Skip to main content

Current Understanding and Future Perspectives of Endophytic Microbes vis-a-vis Production of Secondary Metabolites

  • Reference work entry
  • First Online:
Book cover Endophytes and Secondary Metabolites

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Endophytes are the bacterial and fungal forms of organisms living within the plant system causing no ill effects to the hosts. They asymptomatically live in the cellular environment in the plants carrying out various complicated functions such as production of secondary metabolites and signaling molecules coupled to the responses of various external and internal stimuli for mutual survival. They are known to produce a range of metabolites of utility in treating various disorders in humans and also produce chemicals of utility in agriculture such as growth regulator and pesticides, in several economically important plants. Continued research findings on the range of metabolites produce by them and their promising utilities have raised hopes in finding biotechnological solutions ranging from prospecting to production of industrial relevance to find lasting sustainable solutions for economical exploitation. These aspects have been dealt in detail as evidenced through current scientific understanding coupled to the future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Leuchtmann (1992) Systematics, distribution, and host specificity of grass endophytes. J Nat Toxins 1:150–162

    Article  CAS  Google Scholar 

  2. De Bary A (1866) Morphologie und Physiologie Pilze, Flechten, und myxomyceten. Hofmeister’s handbook of physiological botany, Leipzig: W. Engelmann, vol 2

    Google Scholar 

  3. Freeman EM (1904) The seed fungus of Lolium temulentum L. Philos Trans R Soc Lond (Biol) 196:1–27

    Article  Google Scholar 

  4. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  5. Kusari S, Spiteller M (2012) Metabolomics of endophytic fungi producing associated plant secondary metabolites: progress, challenges and opportunities. In: Roessner U (ed) Metabolomics. InTech, Rijeka, pp 241–266

    Google Scholar 

  6. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic, microorganisms. J Nat Prod 67:257–268

    Article  CAS  PubMed  Google Scholar 

  7. Strobel G (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544

    Article  CAS  PubMed  Google Scholar 

  8. Souza AQL, Souza ADL, Astolfi-Filho S, Pinheiro MLB, Sarquis MIM, Pereira JO (2004) Antimicrobial activity of endophytic fungi isolated from amazonian toxic plants: Palicourea longiflora (aubl.) rich and Strychnos cogens bentham. Acta Amaz 34:185–195

    Article  Google Scholar 

  9. Huang WY, Cai YZ, Hyde KD, Harold C, Mei S (2007) Endophytic fungi from Nerium oleander L (Apocynaceae): main constituents and antioxidant activity. World J Microbiol Biotechnol 23:1253–1263

    Article  CAS  Google Scholar 

  10. Owen L, Hundley N (2004) Endophytes – the chemical synthesizers inside plants. Sci Prog 87:79–99

    Article  CAS  PubMed  Google Scholar 

  11. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    CAS  PubMed  Google Scholar 

  12. Bacon CW, White JF (2000) Microbial endophytes. Marcel Dekker, New York

    Google Scholar 

  13. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity and implications of their occurrence. J Nat Prod 69:509–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kumar S, Sagar A (2007) Microbial associates of Hippophae rhamnoides (Sea buckthorn). J Plant Pathol 6:299–305

    Article  Google Scholar 

  16. Wang Y, Lie H Paul (2008) The summarize about recent research process on gramineae endophyte symbiosis. Aust J Biotechnol 3:33–38

    Article  Google Scholar 

  17. Huang Z, Cai X, Shao C, She Z, Xia X, Chen Y, Yang J, Zhou S, Lin Y (2008) Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus Phomopsis sp. ZSU-H76. Phytochemistry 69:1604–1608

    Article  CAS  PubMed  Google Scholar 

  18. Petrini O, Andrews JH, Hirano SS (1991) Fungal endophytes of tree leaves. In: Microbial ecology of the leaves. Springer, New York, pp 179–197

    Chapter  Google Scholar 

  19. Sikora RA, Schäfer K, Dababat AA (2007) Modes of action associated with microbially induced in planta suppression of plant-parasitic nematodes. Australas Plant Pathol 36:124–134

