungi of berberine from the plant Phellodendron amurense. J Anhui Agric Sci 22(007). https://doi.org/10.3969/j.issn.0517-6611.2009.22.007

  68. Yin H, Chen J-L (2008) Sipeimine-producing endophytic fungus isolated from. Z Naturforsch C 63(11–12):789–793

    Article  CAS  PubMed  Google Scholar 

  69. Chen X, Sang X, Li S, Zhang S, Bai L (2010) Studies on a chlorogenic acid-producing endophytic fungi isolated from Eucommia ulmoides Oliver. J Ind Microbiol Biotechnol 37(5):447–454

    Article  CAS  PubMed  Google Scholar 

  70. Zhao J, Fu Y, Luo M, Zu Y, Wang W, Zhao C, Gu C (2012) Endophytic fungi from pigeon pea [Cajanus cajan (L.) Millsp.] produce antioxidant cajaninstilbene acid. J Agric Food Chem 60(17):4314–4319

    Article  CAS  PubMed  Google Scholar 

  71. Chen M, Yang L, Li Q, Shen Y, Shao A, Lin S, Huang L (2011) Volatile metabolites analysis and molecular identification of endophytic fungi bn12 from Cinnamomum camphora chvar. borneol. China J Chin Materia Medica 36(23):3217–3221

    CAS  Google Scholar 

  72. Cui Y, Yi D, Bai X, Sun B, Zhao Y, Zhang Y (2012) Ginkgolide B produced endophytic fungus (Fusarium oxysporum) isolated from Ginkgo biloba. Fitoterapia 83(5):913–920

    Article  CAS  PubMed  Google Scholar 

  73. Pan F, Su X, Hu B, Yang N, Chen Q, Wu W (2015) Fusarium redolens 6WBY3, an endophytic fungus isolated from Fritillaria unibracteata var. wabuensis, produces peimisine and imperialine-3β-d-glucoside. Fitoterapia 103:213–221

    Article  CAS  PubMed  Google Scholar 

  74. Chithra S, Jasim B, Sachidanandan P, Jyothis M, Radhakrishnan E (2014) Piperine production by endophytic fungus Colletotrichum gloeosporioides isolated from Piper nigrum. Phytomedicine 21(4):534–540

    Article  CAS  PubMed  Google Scholar 

  75. Haque MA, Hossain MS, Rahman M, Rahman MR, Hossain MS, Mosihuzzaman M, Nahar N, Khan S (2005) Isolation of bioactive secondary metabolites from the endophytic fungus of Ocimum basilicum. J Pharm Sci 4(2):127–13012

    Google Scholar 

  76. Turbyville TJ, Wijeratne EK, Liu MX, Burns AM, Seliga CJ, Luevano LA, David CL, Faeth SH, Whitesell L, Gunatilaka AL (2006) Search for Hsp90 inhibitors with potential anticancer activity: isolation and SAR studies of radicicol and monocillin I from two plant-associated fungi of the Sonoran desert. J Nat Prod 69(2):178–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Redko F, Clavin M, Weber D, Anke T, Martino V (2006) Search for active metabolites of Erythrina crista-galli and its endophyte Phomopsis sp. Mol Med Chem 10:24–26

    Google Scholar 

  78. Strobel GA, Kluck K, Hess WM, Sears J, Ezra D, Vargas PN (2007) Muscodor albus E-6, an endophyte of Guazuma ulmifolia making volatile antibiotics: isolation, characterization and experimental establishment in the host plant. Microbiology 153(8):2613–2620

    Article  CAS  PubMed  Google Scholar 

  79. Campos FF, Rosa LH, Cota BB, Caligiorne RB, Rabello ALT, Alves TMA, Rosa CA, Zani CL (2008) Leishmanicidal metabolites from Cochliobolus sp., an endophytic fungus isolated from Piptadenia adiantoides (Fabaceae). PLoS Negl Trop Dis 2(12):e348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Liu X, Dong M, Chen X, Jiang M, Lv X, Zhou J (2008) Antimicrobial activity of an endophytic Xylaria sp. YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Appl Microbiol Biotechnol 78(2):241–247

    Article  CAS  PubMed  Google Scholar 

  81. Nithya K, Muthumary J (2010) Secondary metabolite from Phomopsis sp. isolated from Plumeria acutifolia Poiret. Recent Res Sci Technol 2(4):99

    CAS  Google Scholar 

  82. Yu H, Zhang L, Li L, Zheng C, Guo L, Li W, Sun P, Qin L (2010) Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res 165(6):437–449

    Article  CAS  PubMed  Google Scholar 

  83. Saxena S, Meshram V, Kapoor N (2015) Muscodor tigerii sp. nov.-volatile antibiotic producing endophytic fungus from the Northeastern Himalayas. Ann Microbiol 65(1):47–57

    Article  CAS  Google Scholar 

  84. Suwannarach N, Kumla J, Bussaban B, Nuangmek W, Matsui K, Lumyong S (2013) Biofumigation with the endophytic fungus Nodulisporium spp. CMU-UPE34 to control postharvest decay of citrus fruit. Crop Prot 45:63–70

