Fungal Endophytes: A Novel Source of Cytotoxic Compounds

  • Sunil K. DeshmukhEmail author
  • Manish K. Gupta
  • Ved Prakash
  • M. Sudhakara Reddy
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


Across the globe, cancer is the second most significant cause for mortality that was responsible for 8.8 million deaths in 2015, and the count is increasing at the alarming pace each year. The longer treatment protocols and the serious side effects of the existing anticancer drugs represent an urgent need to develop safe and effective anticancer drugs. Endophytic fungi offer the prolific source of novel metabolites that bears unique structural and functional capabilities with cytotoxic activity. In recent years, various bioactive metabolites possessing structural diversity have been identified from endophytic fungi and evaluated for their anticancer properties. Bioactive metabolites from endophytic fungi have potential to serve as a lead molecule for the pharmacological sector in the development of new drugs. The lower yield of metabolites is a major barrier for the utilization of these molecules for the treatment of cancer; therefore, alternate sources and production methods have been developed. The culture optimization to enhance yield and epigenetic means to activate silenced genes capable of producing novel metabolites were developed to obtain the fungal metabolites in higher quantities. The present review provides a comprehensive data of bioactive metabolites isolated from endophytic fungi harboring terrestrial plants during 2012–2018 (up to June 2018) with focus on their chemical structure, their cytotoxic capabilities, and their mechanism of action. The outlook of epigenetic modulation is discussed in perspectives of enhancing yield and identification of unidentified metabolites.


Endophytic fungi Anticancer compounds Medicinal plants Co-culture Epigenetic modification 


  1. 1.
    Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655CrossRefGoogle Scholar
  2. 2.
    Hawksworth DL, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr 5(4).
  3. 3.
    Schulz B, Boyle C, Draeger S, Römmert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004CrossRefGoogle Scholar
  4. 4.
    Nicoletti R, Fiorentino A (2015) Plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta. Agriculture 5:918–970CrossRefGoogle Scholar
  5. 5.
    Gunatilaka AAL (2006) Natural products from plant associated microorganisms: distribution, structural diversity, bioactivity and implications of their occurrence. J Nat Prod 69:509–526PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28(7):1208–1228CrossRefGoogle Scholar
  7. 7.
    Deshmukh SK, Verekar SA, Bhave S (2015) Endophytic fungi: an untapped source for antibacterials. Front Microbiol.
  8. 8.
    Deshmukh SK (2018) Translating endophytic fungal research towards pharmaceutical applications. Kavaka 50:1–13Google Scholar
  9. 9.
    Deshmukh SK, Gupta MK, Prakash V, Saxena S (2018) Endophytic fungi: a source of potential antifungal compounds. J Fungi 4:77. Scholar
  10. 10.
    Strobel G, Yang X, Sears J, Kramer R, Sidhu RS, Hess WM (1996) Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallichiana. Microbiology 142:435–440PubMedCrossRefGoogle Scholar
  11. 11.
    Rahier NJ, Molinier N, Long C, Deshmukh SK, Kate AS, Ranadive P, Verekar SA, Jiotode M, Lavhale RR, Tokdar P, Balakrishnan A, Meignan S, Robichon C, Gomes B, Aussagues Y, Samson A, Sautel F, Bailly C (2015) Anticancer activity of koningic acid and semisynthetic derivatives. Bioorg Med Chem 23:3712–3721PubMedCrossRefGoogle Scholar
  12. 12.
    Wang XJ, Min CL, Ge M, Zuo RH (2014) An endophytic sanguinarine-producing fungus from Macleaya cordata, Fusarium proliferatum BLH51. Curr Microbiol 68:336–341PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Verma VC, Lobkovsky E, Gange AC, Singh SK, Prakash S (2011) Piperine production by endophytic fungus Periconia sp. isolated from Piper longum L. J Antibiot 64:427–431CrossRefGoogle Scholar
  14. 14.
    Ibrahim SRM, Abdallah HM, Elkhayat ES, Al Musayeib NM, Asfour HZ, Zayed MF, Mohamed GA (2018) Fusaripeptide A: new antifungal and anti-malarial cyclodepsipeptide from the endophytic fungus Fusarium sp. J Asian Nat Prod Res 20:75–85PubMedCrossRefGoogle Scholar
  15. 15.
    Deshmukh SK, Mishra PD, Kulkarni-Almeida A, Verekar SA, Sahoo MR, Periyasamy G, Goswami H, Khanna A, Balakrishnan A, Vishwakarma R (2009) Anti-inflammatory and anti-cancer activity of ergoflavin isolated from an endophytic fungus. Chem Biodivers 6:784–789CrossRefGoogle Scholar
  16. 16.
    Zhang B, Salituro G, Szalkowski D, Li Z, Zhang Y, Royo I et al (1999) Discovery of small molecule insulin mimetic with antidiabetic activity in mice. Science 284:974–981PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Selim KA, Elkhateeb WA, Tawila AM, El-Beih AA, Abdel-Rahman TM, El-Diwany AI, Ahmed EF (2018) Antiviral and antioxidant potential of fungal endophytes of Egyptian medicinal plants. Fermentation 4:49CrossRefGoogle Scholar
  18. 18.
    Tian J, Fu L, Zhang Z, Dong X, Xu D, Mao Z, Liu Y, Lai D, Zhou L (2016) Dibenzo-α-pyrones from the endophytic fungus Alternaria sp. Samif01: isolation, structure elucidation, and their antibacterial and antioxidant activities. Nat Prod Res 31(4):387–396PubMedCrossRefGoogle Scholar
  19. 19.