    Article  Google Scholar 

  20. Li WK (2005) Endophytes and natural medicines. Chin J Nat Med (In Chinese) 3:193–199

    CAS  Google Scholar 

  21. Dreyfuss M, Chapela I (1994) Potential of fungi in the discovery of novel, low-molecular weight pharmaceuticals. In Gullo VP (ed) The discovery of natural products with therapeutic potential, Newnes, Elsevier vol 6. pp 49–80

    Chapter  Google Scholar 

  22. McInroy JA, Kloepper JW (1996) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342

    Article  Google Scholar 

  23. Bacon CW, Porter JK, Robbins JD, Luttrell ES (1977) Epichloe typhina from toxic tall fescue grasses. Appl Environ Microbiol 34:576–581

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340

    Article  CAS  PubMed  Google Scholar 

  25. Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66

    Article  Google Scholar 

  26. Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–698

    Article  PubMed  Google Scholar 

  27. Clay K, Schardl CL (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127

    Article  PubMed  Google Scholar 

  28. Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci 102:13386–13391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Redman RS, Sheehan KB, Stout RG, Rodrigues RJ, Henson JM (2002) Thermotolerance conferred to plant host and fungal endophyte during mutualistic symbiosis. Science 298:1581

    Article  CAS  PubMed  Google Scholar 

  30. Stoyke G, Currah RS (1991) Endophytic fungi from the mycorrhizae of alpine ericoid plants. Can J Bot 69:347–352

    Article  Google Scholar 

  31. Strobel GA, Miller RV, Martinez Miller C, Condron MM, Teplow DB, Hess WM (1999) Cryptocandin a potent and antimycotic from the endophytic fungus Cryptosporiopsis quercina. Microbiology 145:1919–1926

    Article  CAS  PubMed  Google Scholar 

  32. Osterhage C, Kaminsky R, König GM, Wright AD (2000) Ascosalipyrrolidinone a, an antimicrobial alkaloid, from the obligate marine fungus Ascochyta salicorniae. J Organomet Chem 65:6412–6417

    Article  CAS  Google Scholar 

  33. Sieber TN, Petrini O, Toti L, Viret O (1992) Ecology, metabolite production, and substrate utilization in endophytic fungi. Nat Toxins 1:185–196

    PubMed  Google Scholar 

  34. Schardl CL (2001) Epichloë festucae and related mutualistic symbionts of grasses. Fungal Genet Biol 33:69–82

    Article  CAS  PubMed  Google Scholar 

  35. Bultman TL, Murphy JC (2000) Do fungal endophytes mediate wound-induced resistance? In: Microbial endophytes. Marcel Dekker, New York, pp 421–452

    Google Scholar 

  36. Shelby RA, Olsovska J, Havlicek V, Flieger M (1997) Analysis of ergot alkaloids in endophyte infected tall fescue by liquid chromatography/electrospray ionisation mass spectrometry. J Agric Food Chem 45:4674–4679

    Article  CAS  Google Scholar 

  37. Rosenblueth M, Martinez Romero E (2004) Rhizobium etli maize populations and their competitiveness for root colonization. Arch Microbiol 181:337–344

    Article  CAS  PubMed  Google Scholar 

  38. Sturz A, Kimpinski J (2004) Endoroot bacteria derived from marigolds (Tagetes spp.) can decrease soil population densities of root lesion nematodes in the potato root zone. Plant Soil 262:241–249

    Article  CAS  Google Scholar 

  39. Pullen C, Schmitz P, Meurer K, Bamberg DDV, Lohmann S, De Castro Franca S, Groth I, Schlegel B, Mallmann U, Gollmick F, Grafe U, Listner E (2002) New and bioactive compounds from Streptomyces strains residing in the wood of Celastraceae. J Planta 216:162–167

    Article  CAS  Google Scholar 

  40. Cho K, Hong SY, Lee SM, Kim YH, Kahng GG, Llim YP, Kim H, Yun HD (2007) Endophytic bacterial communities in ginseng and their antifungal activity against pathogens. J Microb Ecol 54:341–351

    Article  CAS  Google Scholar 

  41. Li AR, Guan KY (2007) Mycorrhizal and dark septate endophytic fungi of Pedicularis species from northwest of Yunnan Province, China. Mycorrhiza 17:103–109

