Current Understanding and Future Perspectives of Endophytic Microbes vis-a-vis Production of Secondary Metabolites

  • Shashank A. Tidke
  • S. Kiran
  • P. Giridhar
  • Ravishankar A. GokareEmail author
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


Endophytes are the bacterial and fungal forms of organisms living within the plant system causing no ill effects to the hosts. They asymptomatically live in the cellular environment in the plants carrying out various complicated functions such as production of secondary metabolites and signaling molecules coupled to the responses of various external and internal stimuli for mutual survival. They are known to produce a range of metabolites of utility in treating various disorders in humans and also produce chemicals of utility in agriculture such as growth regulator and pesticides, in several economically important plants. Continued research findings on the range of metabolites produce by them and their promising utilities have raised hopes in finding biotechnological solutions ranging from prospecting to production of industrial relevance to find lasting sustainable solutions for economical exploitation. These aspects have been dealt in detail as evidenced through current scientific understanding coupled to the future perspectives.


Endophytes Plant adaptation Agricultural application Secondary metabolites Biological activities Signaling Industrial potential 



Authors (SAT, SK, and RAG) are thankful to Vice-Chairman Dr. Premachandra Sagar for his keen support and encouragement. Further the financial assistance by Dayananda Sagar Institutions is gratefully acknowledged. RAG wishes to thank the Department of Science and Technology, Government of India, for financial support through a competitive grant.


  1. 1.
    Leuchtmann (1992) Systematics, distribution, and host specificity of grass endophytes. J Nat Toxins 1:150–162CrossRefGoogle Scholar
  2. 2.
    De Bary A (1866) Morphologie und Physiologie Pilze, Flechten, und myxomyceten. Hofmeister’s handbook of physiological botany, Leipzig: W. Engelmann, vol 2Google Scholar
  3. 3.
    Freeman EM (1904) The seed fungus of Lolium temulentum L. Philos Trans R Soc Lond (Biol) 196:1–27CrossRefGoogle Scholar
  4. 4.
    Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914CrossRefGoogle Scholar
  5. 5.
    Kusari S, Spiteller M (2012) Metabolomics of endophytic fungi producing associated plant secondary metabolites: progress, challenges and opportunities. In: Roessner U (ed) Metabolomics. InTech, Rijeka, pp 241–266Google Scholar
  6. 6.
    Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic, microorganisms. J Nat Prod 67:257–268CrossRefGoogle Scholar
  7. 7.
    Strobel G (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544CrossRefGoogle Scholar
  8. 8.
    Souza AQL, Souza ADL, Astolfi-Filho S, Pinheiro MLB, Sarquis MIM, Pereira JO (2004) Antimicrobial activity of endophytic fungi isolated from amazonian toxic plants: Palicourea longiflora (aubl.) rich and Strychnos cogens bentham. Acta Amaz 34:185–195CrossRefGoogle Scholar
  9. 9.
    Huang WY, Cai YZ, Hyde KD, Harold C, Mei S (2007) Endophytic fungi from Nerium oleander L (Apocynaceae): main constituents and antioxidant activity. World J Microbiol Biotechnol 23:1253–1263CrossRefGoogle Scholar
  10. 10.
    Owen L, Hundley N (2004) Endophytes – the chemical synthesizers inside plants. Sci Prog 87:79–99CrossRefGoogle Scholar
  11. 11.
    Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459Google Scholar
  12. 12.
    Bacon CW, White JF (2000) Microbial endophytes. Marcel Dekker, New YorkGoogle Scholar
  13. 13.
    Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity and implications of their occurrence. J Nat Prod 69:509–506PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kumar S, Sagar A (2007) Microbial associates of Hippophae rhamnoides (Sea buckthorn). J Plant Pathol 6:299–305CrossRefGoogle Scholar
  16. 16.
    Wang Y, Lie H Paul (2008) The summarize about recent research process on gramineae endophyte symbiosis. Aust J Biotechnol 3:33–38CrossRefGoogle Scholar
  17. 17.
    Huang Z, Cai X, Shao C, She Z, Xia X, Chen Y, Yang J, Zhou S, Lin Y (2008) Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus Phomopsis sp. ZSU-H76. Phytochemistry 69:1604–1608PubMedCrossRefGoogle Scholar
  18. 18.