    Chen HJ, Awakawa T, Sun JY, Wakimoto T, Abe I (2013) Epigenetic modifier-induced biosynthesis of novel fusaric acid derivatives in endophytic fungi from Datura stramonium L. Nat Prod Bioprospect 3:20–23PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Xiao ZE, Chen S, Cai R, Lin SE, Hong K, She Z (2016) New furoisocoumarins and isocoumarins from the mangrove endophytic fungus Aspergillus sp. 085242. Beilstein J Org Chem 12:2077–2085PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Cui H, Liu Y, Nie Y, Liu Z, Chen S, Zhang Z, Huang X, She Z, Nie Y, Lu Y, He L, Huang X, She Z (2016) Polyketides from the mangrove-derived endophytic fungus Nectria sp. HN001 and their α-glucosidase inhibitory activity. Mar Drugs 14(5) pii: E86PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Wang LW, Wang JL, Chen J, Chen JJ, Shen JW, Feng XX, Kubicek CP, Lin FC, Zhang CL, Chen FY (2017) A novel derivative of (−) mycousnine produced by the endophytic fungus Mycosphaerella nawae, exhibits high and selective immunosuppressive activity on T cells. Front Microbiol 8:1251. Scholar
  23. 23.
    Wang X, Radwan MM, Taráwneh AH, Gao J, Wedge DE, Rosa LH, Cutler HG, Cutler SJ (2013) Antifungal activity against plant pathogens of metabolites from the endophytic fungus Cladosporium cladosporioides. J Agric Food Chem 61(19):4551–4555.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Chapla VM, Zeraik ML, Leptokarydis IH, Silva GH, Bolzani VS, Young MC, Pfenning LH, Araújo AR (2014) Antifungal compounds produced by Colletotrichum gloeosporioides, an endophytic fungus from Michelia champaca. Molecules 19(11):19243–19252PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294CrossRefGoogle Scholar
  26. 26.
    Xiao J, Hu JY, Sun HD, Zhao X, Zhong WT, Duan DZ, Wang L, Wang XL (2018) Sinopestalotiollides A-D, cytotoxic diphenyl ether derivatives from plant endophytic fungus Pestalotiopsis palmarum. Bioorg Med Chem Lett 28(3):515–518PubMedCrossRefGoogle Scholar
  27. 27.
    Qian YX, Kang JC, Luo YK, He J, Wang L, Zhang XP (2017) Secondary metabolites of an endophytic fungus Pestalotiopsis uvicola. Chem Nat Compd 53(4):756–758CrossRefGoogle Scholar
  28. 28.
    Li CS, Yang BJ, Turkson J, Cao S (2017) Anti-proliferative ambuic acid derivatives from Hawaiian endophytic fungus Pestalotiopsis sp. FT172. Phytochemistry 140:77–82PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Xu MF, Jia OY, Wang SJ, Zhu Q (2016) A new bioactive diterpenoid from Pestalotiopsis adusta, an endophytic fungus from Clerodendrum canescens. Nat Prod Res 30(23):2642–2647PubMedCrossRefGoogle Scholar
  30. 30.
    Yang XL, Zhang S, Hu QB, Luo DQ, Zhang Y (2011) Phthalide derivatives with antifungal activities against the plant pathogens isolated from the liquid culture of Pestalotiopsis photiniae. J Antibiot 64:723–727PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Chen C, Hu SY, Luo DQ, Zhu SY, Zhou CQ (2013) Potential antitumor agent from the endophytic fungus Pestalotiopsis photiniae induces apoptosis via the mitochondrial pathway in HeLa cells. Oncol Rep 30(4):1773–1781PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Liu S, Guo L, Che Y, Liu L (2013) Pestaloficiols Q-S from the plant endophytic fungus Pestalotiopsis fici. Fitoterapia 85:114–118PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Ding G, Qi Y, Liu S, Guo L, Chen X (2012) Photipyrones A and B, new pyrone derivatives from the plant endophytic fungus Pestalotiopsis photiniae. J Antibiot 65(5):271–273PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Luo DQ, Zhang L, Shi BZ, Song XM (2012) Two new oxysporone derivatives from the fermentation broth of the endophytic plant fungus Pestalotiopsis karstenii isolated from stems of Camellia. Molecules 17:8554–8560PubMedCentralCrossRefGoogle Scholar
  35. 35.
    Sang XN, Chen SF, Tang MX, Wang HF, An X, Lu XJ, Zhao D, Wang YB, Bai J, Hua HM et al (2017) α-Pyrone derivatives with cytotoxic activities, from the endophytic fungus Phoma sp. YN02-P-3. Bioorg Med Chem Lett 27(16):3723–3725PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Sang XN, Chen SF, Chen G, An X, Li SG, Li XN, Lin B, Bai J, Wang HF, Pei YH (2016) Phomeketales A-F, six unique metabolites from the endophytic fungus Phoma sp. YN02-P-3. RSC Adv 6(69):64890–64894CrossRefGoogle Scholar
  37. 37.
    Wang LW, Xu BG, Wang JY, Su ZZ, Lin FC, Zhang CL, Kubicek CP (2012) Bioactive metabolites from Phoma species, an endophytic fungus from the Chinese medicinal plant Arisaema erubescens. Appl Microbiol Biotechnol 93(3):1231–1239PubMedCrossRefGoogle Scholar
  38. 38.
    Yuan L, Huang W, Zhou K, Wang Y, Dong W, Lou J, Li L, Du G, Yang H, Ma Y et al (2015) Xanthones from the fermentation products of an endophytic fungus Phomopsis sp. Heterocycles 91(2):381–387CrossRefGoogle Scholar
  39. 39.
    Yan BC, Wang WG, Hu DB, Sun X, Kong LM, Li XN, Du X, Luo SH, Liu Y, Li Y et al (2016) Phomopchalasins A and B, two cytochalasans with polycyclic-fused skeletons from the endophytic fungus Phomopsis sp. shj2. Org Lett 18(5):1108–1111PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Kornsakulkarn J, Somyong W, Supothina S, Boonyuen N, Thongpanchang C (2015) Bioactive oxygen-bridged cyclooctadienes from endophytic fungus Phomopsis sp. BCC 45011. Tetrahedron 71(48):9112–9116CrossRefGoogle Scholar
  41. 41.