    Article  PubMed  Google Scholar 

  42. Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfiel KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750

    Article  PubMed  Google Scholar 

  43. Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837

    Article  CAS  PubMed  Google Scholar 

  44. Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–167

    Google Scholar 

  45. Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  46. Araújo WL, Maccheroni W Jr, Aguilar-Vildoso CI, Barroso PA, Saridakis HO, Azevedo JL (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47:229–236

    Article  PubMed  Google Scholar 

  47. Fernandes EG, Pereira OL, Silva CC, Bento CBP, Queiroz MV (2015) Diversity of endophytic fungi in Glycine max. Microbiol Res 181:84–92

    Article  PubMed  Google Scholar 

  48. Newman L, Reynolds C (2005) Bacteria and phyto-remediation: new uses for endophytic bacteria in plants. Trends Biotechnol 23:6–8

    Article  CAS  PubMed  Google Scholar 

  49. Patil NB (2013) Isolation and characterization of diazotrophic endophyte, Asaia bogorensis from Mangifera indica. Int J Environ Sci 3:6

    Google Scholar 

  50. Zhao JH, Zhang YL, Wang LW, Wang JY, Zhang CL (2012) Bioactive secondary metabolites from Nigrospora sp. LLGLM003, an endophytic fungus of the medicinal plant Moringa oleifera Lam. World J Microbiol Biotechnol 28:2107–2112

    Article  CAS  PubMed  Google Scholar 

  51. Song J, ZeBin C, TiYuan X, YuChuan L, Feng Z, Zhen R (2017) Analysis on composition and diversity of endophytes in Moringa oleifera. Med Plant 8:51–53

    Google Scholar 

  52. Mahdi T, Mohamed I, Yagi S (2104) Endophytic fungal communities associated with ethnomedicinal plants from Sudan and their antimicrobial and antioxidant prospective. J Forest Prod Ind 3:248–256

    Google Scholar 

  53. Rajeswari S, Umamaheswari S, Prasanth DA, Rajamanikandan KCP (2014) Study of endophytic fungal community of Moringa oleifera from Omalur region – Salem. Int J Pharm Sci Res 5:4887–4892

    Google Scholar 

  54. Souza SA, Xavier AA, Costa MR, Cardoso AMS, Pereira MCT, Nietsche S (2013) Endophytic bacterial diversity in banana ‘Prata Anã’ (Musa spp.) roots. Genet Mol Biol 36:252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Naik BS, Shashikala J, Krishnamurthy YL (2009) Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activities in vitro. Microbiol Res 164:290–296

    Article  CAS  PubMed  Google Scholar 

  56. Gonzaga LL, Costa LE, Santos TT, Araújo EF, Queiroz MV (2014) Endophytic fungi from the genus Colletotrichum are abundant in the Phaseolus vulgaris and have high genetic diversity. J Appl Microbiol 118:485–496

    Article  PubMed  CAS  Google Scholar 

  57. Stuart RM, Romão AS, Pizzirani-kleiner AA, Azevedo JL, Araújo WL (2010) Culturable endophytic filamentous fungi from leaves of transgenic imidazolinone-tolerant sugarcane and its non-transgenic isolines. Arch Microbiol 192:307–313

    Article  CAS  PubMed  Google Scholar 

  58. Zinniel DK, Lambrecht P, Harris NB, Feng Z, Kuczmarski D, Higley P, Ishimaru CA, Arunakumari A, Barletta RG, Vidaver AK (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Larran S, Perello A, Simon MR, Moreno V (2007) The endophytic fungi from wheat (Triticum aestivum L.). World J Microbiol Biotechnol 23:565–572

    Article  Google Scholar 

  60. Fisher PJ, Petrini O, Scott HML (1992) The distribution of some fungal and bacterial endophytes in maize (Zea mays L.). New Phytol 122:299–305

    Article  PubMed  Google Scholar 

  61. Kharwar RN, Verma VC, Kumar A, Gond SK, Harper JK, Hess WM, Lobkovosky E, Ma C, Ren Y, Strobel GA (2011) Javanicin, an antibacterial naphthaquinone from an endophytic fungus of neem, Chloridium sp. Curr Microbiol 58:233–238