    Petrini O, Andrews JH, Hirano SS (1991) Fungal endophytes of tree leaves. In: Microbial ecology of the leaves. Springer, New York, pp 179–197CrossRefGoogle Scholar
  19. 19.
    Sikora RA, Schäfer K, Dababat AA (2007) Modes of action associated with microbially induced in planta suppression of plant-parasitic nematodes. Australas Plant Pathol 36:124–134CrossRefGoogle Scholar
  20. 20.
    Li WK (2005) Endophytes and natural medicines. Chin J Nat Med (In Chinese) 3:193–199Google Scholar
  21. 21.
    Dreyfuss M, Chapela I (1994) Potential of fungi in the discovery of novel, low-molecular weight pharmaceuticals. In Gullo VP (ed) The discovery of natural products with therapeutic potential, Newnes, Elsevier vol 6. pp 49–80CrossRefGoogle Scholar
  22. 22.
    McInroy JA, Kloepper JW (1996) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342CrossRefGoogle Scholar
  23. 23.
    Bacon CW, Porter JK, Robbins JD, Luttrell ES (1977) Epichloe typhina from toxic tall fescue grasses. Appl Environ Microbiol 34:576–581PubMedPubMedCentralGoogle Scholar
  24. 24.
    Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66CrossRefGoogle Scholar
  26. 26.
    Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–698CrossRefGoogle Scholar
  27. 27.
    Clay K, Schardl CL (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127PubMedCrossRefGoogle Scholar
  28. 28.
    Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci 102:13386–13391PubMedCrossRefGoogle Scholar
  29. 29.
    Redman RS, Sheehan KB, Stout RG, Rodrigues RJ, Henson JM (2002) Thermotolerance conferred to plant host and fungal endophyte during mutualistic symbiosis. Science 298:1581CrossRefGoogle Scholar
  30. 30.
    Stoyke G, Currah RS (1991) Endophytic fungi from the mycorrhizae of alpine ericoid plants. Can J Bot 69:347–352CrossRefGoogle Scholar
  31. 31.
    Strobel GA, Miller RV, Martinez Miller C, Condron MM, Teplow DB, Hess WM (1999) Cryptocandin a potent and antimycotic from the endophytic fungus Cryptosporiopsis quercina. Microbiology 145:1919–1926PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Osterhage C, Kaminsky R, König GM, Wright AD (2000) Ascosalipyrrolidinone a, an antimicrobial alkaloid, from the obligate marine fungus Ascochyta salicorniae. J Organomet Chem 65:6412–6417CrossRefGoogle Scholar
  33. 33.
    Sieber TN, Petrini O, Toti L, Viret O (1992) Ecology, metabolite production, and substrate utilization in endophytic fungi. Nat Toxins 1:185–196PubMedGoogle Scholar
  34. 34.
    Schardl CL (2001) Epichloë festucae and related mutualistic symbionts of grasses. Fungal Genet Biol 33:69–82PubMedCrossRefGoogle Scholar
  35. 35.
    Bultman TL, Murphy JC (2000) Do fungal endophytes mediate wound-induced resistance? In: Microbial endophytes. Marcel Dekker, New York, pp 421–452Google Scholar
  36. 36.
    Shelby RA, Olsovska J, Havlicek V, Flieger M (1997) Analysis of ergot alkaloids in endophyte infected tall fescue by liquid chromatography/electrospray ionisation mass spectrometry. J Agric Food Chem 45:4674–4679CrossRefGoogle Scholar
  37. 37.
    Rosenblueth M, Martinez Romero E (2004) Rhizobium etli maize populations and their competitiveness for root colonization. Arch Microbiol 181:337–344PubMedCrossRefGoogle Scholar
  38. 38.
    Sturz A, Kimpinski J (2004) Endoroot bacteria derived from marigolds (Tagetes spp.) can decrease soil population densities of root lesion nematodes in the potato root zone. Plant Soil 262:241–249CrossRefGoogle Scholar
  39. 39.