    Prachya S, Wiyakrutta S, Sriubolmas N, Ngamrojanavanich N, Mahidol C, Ruchirawat S, Kittakoop P (2007) Cytotoxic mycoepoxydiene derivatives from an endophytic fungus Phomopsis sp. isolated from Hydnocarpus anthelminthicus. Planta Med 73:1418–1420PubMedCrossRefGoogle Scholar
  42. 42.
    Verekar SA, Mishra PD, Sreekumar ES, Deshmukh SK, Fiebig HH, Kelter G, Maier A (2014) Anticancer activity of new depsipeptide compound isolated from an endophytic fungus. J Antibiot 67:697–701PubMedCrossRefGoogle Scholar
  43. 43.
    Hu Q, Yang Y, Yang S, Cao H, Meng C, Yang H, Gao X, Du G (2015) Xanthones from the fermentation products of the endophytic fungus Phomopsis amygdali. Chem Nat Compd 51(3):456–459CrossRefGoogle Scholar
  44. 44.
    Zhang Y, Hao F, Liu N, Xu Y, Jia A, Yang Z, Xia X, Liu C (2013) Stereochemical determination of a new and cytotoxic euphane triterpenoid from the plant endophytic fungus Phomopsis chimonanthi. J Antibiot 66(11):679–682PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Shiono Y, Yokoi M, Koseki T, Murayama T, Aburai N, Kimura K (2010) Allantopyrone A, a new alpha-pyrone metabolite with potent cytotoxicity from an endophytic fungus, Allantophomopsis lycopodina KS-97. J Antibiot 63(5):251–253PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Yokoigawa J, Morimoto K, Shiono Y, Uesugi S, Kimura KI, Kataoka T (2015) Allantopyrone A, an α-pyrone metabolite from an endophytic fungus, inhibits the tumor necrosis factor α-induced nuclear factor κB signaling pathway. J Antibiot 68(2):71–75PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Uesugi S, Muroi M, Kondoh Y, Shiono Y, Osada H, Kimura KI (2017) Allantopyrone A activates Keap1-Nrf2 pathway and protects PC12 cells from oxidative stress-induced cell death. J Antibiot 70(4):429–434PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Lai D, Wang A, Cao Y, Zhou K, Mao Z, Dong X, Tian J, Xu D, Dai J, Peng Y et al (2016) Bioactive dibenzo-α-pyrone derivatives from the endophytic fungus Rhizopycnis vagum Nitaf22. J Nat Prod 79(8):2022–2031PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Mandavid H, Rodrigues AMS, Espindola LS, Eparvier V, Stien D (2015) Secondary metabolites isolated from the Amazonian endophytic fungus Diaporthe sp. SNB-GSS10. J Nat Prod 78(7):1735–1739PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Vasundhara M, Baranwal M, Sivaramaiah N, Kumar A (2017) Isolation and characterization of trichalasin-producing endophytic fungus from Taxus baccata. Ann Microbiol 67(3):255–261CrossRefGoogle Scholar
  51. 51.
    Adames I, Ortega HE, Asai Y, Kato M, Nagaoka K, Ten Dyke K, Shen YY, Cubilla-Rios L (2015) 3-epi-Waol A and Waol C: polyketide-derived γ-lactones isolated from the endophytic fungus Libertella blepharis F2644. Tetrahedron Lett 56(1):252–255CrossRefGoogle Scholar
  52. 52.
    Arora D, Sharma N, Singamaneni V, Sharma V, Kushwaha M, Abrol V, Guru S, Sharma S, Gupta AP, Bhushan S et al (2016) Isolation and characterization of bioactive metabolites from Xylaria psidii, an endophytic fungus of the medicinal plant Aegle marmelos and their role in mitochondrial dependent apoptosis against pancreatic cancer cells. Phytomedicine 23(12):1312–1320PubMedCrossRefGoogle Scholar
  53. 53.
    Wang LW, Wang GP, Tang T, Xing WX, Zheng W, Wang J, Zhang CL (2014) An endophytic fungus in Ficus carica and its secondary metabolites. Junwu Xuebao 33(5):1084–1093Google Scholar
  54. 54.
    Yu FX, Chen Y, Yang YH, Li GH, Zhao PJ (2018) A new epipolythiodioxopiperazine with antibacterial and cytotoxic activities from the endophytic fungus Chaetomium sp. M336. Nat Prod Res 32(6):689–694PubMedCrossRefGoogle Scholar
  55. 55.
    Mao BZ, Huang C, Yang GM, Chen YZ, Chen SY (2010) Separation and determination of the bioactivity of oosporein from Chaetomium cupreum. Afr J Biotechnol 9:5955–5961Google Scholar
  56. 56.
    Alurappa R, Bojegowda MR, Kumar V, Mallesh NK, Chowdappa S (2014) Characterization and bioactivity of oosporein produced by endophytic fungus Cochliobolus kusanoi isolated from Nerium oleander L. Nat Prod Res 28(23):2217–2220PubMedCrossRefGoogle Scholar
  57. 57.
    Akone S, Herve MA, Kurtan T, Hartmann R, Lin W, Daletos G, Proksch P (2016) Inducing secondary metabolite production by the endophytic fungus Chaetomium sp. through fungal-bacterial co-culture and epigenetic modification. Tetrahedron 72(41):6340–6347CrossRefGoogle Scholar
  58. 58.
    Li H, Xiao J, Gao YQ, Tang JJ, Zhang AL, Gao JM (2014) Chaetoglobosins from Chaetomium globosum, an endophytic fungus in Ginkgo biloba, and their phytotoxic and cytotoxic activities. J Agric Food Chem 62(17):3734–3741PubMedCrossRefGoogle Scholar
  59. 59.