    Article  CAS  Google Scholar 

  62. Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 9:792–798

    Article  CAS  Google Scholar 

  63. Alvin A, Miller KI, Neilan BA (2014) Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 169:483–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ekanayake PN, Kaur J, Tian P, Rochfort SJ, Guthridge KM, Sawbridge TI, Spangenberg GC, Forster JW (2017) Genomic and metabolic characterisation of alkaloid biosynthesis by asexual Epichloë fungal endophytes of tall fescue pasture grasses. Genome 60:496–509. NRC Research Press

    Article  CAS  PubMed  Google Scholar 

  65. Tang MJ, Meng ZX, Guo SX, Chen XM, Xiao PG (2008) Effects of endophytic fungi on the culture and four enzyme activities of Anoectochilus roxburghii. J Chin Pharm 43:890–893

    CAS  Google Scholar 

  66. Chen JX, Dai CC, Li X, Tian LS, Xie H (2008) Endophytic fungi screening from Atracty lancea and inoculating into the host plantlet. Guihaia 28:256–260

    CAS  Google Scholar 

  67. Waqas M, Khan AL, Kamran M, Hamayun M, Kang SM, Kim YH et al (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17:10754–10773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Barazani O, von Dahl CC, Baldwin IT (2007) Sebacina vermifera promotes the growth and fitness of Nicotiana attenuata by inhibiting ethylene signaling. Plant Physiol 144:1223–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chutima R, Dell B, Vessabutr S, Bussaban B, Lumyong S (2011) Endophytic fungi from Pecteilis susannae (L.) Rafin (Orchidaceae), a threatened terrestrial orchid in Thailand. Mycorrhiza 21:221–229

    Article  PubMed  Google Scholar 

  70. Abd_Allah EF, Hashem A, Alqarawi AA, Bahkali AH, Alwhibi MS (2015) Enhancing growth performance and systemic acquired resistance of medicinal plant Sesbania sesban (L.) Merr using Arbuscular mycorrhizal fungi under salt stress. Saudi J Biol Sci 22:274–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schardl CL, Young CA, Hesse U, Amyotte SG, Andreeva K, Calie PJ, Fleetwood DJ, Haws DC, Moore N, Oeser B et al (2013) Plant–symbiotic fungi as chemical engineers: multi-genome analysis of the Clavicipitaceae reveals dynamics of alkaloid loci. PLoS Genet 9:e1003323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dupont P-Y, Eaton CJ, Wargent JJ, Fechtner S, Solomon P, Schmid J, Day RC, Scott B, Cox MP (2015) Fungal endophyte infection of ryegrass reprograms host metabolism and alters development. New Physiol 208:1227–1240

    Article  CAS  Google Scholar 

  73. Carvalho ETL, Balsemão-Pires G, Saraiva RM, Ferreira PCG, Hemerly AS (2014) Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria. J Exp Bot 65(19):5631–5642

    Article  CAS  PubMed  Google Scholar 

  74. Ren Z, Song R, Wang S, Quan H, Yang L, Sun L, Zhao B, Lu H (2017) The biosynthesis pathway of Swainsonine, a new anticancer drug from three endophytic fungi. J Microbiol Biotechnol 27:1897–1906

    Article  CAS  PubMed  Google Scholar 

  75. Yuan J, Sun K, Deng-Wang M-Y, Dai C-C (2016) The mechanism of ethylene signaling induced by endophytic fungus Gilmaniella sp. AL12 mediating sesquiterpenoid biosynthesis in Atractylodes lancea, froniters. Plant Sci 7:361

    Google Scholar 

  76. Ren C-G, Dai C-C (2012) Jasmonic acid is involved in the signaling pathway for fungal endophyte-induced volatile oil accumulation of Atractylodes lancea plantlets. BMC Plant Biol 12:128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Strohl WR (2000) The role of natural products in a modern drug discovery program. Drug Discov Today 5:39–41

    Article  CAS  PubMed  Google Scholar 

  78. Newman DJ, Cragg GM (2010) Natural products as drugs and leads to drugs: the historical perspective. In: Natural product chemistry for drug discovery. Royal Society of Chemistry, Cambridge, pp 3–27