    Article  CAS  Google Scholar 

  85. Gao J, Xu A, Tang X (2011) Isolation, identification and volatile compound analysis of an aroma-producing endophytic yeast from romaine lettuce. Food Sci 23:33

    CAS  Google Scholar 

  86. Trapp MA, Kai M, Mithöfer A, Rodrigues-Filho E (2015) Antibiotic oxylipins from Alternanthera brasiliana and its endophytic bacteria. Phytochemistry 110:72–82

    Article  CAS  PubMed  Google Scholar 

  87. Harmon AD, Weiss U, Silverton J (1979) The structure of rohitukine, the main alkaloid of Amoora rohituka (Syn. Aphanamixis polystachya)(meliaceae). Tetrahedron Lett 20(8): 721–724

    Article  Google Scholar 

  88. Li Q-Y, Zu Y-G, Shi R-Z, Yao L-P (2006) Review camptothecin: current perspectives. Curr Med Chem 13(17):2021–2039

    Article  CAS  PubMed  Google Scholar 

  89. Canel C, Moraes RM, Dayan FE, Ferreira D (2000) Podophyllotoxin. Phytochemistry 54(2): 115–120

    Article  CAS  PubMed  Google Scholar 

  90. Song CE (2009) An overview of Cinchona alkaloids in chemistry. In: Cinchona alkaloids in synthesis and catalysis: ligands, immobilization and organocatalysis, Wiley-VCH, Weinheim. pp 1–10

    Google Scholar 

  91. Groppe K, Steinger T, Sanders I, Schmid B, Wiemken A, Boller T (1999) Interaction between the endophytic fungus Epichloë bromicola and the grass Bromus erectus: effects of endophyte infection, fungal concentration and environment on grass growth and flowering. Mol Ecol 8(11):1827–1835

    Article  CAS  PubMed  Google Scholar 

  92. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67(4):491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23(5):753–771

    Article  CAS  PubMed  Google Scholar 

  94. Mitter B, Petric A, Shin MW, Chain PS, Hauberg-Lotte L, Reinhold-Hurek B, Nowak J, Sessitsch A (2013) Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front Plant Sci 4:120

    Article  PubMed  PubMed Central  Google Scholar 

  95. Schulthess FM, Faeth SH (1998) Distribution, abundances, and associations of the endophytic fungal community of Arizona fescue (Festuca arizonica). Mycologia 90:569–578

    Article  Google Scholar 

  96. Germaine K, Keogh E, Garcia-Cabellos G, Borremans B, Van Der Lelie D, Barac T, Oeyen L, Vangronsveld J, Moore FP, Moore ER (2004) Colonisation of poplar trees by GFP expressing bacterial endophytes. FEMS Microbiol Ecol 48(1):109–118

    Article  CAS  PubMed  Google Scholar 

  97. Gunatilaka AL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69(3):509–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Frisvad JC, Andersen B, Thrane U (2008) The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol Res 112(2):231–240

    Article  CAS  PubMed  Google Scholar 

  99. Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:335–355

    Article  CAS  PubMed  Google Scholar 

  100. Schulz B, Römmert A-K, Dammann U, Aust H-J, Strack D (1999) The endophyte-host interaction: a balanced antagonism? Mycol Res 103(10):1275–1283

    Article  Google Scholar 

  101. Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109(6):661–686

    Article  PubMed  Google Scholar 

  102. Kusari S, Spiteller M (2011) Are we ready for industrial production of bioactive plant secondary metabolites utilizing endophytes? Nat Prod Rep 28(7):1203–1207

    Article  CAS  PubMed  Google Scholar 

  103. Howitz KT, Sinclair DA (2008) Xenohormesis: sensing the chemical cues of other species. Cell 133(3):387–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Owen NL, Hundley N (2004) Endophytes–the chemical synthesizers inside plants. Sci Prog 87(2):79–99

    Article  CAS  PubMed  Google Scholar 

  105. Frey M, Chomet P, Glawischnig E, Stettner C, Grün S, Winklmair A, Eisenreich W, Bacher A, Meeley RB, Briggs SP (1997) Analysis of a chemical plant defense mechanism in grasses. Science 277(5326):696–699

    Article  CAS  PubMed  Google Scholar 

  106. Kirby R, Hopwood D (1977) Genetic determination of methylenomycin synthesis by the SCP1 plasmid of Streptomyces coelicolor A3 (2). Microbiology 98(1):239–252

    Article  CAS  Google Scholar 

  107. Mochizuki S, Hiratsu K, Suwa M, Ishii T, Sugino F, Yamada K, Kinashi H (2003) The large linear plasmid pSLA2-L of Streptomyces rochei has an unusually condensed gene organization for secondary metabolism. Mol Microbiol 48(6):1501–1510

    Article  CAS  PubMed  Google Scholar 

  108. Priti V, Ramesha B, Singh S, Ravikanth G, Ganeshaiah K, Suryanarayanan T, Uma Shaanker R (2009) How promising are endophytic fungi as alternative sources of plant secondary metabolites? Curr Sci 97(4):477–478