    Kumar M, Qadri M, Sharma PR, Kumar A, Andotra SS, Kaur T, Kapoor K, Gupta VK, Kant R, Hamid A et al (2013) Tubulin inhibitors from an endophytic fungus isolated from Cedrus deodara. J Nat Prod 76(2):194–199PubMedCrossRefGoogle Scholar
  60. 60.
    Zhao QH, Yang ZD, Shu ZM, Wang YG, Wang MG (2016) Secondary metabolites and biological activities of Talaromyces sp. LGT-2, an endophytic fungus from Tripterygium wilfordii. Iran J Pharm Res 15(3):453–457PubMedPubMedCentralGoogle Scholar
  61. 61.
    Perez-Bonilla M, Gonzalez-Menendez V, Perez-Victoria I, de Pedro N, Martin J, Molero-Mesa J, Casares-Porcel M, Gonzalez-Tejero MR, Vicente F, Genilloud O et al (2017) Hormonemate derivatives from Dothiora sp., an endophytic fungus. J Nat Prod 80(4):845–853PubMedCrossRefGoogle Scholar
  62. 62.
    Giridharan P, Verekar SA, Khanna A, Mishra PD, Deshmukh SK (2012) Anticancer activity of sclerotiorin, isolated from an endophytic fungus Cephalotheca faveolata Yaguchi, Nishim. & Udagawa. Indian J Exp Biol 50(7):464–468PubMedGoogle Scholar
  63. 63.
    Zilla MK, Qadri M, Pathania AS, Strobel GA, Nalli Y, Kumar S, Guru SK, Bhushan S, Singh SK, Vishwakarma RA, Riyaz-Ul-Hassan S, Ali A (2013) Bioactive metabolites from an endophytic Cryptosporiopsis sp. inhabiting Clidemia hirta. Phytochemistry 95:291–297PubMedCrossRefGoogle Scholar
  64. 64.
    Pathania AS, Guru SK, Ul Ashraf N, Riyaz-Ul-Hassan S, Ali A, Abdullah Tasduq S, Malik F, Bhushan S (2015) A novel stereo bioactive metabolite isolated from an endophytic fungus induces caspase dependent apoptosis and STAT-3 inhibition in human leukemia cells. Eur J Pharmacol 765:75–85PubMedCrossRefGoogle Scholar
  65. 65.
    Li CS, Ding Y, Yang BJ, Hoffman N, Yin HQ, Mahmud T, Turkson J, Cao S (2016) Eremophilane sesquiterpenes from Hawaiian endophytic fungus Chaetoconis sp. FT087. Phytochemistry 126:41–46PubMedCrossRefGoogle Scholar
  66. 66.
    Bhatia DR, Dhar P, Mutalik V, Deshmukh SK, Verekar SA, Desai DC, Kshirsagar R, Thiagarajan P, Agarwal V (2017) Anticancer activity of ophiobolin A, isolated from the endophytic fungus Bipolaris setariae. Nat Prod Res 30(12):1455–1458PubMedCrossRefGoogle Scholar
  67. 67.
    Sharma N, Kushwaha M, Arora D, Jain S, Singamaneni V, Sharma S, Shankar R, Bhushan S, Gupta P, Jaglan S (2018) New cytochalasin from Rosellinia sanctae-cruciana, an endophytic fungus of Albizia lebbeck. J Appl Microbiol 125(1):111–120PubMedCrossRefGoogle Scholar
  68. 68.
    Ariefta NR, Kristiana P, Nurjanto HH, Momma H, Kwon E, Ashitani T, Tawaraya K, Murayama T, Koseki T, Furuno H et al (2017) Nectrianolins A, B, and C, new metabolites produced by endophytic fungus Nectria pseudotrichia 120-1NP. Tetrahedron Lett 58(43):4082–4086CrossRefGoogle Scholar
  69. 69.
    Kumar S, Nalli Y, Qadri M, Riyaz-Ul-Hassan S, Satti NK, Gupta V, Bhushan S, Ali A (2017) Isolation of three new metabolites and intervention of diazomethane led to separation of compound 1 & 2 from an endophytic fungus, Cryptosporiopsis sp. depicting cytotoxic activity. Med Chem Res 26(11):2900–2908Google Scholar
  70. 70.
    Noumeur SR, Helaly SE, Jansen R, Gereke M, Stradal TEB, Harzallah D, Stadler M (2017) Preussilides A-F, bicyclic polyketides from the endophytic fungus Preussia similis with antiproliferative activity. J Nat Prod 80(5):1531–1540PubMedCrossRefGoogle Scholar
  71. 71.
    Zhang D, Ge H, Xie D, Chen R, Zou JH, Tao X, Dai J (2013) Periconiasins A-C, new cytotoxic cytochalasans with an unprecedented 9/6/5 tricyclic ring system from endophytic fungus Periconia sp. Org Lett 15(7):1674–1677PubMedCrossRefGoogle Scholar
  72. 72.
    Liu J, Zhang D, Zhang M, Liu X, Chen R, Zhao J, Li L, Wang N, Dai J (2016) Periconiasins I and J, two new cytochalasans from an endophytic fungus Periconia sp. Tetrahedron Lett 57(51):5794–5797CrossRefGoogle Scholar
  73. 73.
    Liu JM, Zhang DW, Zhang M, Chen RD, Yan Z, Zhao JY, Zhao JL, Wang N, Dai JG (2017) Periconones B-E, new meroterpenoids from endophytic fungus Periconia. Chin Chem Lett 28(2):248–252CrossRefGoogle Scholar
  74. 74.
    Shan T, Tian J, Wang X, Mou Y, Mao Z, Lai D, Dai J, Peng Y, Zhou L, Wang M (2014) Bioactive spirobisnaphthalenes from the endophytic fungus Berkleasmium sp. J Nat Prod 77(10):2151–2160PubMedCrossRefGoogle Scholar
  75. 75.