    Google Scholar 

  79. Kingston DGI (2011) Modern natural products drug discovery and its relevance to biodiversity conservation. J Nat Prod 74:49

    Google Scholar 

  80. Dancik V, KP S, DW Y, Schreiber SL, Clemons PA (2010) Distinct biological network properties between the targets of natural products and disease genes. J Am Chem Soc 132:9259–9261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ahmad F, Ahmad I, Khan MS (2005) Indole acetic acid production by indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turk J Biol 29:29–34

    CAS  Google Scholar 

  82. Rosconi F, Davyt D, Martínez V, Martínez M, Abin-Carriquiry JA, Zane H, Butler A, de Souza EM, Fabiano E (2013) Identification and structural characterization of serobactins, a suite of lipopeptide siderophores produced by the grass endophyte Herbaspirillum seropedicae. Environ Microbiol 15:916–927

    Article  CAS  PubMed  Google Scholar 

  83. Syed NA, Midgley DJ, Ly PKC, Saleeba JA, McGee PA (2013) Do plant endophytic and free-living Chaetomium species differ? Australas Mycol 28:51–55

    Google Scholar 

  84. Bertinetti BV, Peña NI, Cabrera GM (2009) An antifungal tetrapeptide from the culture of Penicillium canescens. Chem Biodivers 6:1178–1184

    Article  CAS  PubMed  Google Scholar 

  85. Harrison LH, Teplow DB, Rinaldi M, Strobel G (1991) Pseudomycins, a family of novel peptides from Pseudomonas syringae possessing broad-spectrum antifungal activity. J Gen Microbiol 137:2857–2865

    Article  CAS  PubMed  Google Scholar 

  86. Miller CM, Miller RV, Garton-Kenny D, Redgrave B, Sears J, Condron MM, Teplow DB, Strobel GA (1998) Ecomycins, unique antimycotics from Pseudomonas viridiflava. J Appl Microbiol 84:937–944

    Article  CAS  PubMed  Google Scholar 

  87. Ding L, Maier A, Fiebig H, Lin H, Hertweck C (2011) A family of multicyclic indolosesquiterpenes from a bacterial endophyte. Org Biomol Chem 9:4029–4031

    Article  CAS  PubMed  Google Scholar 

  88. Qadera M, Savitri Kumar N, Jayasinghea L, Arayab H, Fujimotoa Y (2016) Bioactive sesquiterpenes from an endophytic fungus Bipolaris sorokiniana isolated from a popular medicinal plant Costus speciosus. Mycology 8:17–20

    Article  CAS  Google Scholar 

  89. Thom ER, Popay AJ et al (2013) Evaluating the performance of endophytes in farm systems to improve framer outcome-a review. Crop Pasture Sci 63:927–943

    Article  Google Scholar 

  90. Tidke SA, Rakesh Kumar KL, Ramakrishna D, Kiran S, Kosturkova G, Gokare RA (2017) Current understanding of endophytes: their relevance, importance, and industrial potentials. J Biotechnol Biochem 3:43–59

    Google Scholar 

  91. Gouda S, Das G, Sen SK, Shin H-S, Patra JK (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 7:1538

    Article  PubMed  PubMed Central  Google Scholar 

  92. Mittal S, Shrivastava D, Govil S, Kumar S, Bisen PS (2016) A novel anticandidal compound containing sulfur from endophytic fungus Emericella sp. Nat Prod J 6(3):188–193

    CAS  Google Scholar 

  93. Yong YH, Dai CC, Gao FK, Yang QY, Zhao M (2009) Effects of endophytic fungi on growth and two kinds of terpenoids for Euphorbia pekinensis. Chin Tradit Herb Drugs 40(7):1136–1139.2

    CAS  Google Scholar 

  94. Tang K, Li B, Guo SX (2014) An active endophytic fungus promoting growth and increasing salvianolic acid content of Salvia miltiorrhiza. Mycosystema 33(3):594–600

    CAS  Google Scholar 

  95. Ludwig-Müller J (2015) Plants and endophytes: equal partners in secondary metabolite production? Biotechnol Lett 37:1325–1334