    Google Scholar 

  109. Shwab EK, Keller NP (2008) Regulation of secondary metabolite production in filamentous ascomycetes. Mycol Res 112(2):225–230

    Article  CAS  PubMed  Google Scholar 

  110. Kusari S, Zuhlke S, Spiteller M (2011) Effect of artificial reconstitution of the interaction between the plant Camptotheca acuminata and the fungal endophyte Fusarium solani on camptothecin biosynthesis. J Nat Prod 74(4):764–775

    Article  CAS  PubMed  Google Scholar 

  111. Keller L, Surette MG (2006) Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 4(4):249

    Article  CAS  PubMed  Google Scholar 

  112. Hughes DT, Sperandio V (2008) Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol 6(2):111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Scherlach K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7(9):1753–1760

    Article  CAS  PubMed  Google Scholar 

  114. Kumara PM, Soujanya K, Ravikanth G, Vasudeva R, Ganeshaiah K, Shaanker RU (2014) Rohitukine, a chromone alkaloid and a precursor of flavopiridol, is produced by endophytic fungi isolated from Dysoxylum binectariferum Hook. f and Amoora rohituka (Roxb). Wight & Arn. Phytomedicine 21(4):541–546

    Article  CAS  PubMed  Google Scholar 

  115. Partida-Martinez LP, Hertweck C (2005) Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437(7060):884

    Article  CAS  PubMed  Google Scholar 

  116. Schroeckh V, Scherlach K, Nützmann H-W, Shelest E, Schmidt-Heck W, Schuemann J, Martin K, Hertweck C, Brakhage AA (2009) Intimate bacterial–fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci 106(34): 14558–14563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Vasanthakumari M, Jadhav S, Sachin N, Vinod G, Shweta S, Manjunatha B, Kumara PM, Ravikanth G, Nataraja KN, Shaanker RU (2015) Restoration of camptothecin production in attenuated endophytic fungus on re-inoculation into host plant and treatment with DNA methyltransferase inhibitor. World J Microbiol Biotechnol 31(10):1629–1639

    Article  CAS  PubMed  Google Scholar 

  118. Venugopalan A, Srivastava S (2015) Enhanced camptothecin production by ethanol addition in the suspension culture of the endophyte, Fusarium solani. Bioresour Technol 188:251–257

    Article  CAS  PubMed  Google Scholar 

  119. Winter JM, Behnken S, Hertweck C (2011) Genomics-inspired discovery of natural products. Curr Opin Chem Biol 15(1):22–31

    Article  CAS  PubMed  Google Scholar 

  120. Field B, Osbourn AE (2008) Metabolic diversification – independent assembly of operon-like gene clusters in different plants. Science 320(5875):543–547

    Article  CAS  PubMed  Google Scholar 

  121. Osbourn A, Papadopoulou KK, Qi X, Field B, Wegel E (2012) Finding and analyzing plant metabolic gene clusters. In: Methods in enzymology. Elsevier, Academic Press, New York. pp 517:113–38

    Google Scholar 

  122. Castillo DA, Kolesnikova MD, Matsuda SP (2013) An effective strategy for exploring unknown metabolic pathways by genome mining. J Am Chem Soc 135(15):5885–5894

    Article  CAS  PubMed  Google Scholar 

  123. Cyr A, Wilderman PR, Determan M, Peters RJ (2007) A modular approach for facile biosynthesis of labdane-related diterpenes. J Am Chem Soc 129(21):6684–6685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Nakagawa A, Minami H, Kim J-S, Koyanagi T, Katayama T, Sato F, Kumagai H (2011) A bacterial platform for fermentative production of plant alkaloids. Nat Commun 2:326

    Article  PubMed  CAS  Google Scholar 

  125. Siddiqui MS, Thodey K, Trenchard I, Smolke CD (2012) Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools. FEMS Yeast Res 12(2):144–170

    Article  CAS  PubMed  Google Scholar 

  126. Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell M, Tai A, Main A, Eng D (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496(7446):528

    Article  CAS  PubMed  Google Scholar 

  127. Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R, Horning T, Tsuruta H, Melis DJ, Owens A (2012) Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci 109(3):E111–E118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wei Y, Liu L, Zhou X, Lin J, Sun X, Tang K (2012) Engineering taxol biosynthetic pathway for improving taxol yield in taxol-producing endophytic fungus EFY-21 (Ozonium sp.). Afr J Biotechnol 11(37):9094–9101

    CAS  Google Scholar 

  129. Kai Z, Xuan W, Yushi S, Ying W, Wenxiang P, Dongpo Z (2008) Screening of high taxol producing fungi by NTG combining with UV mutagenesis. J Nat Sci Heilongjiang Univ 1:016

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit G. Gandhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jamwal, V.L., Gandhi, S.G. (2019). Endophytes as a Source of High-Value Phytochemicals: Present Scenario and Future Outlook. In: Jha, S. (eds) Endophytes and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-90484-9_14

Download citation

Publish with us

Policies and ethics