    Lue X, Chen G, Li Z, Zhang Y, Wang Z, Rong W, Pei Y, Pan H, Hua H, Bai J (2014) Palmarumycins from the endophytic fungus Lasiodiplodia pseudotheobromae XSZ-3. Helv Chim Acta 97(9):1289–1294CrossRefGoogle Scholar
  76. 76.
    Melendez-Gonzalez C, Muria-Gonzalez MJ, Anaya AL, Hernandez-Bautista BE, Hernandez-Ortega S, Gonzalez MC, Glenn AE, Hanlin RT, Macias-Rubalcava ML (2015) Acremoxanthone E, a novel member of heterodimeric polyketides with a bicyclo[3.2.2]nonene ring, produced by Acremonium camptosporum W. Gams (Clavicipitaceae) endophytic fungus. Chem Biodivers 12(1):133–147PubMedCrossRefGoogle Scholar
  77. 77.
    El Amrani M, Lai D, Debbab A, Aly AH, Siems K, Seidel C, Schnekenburger M, Gaigneaux A, Diederich M, Feger D et al (2014) Protein kinase and HDAC inhibitors from the endophytic fungus Epicoccum nigrum. J Nat Prod 77(1):49–56PubMedCrossRefGoogle Scholar
  78. 78.
    Nalli Y, Mirza DN, Wani ZA, Wadhwa B, Mallik FA, Raina C, Chaubey A, Riyaz-Ul-Hassan S, Ali A (2015) Phialomustin A-D, new antimicrobial and cytotoxic metabolites from an endophytic fungus, Phialophora mustea. RSC Adv 5(115):95307–95312CrossRefGoogle Scholar
  79. 79.
    Uzor PF, Ebrahim W, Osadebe PO, Nwodo JN, Okoye FB, Mueller WEG, Lin W, Liu Z, Proksch P (2015) Metabolites from Combretum dolichopetalum and its associated endophytic fungus Nigrospora oryzae – evidence for a metabolic partnership. Fitoterapia 105:147–150PubMedCrossRefGoogle Scholar
  80. 80.
    Guo K, Fang H, Gui F, Wang Y, Xu Q, Deng X (2016) Two new ring a-cleaved lanostane-type triterpenoids and four known steroids isolated from endophytic fungus Glomerella sp. F00244. Helv Chim Acta 99(8):601–607CrossRefGoogle Scholar
  81. 81.
    Liu L, Chen X, Li D, Zhang Y, Li L, Guo L, Cao Y, Che Y (2015) Bisabolane sesquiterpenoids from the plant endophytic fungus Paraconiothyrium brasiliense. J Nat Prod 78(4):746–753PubMedCrossRefGoogle Scholar
  82. 82.
    Stodulkova E, Man P, Kuzma M, Cerny J, Cisarova I, Kubatova A, Chudickova M, Kolarik M, Flieger M (2015) A highly diverse spectrum of naphthoquinone derivatives produced by the endophytic fungus Biatriospora sp. CCF 4378. Folia Microbiol (Dordrecht, Netherlands) 60(3):259–267Google Scholar
  83. 83.
    Zhou L, Qin J, Ma L, Li H, Li L, Ning C, Gao W, Yu H, Han L (2017) Rosoloactone: a natural diterpenoid inducing apoptosis in human cervical cancer cells through endoplasmic reticulum stress and mitochondrial damage. Biomed Pharmacother 95:355–362PubMedCrossRefGoogle Scholar
  84. 84.
    Taware R, Abnave P, Patil D, Rajamohananan PR, Raja R, Soundararajan G, Kundu GC, Ahmad A (2014) Isolation, purification and characterization of Trichothecinol-A produced by endophytic fungus Trichothecium sp. and its antifungal, anticancer and antimetastatic activities. Sustain. Chem Process 2:1–9Google Scholar
  85. 85.
    Teiten MH, Mack F, Debbab A, Aly AH, Dicato M, Proksch P, Diederich M (2013) Anticancer effect of altersolanol A, a metabolite produced by the endophytic fungus Stemphylium globuliferum, mediated by its pro-apoptotic and anti-invasive potential via the inhibition of NF-κB activity. Bioorg Med Chem 21(13):3850–3858PubMedCrossRefGoogle Scholar
  86. 86.
    Mishra PD, Verekar SA, Deshmukh SK, Joshi KS, Fiebig HH, Kelter G (2015) Altersolanol A: a selective cytotoxic anthraquinone from a Phomopsis sp. Lett Appl Microbiol 60:387–391PubMedCrossRefGoogle Scholar
  87. 87.
    Ortega HE, Graupner PR, Asai Y, Ten Dyke K, Qiu D, Shen YY, Rios N, Arnold AE, Coley PD, Kursar TA et al (2013) Mycoleptodiscins A and B, cytotoxic alkaloids from the endophytic fungus Mycoleptodiscus sp. F0194. J Nat Prod 76(4):741–744PubMedCrossRefGoogle Scholar
  88. 88.
    Luo J, Liu X, Li E, Guo L, Che Y (2013) Arundinols A-C and Arundinones A and B from the plant endophytic fungus Microsphaeropsis arundinis. J Nat Prod 76(1):107–112PubMedCrossRefGoogle Scholar
  89. 89.
    Wang M, Sun ZH, Chen YC, Liu HX, Li HH, Tan GH, Li SN, Guo XL, Zhang WM (2016) Cytotoxic cochlioquinone derivatives from the endophytic fungus Bipolaris sorokiniana derived from Pogostemon cablin. Fitoterapia 110:77–82PubMedCrossRefGoogle Scholar
  90. 90.
    Hewage RT, Aree T, Mahidol C, Ruchirawat S, Kittakoop P (2014) One strain-many compounds (OSMAC) method for production of polyketides, azaphilones, and an isochromanone using the endophytic fungus Dothideomycete sp. Phytochemistry 108:87–94PubMedCrossRefGoogle Scholar
  91. 91.