    Article  PubMed  CAS  Google Scholar 

  96. Stierle AA, Stierle D (2015) Bioactive secondary metabolites produced by the fungal endophytes of conifers. Nat Prod Commun 10:1671–1682

    PubMed  PubMed Central  Google Scholar 

  97. Silva GH, Teles HL, Zanardi LM (2006) Cadinane sesquiterpenoids of Phomopsis cassiae, an endophytic fungus associated with Cassia spectabilis (Leguminosae). Phytochemistry 67:1964–1969

    Article  CAS  PubMed  Google Scholar 

  98. Wagenaar MW, Clardy J (2001) Dicerandrols, new antibiotic and cytotoxic dimers produced by the fungus Phomopsis longicolla isolated from an endangered mint. J Nat Prod 64:1006–1009

    Article  CAS  PubMed  Google Scholar 

  99. Turbyville TJ, Wijeratne EMK, Liu MX, Bums AM, Seliga CJ, Luevano LA, David CL, Faeth FL, Whitesell L, Gunatilaka AAL (2006) Search for IIsp90inhibitors with potential anticancer activity: isolation and SAR studies of radicicol and monocillin I from two plants associated fungi of the Sonoran desert. J Nat Prod 69:178–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Weber D, Sterner O, Anke T, Gorzalczancy S, Martino V, Acevedo C (2004) Phomol, a new anti-inflammatory metabolite from an endophyte of the medicinal plant Erythrina crista-galli. J Antibiot 57:559–563

    Article  CAS  Google Scholar 

  101. Giridharan P, Verekar SA, Khanna A, Mishra PD, Deshmukh SK (2012) Anticancer activity of sclerotiorin, isolated from an endophytic fungus Cephalotheca faveolata Yaguchi, Nishim. & Udagawa. Indian J Exp Biol 50:464–468

    CAS  PubMed  Google Scholar 

  102. Budhiraja A, Nepali K, Sapra S, Gupta S, Kumar S, Dhar KL (2012) Bioactive metabolites from an endophytic fungus of Aspergillus species isolated from seeds of Gloriosa superba Linn. Med Chem Res 22:323–329

    Article  CAS  Google Scholar 

  103. Zhang JY, Tao LY, Liang YJ, Chen LM, Mi LM, Zheng LS et al (2010) Anthracenedione derivatives as anticancer agents isolated from secondary metabolites of the mangrove endophytic fungi. Mar Drugs 8:1469–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Teles HL, Sordi R, Silva GH, Castro-Gamboa I, Bolzani Vda S, Pfenning LH, de Abreu LM, Costa-Neto CM, Young MC, Araújo AR (2006) Aromatic compounds produced by Periconia atropurpurea, an endophytic fungus associated with Xylopia aromatica. Phytochemistry 67:2686–2690

    Article  CAS  PubMed  Google Scholar 

  105. Amna T, Puri SC, Verma V, Sharma JP, Khajuria RK, Musarrat J, Spiteller M, Qazi GN (2006) Bioreactor studies on the endophytic fungus Entrophospora infrequens for the production of an anticancer alkaloid camptothecin. Can J Microbiol 52:189–196

    Article  CAS  PubMed  Google Scholar 

  106. Kaul S, Sharma T, Dhar MK (2016) “Omics” tools for better understanding the plant–endophyte interactions. Front Plant Sci 7:29. https://doi.org/10.3389/fpls.2016.00955

    Article  Google Scholar 

Download references

Acknowledgment

Authors (SAT, SK, and RAG) are thankful to Vice-Chairman Dr. Premachandra Sagar for his keen support and encouragement. Further the financial assistance by Dayananda Sagar Institutions is gratefully acknowledged. RAG wishes to thank the Department of Science and Technology, Government of India, for financial support through a competitive grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravishankar A. Gokare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tidke, S.A., Kiran, S., Giridhar, P., Gokare, R.A. (2019). Current Understanding and Future Perspectives of Endophytic Microbes vis-a-vis Production of Secondary Metabolites. In: Jha, S. (eds) Endophytes and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-90484-9_12

Download citation

Publish with us

Policies and ethics