    Pullen C, Schmitz P, Meurer K, Bamberg DDV, Lohmann S, De Castro Franca S, Groth I, Schlegel B, Mallmann U, Gollmick F, Grafe U, Listner E (2002) New and bioactive compounds from Streptomyces strains residing in the wood of Celastraceae. J Planta 216:162–167CrossRefGoogle Scholar
  40. 40.
    Cho K, Hong SY, Lee SM, Kim YH, Kahng GG, Llim YP, Kim H, Yun HD (2007) Endophytic bacterial communities in ginseng and their antifungal activity against pathogens. J Microb Ecol 54:341–351CrossRefGoogle Scholar
  41. 41.
    Li AR, Guan KY (2007) Mycorrhizal and dark septate endophytic fungi of Pedicularis species from northwest of Yunnan Province, China. Mycorrhiza 17:103–109PubMedCrossRefGoogle Scholar
  42. 42.
    Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfiel KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837CrossRefGoogle Scholar
  44. 44.
    Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–167Google Scholar
  45. 45.
    Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330CrossRefGoogle Scholar
  46. 46.
    Araújo WL, Maccheroni W Jr, Aguilar-Vildoso CI, Barroso PA, Saridakis HO, Azevedo JL (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47:229–236PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Fernandes EG, Pereira OL, Silva CC, Bento CBP, Queiroz MV (2015) Diversity of endophytic fungi in Glycine max. Microbiol Res 181:84–92PubMedCrossRefGoogle Scholar
  48. 48.
    Newman L, Reynolds C (2005) Bacteria and phyto-remediation: new uses for endophytic bacteria in plants. Trends Biotechnol 23:6–8PubMedCrossRefGoogle Scholar
  49. 49.
    Patil NB (2013) Isolation and characterization of diazotrophic endophyte, Asaia bogorensis from Mangifera indica. Int J Environ Sci 3:6Google Scholar
  50. 50.
    Zhao JH, Zhang YL, Wang LW, Wang JY, Zhang CL (2012) Bioactive secondary metabolites from Nigrospora sp. LLGLM003, an endophytic fungus of the medicinal plant Moringa oleifera Lam. World J Microbiol Biotechnol 28:2107–2112PubMedCrossRefGoogle Scholar
  51. 51.
    Song J, ZeBin C, TiYuan X, YuChuan L, Feng Z, Zhen R (2017) Analysis on composition and diversity of endophytes in Moringa oleifera. Med Plant 8:51–53Google Scholar
  52. 52.
    Mahdi T, Mohamed I, Yagi S (2104) Endophytic fungal communities associated with ethnomedicinal plants from Sudan and their antimicrobial and antioxidant prospective. J Forest Prod Ind 3:248–256Google Scholar
  53. 53.
    Rajeswari S, Umamaheswari S, Prasanth DA, Rajamanikandan KCP (2014) Study of endophytic fungal community of Moringa oleifera from Omalur region – Salem. Int J Pharm Sci Res 5:4887–4892Google Scholar
  54. 54.
    Souza SA, Xavier AA, Costa MR, Cardoso AMS, Pereira MCT, Nietsche S (2013) Endophytic bacterial diversity in banana ‘Prata Anã’ (Musa spp.) roots. Genet Mol Biol 36:252–264PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Naik BS, Shashikala J, Krishnamurthy YL (2009) Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activities in vitro. Microbiol Res 164:290–296PubMedCrossRefGoogle Scholar
  56. 56.
    Gonzaga LL, Costa LE, Santos TT, Araújo EF, Queiroz MV (2014) Endophytic fungi from the genus Colletotrichum are abundant in the Phaseolus vulgaris and have high genetic diversity. J Appl Microbiol 118:485–496PubMedCrossRefGoogle Scholar
  57. 57.
    Stuart RM, Romão AS, Pizzirani-kleiner AA, Azevedo JL, Araújo WL (2010) Culturable endophytic filamentous fungi from leaves of transgenic imidazolinone-tolerant sugarcane and its non-transgenic isolines. Arch Microbiol 192:307–313PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Zinniel DK, Lambrecht P, Harris NB, Feng Z, Kuczmarski D, Higley P, Ishimaru CA, Arunakumari A, Barletta RG, Vidaver AK (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Larran S, Perello A, Simon MR, Moreno V (2007) The endophytic fungi from wheat (Triticum aestivum L.). World J Microbiol Biotechnol 23:565–572CrossRefGoogle Scholar
  60. 60.