    Lin T, Wang G, Shan W, Zeng D, Ding R, Jiang X, Zhu D, Liu X, Yang S, Chen H (2014) Myrotheciumones: bicyclic cytotoxic lactones isolated from an endophytic fungus of Ajuga decumbens. Bioorg Med Chem Lett 24(11):2504–2507PubMedCrossRefGoogle Scholar
  92. 92.
    Zhao J, Li C, Wang W, Zhao C, Luo M, Mu F, Fu Y, Zu Y, Yao M (2013) Hypocrea lixii, novel endophytic fungi producing anticancer agent cajanol, isolated from pigeon pea (Cajanus cajan [L.] Millsp.). J Appl Microbiol 115(1):102–113PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Jia M, Ming QL, Zhang QY, Chen Y, Cheng N, Wu WW, Han T, Qin LP (2014) Gibberella moniliformis AH13 with antitumor activity, an endophytic fungus strain producing triolein isolated from adlay (Coix lacryma-jobi: Poaceae). Curr Microbiol 69(3):381–387PubMedCrossRefGoogle Scholar
  94. 94.
    Chien MH, Lee TH, Lee WJ, Yeh YH, Li TK, Wang PC, Chen JJ, Chow JM, Lin YW, Hsiao M, Wang SW, Hua KT (2017) Trichodermin induces c-Jun N-terminal kinase-dependent apoptosis caused by mitotic arrest and DNA damage in human p53-mutated pancreatic cancer cells and xenografts. Cancer Lett 388:249–261PubMedCrossRefGoogle Scholar
  95. 95.
    Su CM, Wang SW, Lee TH, Tzeng WP, Hsiao CJ, Liu SC, Tang CH (2013) Trichodermin induces cell apoptosis through mitochondrial dysfunction and endoplasmic reticulum stress in human chondrosarcoma cells. Toxicol Appl Pharmacol 272(2):335–344PubMedCrossRefGoogle Scholar
  96. 96.
    Kawahara T, Itoh M, Izumikawa M, Sakata N, Tsuchida T, Shin-ya K (2013) Three eremophilane derivatives, MBJ-0011, MBJ-0012 and MBJ-0013, from an endophytic fungus Apiognomonia sp. f24023. J Antibiot 66(5):299–302PubMedCrossRefGoogle Scholar
  97. 97.
    Hazalin NAMN, Lim SM, Cole ALJ, Majeed ABA, Ramasamy K (2013) Apoptosis induced by desmethyl-lasiodiplodin is associated with upregulation of apoptotic genes and downregulation of monocyte chemotactic protein-3. Anti-Cancer Drugs 24(8):852–861PubMedCrossRefGoogle Scholar
  98. 98.
    Guo F, Li Z, Xu X, Wang K, Shao M, Zhao F, Wang H, Hua H, Pei Y, Bai J (2016) Butenolide derivatives from the plant endophytic fungus Aspergillus terreus. Fitoterapia 113:44–50PubMedCrossRefGoogle Scholar
  99. 99.
    Ji BK, Dong W, Wang YD, Zhou K, Li YK, Zhou M, Du G, Hu QF, Ye YQ, Yang HY (2015) A new isocoumarin from fermentation products of endophytic fungus of Aspergillus versicolor. Asian J Chem 27(10):3915–3916CrossRefGoogle Scholar
  100. 100.
    Goutam J, Kharwar RN, Sharma G, Koch B, Tiwari VK, Mishra A, Ramaraj V (2017) Isolation and characterization of “Terrein” an antimicrobial and antitumor compound from endophytic Fungus Aspergillus terreus (JAS-2) associated from Achyranthus aspera Varanasi, India. Front Microbiol 8:1334PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Liang Z, Zhang T, Zhang X, Zhang J, Zhao C (2015) An alkaloid and a steroid from the endophytic fungus Aspergillus fumigatus. Molecules 20(1):1424–1433PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Asker MMS, Mohamed SF, Mahmoud MG, El Sayed OH (2013) Antioxidant and antitumor activity of a new sesquiterpene isolated from endophytic fungus Aspergillus glaucus. Int J Pharmtech Res 5(2):391–397Google Scholar
  103. 103.
    Yan T, Guo ZK, Jiang R, Wei W, Wang T, Guo Y, Song YC, Jiao RH, Tan RX, Ge HM (2013) New flavonol and diterpenoids from the endophytic fungus Aspergillus sp. YXf3. Planta Med 79(5):348–352PubMedCrossRefGoogle Scholar
  104. 104.
    Budhiraja A, Nepali K, Sapra S, Gupta S, Kumar S, Dhar KL (2013) Bioactive metabolites from an endophytic fungus of Aspergillus species isolated from seeds of Gloriosa superba Linn. Med Chem Res 22(1):323–329CrossRefGoogle Scholar
  105. 105.
    Wang X, Li J, Yu S, Ye L, Feng M, Li J (2017) Peniproline A, a new 1-phenylamino -2-pyrrolidone metabolite from the endophytic fungus Penicillium decumbens CP-4. Nat Prod Res 31(15):1772–1777PubMedCrossRefGoogle Scholar
  106. 106.
    Gao N, Shang ZC, Yu P, Luo J, Jian KL, Kong LY, Yang MH (2017) Alkaloids from the endophytic fungus Penicillium brefeldianum and their cytotoxic activities. Chin Chem Lett 28(6):1194–1199CrossRefGoogle Scholar
  107. 107.
    Koul M, Meena S, Kumar A, Sharma PR, Singamaneni V, Riyaz-Ul-Hassan S, Hamid A, Chaubey A, Prabhakar A, Gupta P et al (2016) Secondary metabolites from endophytic fungus Penicillium pinophilum induce ROS-mediated apoptosis through mitochondrial pathway in pancreatic cancer cells. Planta Med 82(4):344–355PubMedCrossRefGoogle Scholar
  108. 108.