    Fisher PJ, Petrini O, Scott HML (1992) The distribution of some fungal and bacterial endophytes in maize (Zea mays L.). New Phytol 122:299–305CrossRefGoogle Scholar
  61. 61.
    Kharwar RN, Verma VC, Kumar A, Gond SK, Harper JK, Hess WM, Lobkovosky E, Ma C, Ren Y, Strobel GA (2011) Javanicin, an antibacterial naphthaquinone from an endophytic fungus of neem, Chloridium sp. Curr Microbiol 58:233–238CrossRefGoogle Scholar
  62. 62.
    Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 9:792–798CrossRefGoogle Scholar
  63. 63.
    Alvin A, Miller KI, Neilan BA (2014) Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 169:483–495CrossRefGoogle Scholar
  64. 64.
    Ekanayake PN, Kaur J, Tian P, Rochfort SJ, Guthridge KM, Sawbridge TI, Spangenberg GC, Forster JW (2017) Genomic and metabolic characterisation of alkaloid biosynthesis by asexual Epichloë fungal endophytes of tall fescue pasture grasses. Genome 60:496–509. NRC Research PressPubMedCrossRefGoogle Scholar
  65. 65.
    Tang MJ, Meng ZX, Guo SX, Chen XM, Xiao PG (2008) Effects of endophytic fungi on the culture and four enzyme activities of Anoectochilus roxburghii. J Chin Pharm 43:890–893Google Scholar
  66. 66.
    Chen JX, Dai CC, Li X, Tian LS, Xie H (2008) Endophytic fungi screening from Atracty lancea and inoculating into the host plantlet. Guihaia 28:256–260Google Scholar
  67. 67.
    Waqas M, Khan AL, Kamran M, Hamayun M, Kang SM, Kim YH et al (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17:10754–10773PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Barazani O, von Dahl CC, Baldwin IT (2007) Sebacina vermifera promotes the growth and fitness of Nicotiana attenuata by inhibiting ethylene signaling. Plant Physiol 144:1223–1232PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Chutima R, Dell B, Vessabutr S, Bussaban B, Lumyong S (2011) Endophytic fungi from Pecteilis susannae (L.) Rafin (Orchidaceae), a threatened terrestrial orchid in Thailand. Mycorrhiza 21:221–229PubMedCrossRefGoogle Scholar
  70. 70.
    Abd_Allah EF, Hashem A, Alqarawi AA, Bahkali AH, Alwhibi MS (2015) Enhancing growth performance and systemic acquired resistance of medicinal plant Sesbania sesban (L.) Merr using Arbuscular mycorrhizal fungi under salt stress. Saudi J Biol Sci 22:274–283PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Schardl CL, Young CA, Hesse U, Amyotte SG, Andreeva K, Calie PJ, Fleetwood DJ, Haws DC, Moore N, Oeser B et al (2013) Plant–symbiotic fungi as chemical engineers: multi-genome analysis of the Clavicipitaceae reveals dynamics of alkaloid loci. PLoS Genet 9:e1003323PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Dupont P-Y, Eaton CJ, Wargent JJ, Fechtner S, Solomon P, Schmid J, Day RC, Scott B, Cox MP (2015) Fungal endophyte infection of ryegrass reprograms host metabolism and alters development. New Physiol 208:1227–1240CrossRefGoogle Scholar
  73. 73.
    Carvalho ETL, Balsemão-Pires G, Saraiva RM, Ferreira PCG, Hemerly AS (2014) Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria. J Exp Bot 65(19):5631–5642PubMedCrossRefGoogle Scholar
  74. 74.
    Ren Z, Song R, Wang S, Quan H, Yang L, Sun L, Zhao B, Lu H (2017) The biosynthesis pathway of Swainsonine, a new anticancer drug from three endophytic fungi. J Microbiol Biotechnol 27:1897–1906PubMedCrossRefGoogle Scholar
  75. 75.
    Yuan J, Sun K, Deng-Wang M-Y, Dai C-C (2016) The mechanism of ethylene signaling induced by endophytic fungus Gilmaniella sp. AL12 mediating sesquiterpenoid biosynthesis in Atractylodes lancea, froniters. Plant Sci 7:361Google Scholar
  76. 76.
    Ren C-G, Dai C-C (2012) Jasmonic acid is involved in the signaling pathway for fungal endophyte-induced volatile oil accumulation of Atractylodes lancea plantlets. BMC Plant Biol 12:128PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Strohl WR (2000) The role of natural products in a modern drug discovery program. Drug Discov Today 5:39–41PubMedCrossRefGoogle Scholar
  78. 78.
    Newman DJ, Cragg GM (2010) Natural products as drugs and leads to drugs: the historical perspective. In: Natural product chemistry for drug discovery. Royal Society of Chemistry, Cambridge, pp 3–27Google Scholar
  79. 79.
    Kingston DGI (2011) Modern natural products drug discovery and its relevance to biodiversity conservation. J Nat Prod 74:49Google Scholar
  80. 80.
    Dancik V, KP S, DW Y, Schreiber SL, Clemons PA (2010) Distinct biological network properties between the targets of natural products and disease genes. J Am Chem Soc 132:9259–9261PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Ahmad F, Ahmad I, Khan MS (2005) Indole acetic acid production by indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turk J Biol 29:29–34Google Scholar
  82. 82.
    Rosconi F, Davyt D, Martínez V, Martínez M, Abin-Carriquiry JA, Zane H, Butler A, de Souza EM, Fabiano E (2013) Identification and structural characterization of serobactins, a suite of lipopeptide siderophores produced by the grass endophyte Herbaspirillum seropedicae. Environ Microbiol 15:916–927PubMedCrossRefGoogle Scholar
  83. 83.
    Syed NA, Midgley DJ, Ly PKC, Saleeba JA, McGee PA (2013) Do plant endophytic and free-living Chaetomium species differ? Australas Mycol 28:51–55Google Scholar
  84. 84.
    Bertinetti BV, Peña NI, Cabrera GM (2009) An antifungal tetrapeptide from the culture of Penicillium canescens. Chem Biodivers 6:1178–1184PubMedCrossRefGoogle Scholar
  85. 85.
    Harrison LH, Teplow DB, Rinaldi M, Strobel G (1991) Pseudomycins, a family of novel peptides from Pseudomonas syringae possessing broad-spectrum antifungal activity. J Gen Microbiol 137:2857–2865PubMedCrossRefGoogle Scholar
  86. 86.
    Miller CM, Miller RV, Garton-Kenny D, Redgrave B, Sears J, Condron MM, Teplow DB, Strobel GA (1998) Ecomycins, unique antimycotics from Pseudomonas viridiflava. J Appl Microbiol 84:937–944CrossRefGoogle Scholar
  87. 87.
    Ding L, Maier A, Fiebig H, Lin H, Hertweck C (2011) A family of multicyclic indolosesquiterpenes from a bacterial endophyte. Org Biomol Chem 9:4029–4031PubMedCrossRefGoogle Scholar
  88. 88.
    Qadera M, Savitri Kumar N, Jayasinghea L, Arayab H, Fujimotoa Y (2016) Bioactive sesquiterpenes from an endophytic fungus Bipolaris sorokiniana isolated from a popular medicinal plant Costus speciosus. Mycology 8:17–20CrossRefGoogle Scholar
  89. 89.
    Thom ER, Popay AJ et al (2013) Evaluating the performance of endophytes in farm systems to improve framer outcome-a review. Crop Pasture Sci 63:927–943CrossRefGoogle Scholar
  90. 90.
    Tidke SA, Rakesh Kumar KL, Ramakrishna D, Kiran S, Kosturkova G, Gokare RA (2017) Current understanding of endophytes: their relevance, importance, and industrial potentials. J Biotechnol Biochem 3:43–59Google Scholar
  91. 91.
    Gouda S, Das G, Sen SK, Shin H-S, Patra JK (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 7:1538PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Mittal S, Shrivastava D, Govil S, Kumar S, Bisen PS (2016) A novel anticandidal compound containing sulfur from endophytic fungus Emericella sp. Nat Prod J 6(3):188–193Google Scholar
  93. 93.