    Chen MJ, Fu YW, Zhou QY (2014) Penifupyrone, a new cytotoxic funicone derivative from the endophytic fungus Penicillium sp. HSZ-43. Nat Prod Res 28(19):1544–1548PubMedCrossRefGoogle Scholar
  109. 109.
    Liu YH, Feng ZW, Luo W, Guo ZY, Deng ZS, Tu X, Chen JF, Zou K (2013) The secondary metabolites from endophytic fungus Penicillium sp. of Paris polyphylla Sm. Tianran Chanwu Yanjiu Yu Kaifa 25(5):585–589Google Scholar
  110. 110.
    Sun X, Kong X, Gao H, Zhu T, Wu G, Gu Q, Li D (2014) Two new meroterpenoids produced by the endophytic fungus Penicillium sp. SXH-65. Arch Pharm Res 37(8):978–982PubMedCrossRefGoogle Scholar
  111. 111.
    Zheng CJ, Xu LL, Li YY, Han T, Zhang QY, Ming QL, Rahman K, Qin LP (2013) Cytotoxic metabolites from the cultures of endophytic fungi from Panax ginseng. Appl Microbiol Biotechnol 97(17):7617–7625CrossRefGoogle Scholar
  112. 112.
    Jouda JB, Tamokou JD, Mbazoa CD, Sarkar P, Bag PK, Wandji J (2016) Anticancer and antibacterial secondary metabolites from the endophytic fungus Penicillium sp. CAM64 against multi-drug resistant gram-negative bacteria. Afr Health Sci 16(3):734–743PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Chen L, Niu SB, Li L, Ding G, Yu M, Zhang GS, Wang MH, Li LY, Zhang T, Jia HM et al (2017) Trichoderpyrone, a unique polyketide hybrid with a cyclopentenone-pyrone skeleton from the plant endophytic fungus Trichoderma gamsii. J. Nat. Prod. 80(6):1944–1947PubMedCrossRefGoogle Scholar
  114. 114.
    Ding G, Wang H, Li L, Song B, Chen H, Zhang H, Liu X, Zou Z (2014) Trichodermone, a spiro-cytochalasan with a tetracyclic nucleus (7/5/6/5) skeleton from the plant endophytic fungus Trichoderma gamsii. J Nat Prod 77(1):164–167PubMedCrossRefGoogle Scholar
  115. 115.
    Li C, Gong B, Cox DG, Li C, Wang J, Ding W (2014) Dichlorodiaportinol A – a new chlorine-containing isocoumarin from an endophytic fungus Trichoderma sp. 09 from Myoporum bontioides A. Gray and its cytotoxic activity. Pharmacogn Mag 10(37):153–156CrossRefGoogle Scholar
  116. 116.
    Ding G, Wang HL, Chen L, Chen AJ, Lan J, Chen XD, Zhang HW, Chen H, Liu XZ, Zou ZM (2012) Cytochalasans with different amino-acid origin from the plant endophytic fungus Trichoderma gamsii. J Antibiot 65(3):143–145PubMedCrossRefGoogle Scholar
  117. 117.
    Seetharaman P, Gnanasekar S, Chandrasekaran R, Chandrakasan G, Kadarkarai M, Sivaperumal S (2017) Isolation and characterization of anticancer flavone chrysin (5,7-dihydroxy flavone)-producing endophytic fungi from Passiflora incarnata L. leaves. Ann Microbiol 67(4):321–331CrossRefGoogle Scholar
  118. 118.
    Hu X, Li W, Yuan M, Li C, Liu S, Jiang C, Wu Y, Cai K, Liu Y (2016) Homoharringtonine production by endophytic fungus isolated from Cephalotaxus hainanensis Li. World J Microbiol Biotechnol 32(7):1–9PubMedCrossRefGoogle Scholar
  119. 119.
    Zhang N, Zhang C, Xiao X, Zhang Q, Huang B (2016) New cytotoxic compounds of endophytic fungus Alternaria sp. isolated from Broussonetia papyrifera (L.). Fitoterapia 110:173–180PubMedCrossRefGoogle Scholar
  120. 120.
    Metwaly AM, Fronczek FR, Ma G, Kadry HA, El-Hela AA, Mohammad AEI, Cutler SJ, Ross SA (2014) Antileukemic α-pyrone derivatives from the endophytic fungus Alternaria phragmospora. Tetrahedron Lett 55(24):3478–3481PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Pompeng P, Sommit D, Sriubolmas N, Ngamrojanavanich N, Matsubara K, Pudhom K (2013) Antiangiogenetic effects of anthranoids from Alternaria sp., an endophytic fungus in a Thai medicinal plant Erythrina variegate. Phytomedicine 20(10):918–922PubMedCrossRefGoogle Scholar
  122. 122.
    Ibrahim SRM, Elkhayat ES, Mohamed GAA, Fat'hi SM, Ross SA (2016) Fusarithioamide A, a new antimicrobial and cytotoxic benzamide derivative from the endophytic fungus Fusarium chlamydosporium. Biochem Biophys Res Commun 479(2):211–216PubMedCrossRefGoogle Scholar
  123. 123.
    Boonyaketgoson S, Trisuwan K, Bussaban B, Rukachaisirikul V, Phongpaichit S (2015) Isochromanone derivatives from the endophytic fungus Fusarium sp. PDB51F5. Tetrahedron Lett 56(36):5076–5078CrossRefGoogle Scholar
  124. 124.
    Wang H, Liu T, Xin Z (2014) A new glucitol from an endophytic fungus Fusarium equiseti Salicorn 8. Eur Food Res Technol 239(3):365–376CrossRefGoogle Scholar
  125. 125.
    Wu LS, Hu CL, Han T, Zheng CJ, Ma XQ, Rahman K, Qin LP (2013) Cytotoxic metabolites from Perenniporia tephropora, an endophytic fungus from Taxus chinensis var. mairei. Appl Microbiol Biotechnol 97(1):305–315PubMedCrossRefGoogle Scholar
  126. 126.