    Yong YH, Dai CC, Gao FK, Yang QY, Zhao M (2009) Effects of endophytic fungi on growth and two kinds of terpenoids for Euphorbia pekinensis. Chin Tradit Herb Drugs 40(7):1136–1139.2Google Scholar
  94. 94.
    Tang K, Li B, Guo SX (2014) An active endophytic fungus promoting growth and increasing salvianolic acid content of Salvia miltiorrhiza. Mycosystema 33(3):594–600Google Scholar
  95. 95.
    Ludwig-Müller J (2015) Plants and endophytes: equal partners in secondary metabolite production? Biotechnol Lett 37:1325–1334PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Stierle AA, Stierle D (2015) Bioactive secondary metabolites produced by the fungal endophytes of conifers. Nat Prod Commun 10:1671–1682PubMedPubMedCentralGoogle Scholar
  97. 97.
    Silva GH, Teles HL, Zanardi LM (2006) Cadinane sesquiterpenoids of Phomopsis cassiae, an endophytic fungus associated with Cassia spectabilis (Leguminosae). Phytochemistry 67:1964–1969CrossRefGoogle Scholar
  98. 98.
    Wagenaar MW, Clardy J (2001) Dicerandrols, new antibiotic and cytotoxic dimers produced by the fungus Phomopsis longicolla isolated from an endangered mint. J Nat Prod 64:1006–1009CrossRefGoogle Scholar
  99. 99.
    Turbyville TJ, Wijeratne EMK, Liu MX, Bums AM, Seliga CJ, Luevano LA, David CL, Faeth FL, Whitesell L, Gunatilaka AAL (2006) Search for IIsp90inhibitors with potential anticancer activity: isolation and SAR studies of radicicol and monocillin I from two plants associated fungi of the Sonoran desert. J Nat Prod 69:178–184PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Weber D, Sterner O, Anke T, Gorzalczancy S, Martino V, Acevedo C (2004) Phomol, a new anti-inflammatory metabolite from an endophyte of the medicinal plant Erythrina crista-galli. J Antibiot 57:559–563CrossRefGoogle Scholar
  101. 101.
    Giridharan P, Verekar SA, Khanna A, Mishra PD, Deshmukh SK (2012) Anticancer activity of sclerotiorin, isolated from an endophytic fungus Cephalotheca faveolata Yaguchi, Nishim. & Udagawa. Indian J Exp Biol 50:464–468Google Scholar
  102. 102.
    Budhiraja A, Nepali K, Sapra S, Gupta S, Kumar S, Dhar KL (2012) Bioactive metabolites from an endophytic fungus of Aspergillus species isolated from seeds of Gloriosa superba Linn. Med Chem Res 22:323–329CrossRefGoogle Scholar
  103. 103.
    Zhang JY, Tao LY, Liang YJ, Chen LM, Mi LM, Zheng LS et al (2010) Anthracenedione derivatives as anticancer agents isolated from secondary metabolites of the mangrove endophytic fungi. Mar Drugs 8:1469–1481PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Teles HL, Sordi R, Silva GH, Castro-Gamboa I, Bolzani Vda S, Pfenning LH, de Abreu LM, Costa-Neto CM, Young MC, Araújo AR (2006) Aromatic compounds produced by Periconia atropurpurea, an endophytic fungus associated with Xylopia aromatica. Phytochemistry 67:2686–2690PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Amna T, Puri SC, Verma V, Sharma JP, Khajuria RK, Musarrat J, Spiteller M, Qazi GN (2006) Bioreactor studies on the endophytic fungus Entrophospora infrequens for the production of an anticancer alkaloid camptothecin. Can J Microbiol 52:189–196CrossRefGoogle Scholar
  106. 106.
    Kaul S, Sharma T, Dhar MK (2016) “Omics” tools for better understanding the plant–endophyte interactions. Front Plant Sci 7:29. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shashank A. Tidke
    • 1
  • S. Kiran
    • 1
  • P. Giridhar
    • 2
  • Ravishankar A. Gokare
    • 1
    Email author
  1. 1.Department of BiotechnologyDayananda Sagar College of EngineeringBengaluruIndia
  2. 2.Plant Cell Biotechnology DepartmentCSIR-Central Food Technological Research InstituteMysuruIndia

Personalised recommendations