    Ying YM, Shan WG, Zhang LW, Zhan ZJ (2013) Ceriponols A-K, tremulane sesquiterpenes from Ceriporia lacerate HS-ZJUT-C13A, a fungal endophyte of Huperzia serrate. Phytochemistry 95:360–367PubMedCrossRefGoogle Scholar
  127. 127.
    Shoeb M, Hoque ME, Thoo-Lin PK, Nahar N (2013) Anti-pancreatic cancer potential of secalonic acid derivatives from endophytic fungi isolated from Ocimum basilicum. Dhaka Univ J Pharm Sci 12(2):91–95CrossRefGoogle Scholar
  128. 128.
    Debbab A, Aly AH, Proksch P (2012) Endophytes and associated marine derived fungi – ecological and chemical perspectives. Fungal Divers 57:45–63CrossRefGoogle Scholar
  129. 129.
    Grond S, Papastavrou I, Zeeck A (2002) Novel α-L-rhamnopyranosides from a single strain of Streptomyces by supplement-induced biosynthetic steps. Eur J Org Chem 19:3237–3242CrossRefGoogle Scholar
  130. 130.
    Bode HB, Bethe B, Höfs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. Chem BioChem 3:619–627Google Scholar
  131. 131.
    Scherlach K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7:1753–1760PubMedCrossRefGoogle Scholar
  132. 132.
    Mao XM, Xu W, Li D, Yin WB, Chooi YH, Li YQ, Tang Y, Hu Y (2015) Epigenetic genome mining of an endophytic fungus leads to the pleiotropic biosynthesis of natural products. Angew Chem Int Ed 54:7592–7596CrossRefGoogle Scholar
  133. 133.
    Barakat F, Vansteelandt M, Triastuti A, Rieusset L, Cabanillas B, Haddad M, Fabre N (2016) Co-cultivation approach and untargeted metabolomics in the search for new secondary metabolites from endophytic fungi. Planta Med 82:S1–S381CrossRefGoogle Scholar
  134. 134.
    Shang Z, Salim AA, Capon RJ, Chaunopyran A (2017) Co-cultivation of marine mollusk-derived fungi activates a rare class of 2-alkenyl-tetrahydropyran. J Nat Prod 80:1167–1172PubMedCrossRefGoogle Scholar
  135. 135.
    Ola ARB, Thomy D, Lai D, Oesterhelt HB, Proksch P (2013) Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis. J Nat Prod 76:2094–2099PubMedCrossRefGoogle Scholar
  136. 136.
    Zhu F, Chen G, Wu J, Pan J (2013) Structure revision and cytotoxic activity of marinamide and its methyl ester, novel alkaloids produced by co-cultures of two marine-derived mangrove endophytic fungi. Nat Prod Res 27:1960–1964PubMedCrossRefGoogle Scholar
  137. 137.
    Zhu F, Lin Y (2006) Marinamide, a novel alkaloid and its methyl ester produced by the application of mixed fermentation technique to two mangrove endophytic fungi from the South China Sea. Chin Sci Bull 51:1426–1430Google Scholar
  138. 138.
    Oh DC, Jensen PR, Kauffman CA, Fenical W (2005) Libertellenones A–D: induction of cytotoxic diterpenoid biosynthesis by marine microbial competition. Bioorg Med Chem 13:5267–5273PubMedCrossRefGoogle Scholar
  139. 139.
    Park HB, Kwon HC, Lee CH, Yang HO (2009) Glionitrin A, an antibiotic-antitumor metabolite derived from competitive interaction between abandoned mine microbes. J Nat Prod 72:248–252PubMedCrossRefGoogle Scholar
  140. 140.
    Soliman SSM, Raizada MN (2013) Interactions between co-habitating fungi elicit synthesis of taxol from an endophytic fungus in host Taxus plants. Front Microbiol 4:1–14CrossRefGoogle Scholar
  141. 141.
    Li YC, Tao WY (2009) Interactions of Taxol-producing endophytic fungus with its host (Taxus spp.) during Taxol accumulation. Cell Biol Int 33:106–112PubMedCrossRefGoogle Scholar
  142. 142.
    Marmann A, Aly AH, Lin W, Wang B, Proksch P (2014) Co-cultivation – a powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar Drugs 12:1043–1065PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Bergmann S, Schümann J, Scherlach K, Lange C, Brakhage AA, Hertweck C (2007) Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol 3:213–217PubMedCrossRefGoogle Scholar
  144. 144.
    Palmer JM, Keller NP (2010) Secondary metabolism in fungi: does chromosomal location matter? Curr Opin Microbiol 13:431–436PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Bulger M (2005) Hyperacetylated chromatin domains: lessons from heterochromatin. J Biol Chem 280:21689–21692PubMedCrossRefGoogle Scholar
  146. 146.
    Williams RB, Henrikson JC, Hoover AR, Lee AE, Cichewicz RH (2008) Epigenetic remodeling of the fungal secondary metabolome. Org Biomol Chem 6:1895–1897PubMedCrossRefGoogle Scholar
  147. 147.
    Henrikson JC, Hoover AR, Joyner PM, Cichewicz RH (2009) A chemical epigenetics approach for engineering the in situ biosynthesis of a cryptic natural product from Aspergillus niger. Org Biomol Chem 7:435–438PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sunil K. Deshmukh
    • 1
    Email author
  • Manish K. Gupta
    • 1
  • Ved Prakash
    • 2
  • M. Sudhakara Reddy
    • 3
  1. 1.TERI-Deakin Nano Biotechnology CentreThe Energy and Resources Institute (TERI)New DelhiIndia
  2. 2.Department of BiotechnologyMotilal Nehru National Institute of TechnologyAllahabadIndia
  3. 3.Department of BiotechnologyThapar Institute of Engineering and TechnologyPatialaIndia

Personalised recommendations