Skip to main content

Caste Differentiation: Genetic and Epigenetic Factors

  • Living reference work entry
  • First Online:
Encyclopedia of Social Insects

The process of caste differentiation is central to understanding insect sociality, because it is task specialization that enables division of labor within eusocial colonies. Selection presumably favors colonies that can adjust their division of labor in response to changing environmental demands, and for many taxa genetic and epigenetic factors are an important part of this equation. In this entry, we provide a framework for understanding genetic and epigenetic effects on caste. From mostly ant, bee, and termite examples discovered so far, we make clear that genotype-caste associations can evolve in different and sometimes complex ways and can involve additive or nonadditive genetic effects that, in turn, may arise directly from focal individuals or indirectly via their social partners. Epigenetic effects, by contrast, provide an interface between environmental experience and gene expression. For the most part, both genetic and epigenetic effects on caste appear to be highly...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Anderson, K. E., Linksvayer, T. A., & Smith, C. R. (2008). The causes and consequences of genetic caste determination in ants (Hymenoptera: Formicidae). Myrmecological News, 11, 119–132.

    Google Scholar 

  2. Bewick, A. J., Vogel, K. J., Moore, A. J., & Schmitz, R. J. (2016). Evolution of DNA methylation across insects. Molecular Biology and Evolution, 34, 654–665.

    PubMed Central  Google Scholar 

  3. Beye, M., Hasselmann, M., Fondrk, M. K., Page, R. E., & Omholt, S. W. (2003). The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell, 114, 419–429.

    Article  CAS  Google Scholar 

  4. Bonasio, R., Li, Q., Lian, J., Mutti, N. S., Jin, L., et al. (2012). Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator. Current Biology, 22, 1755–1764.

    Article  CAS  Google Scholar 

  5. Crozier, R. H., & Schluns, H. (2008). Genetic caste determination in termites: Out of the shade but not from Mars. BioEssays, 30, 299–302.

    Article  Google Scholar 

  6. Forêt, S., Kucharski, R., Pellegrini, M., Feng, S. H., Jacobsen, S. E., et al. (2012). DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. Proceedings of the National Academy of Sciences of the United States of America, 109, 4968–4973.

    Article  Google Scholar 

  7. Fougeyrollas, R., Dolejšová, K., Sillam-Dussès, D., Roy, V., Poteaux, C., et al. (2015). Asexual queen succession in the higher termite Embiratermes neotenicus. Proceedings of the Royal Society B: Biological Sciences, 282, 20150260.

    Article  Google Scholar 

  8. Fournier, D., Estoup, A., Orivel, J., Foucaud, J., Jourdan, H., et al. (2005). Clonal reproduction by males and females in the little fire ant. Nature, 435, 1230.

    Article  CAS  Google Scholar 

  9. Glastad, K. M., Gokhale, K., Liebig, J., & Goodisman, M. A. (2016). The caste-and sex-specific DNA methylome of the termite Zootermopsis nevadensis. Scientific Reports, 6, 37110.

    Article  CAS  Google Scholar 

  10. Goodisman, M. A. D., & Crozier, R. H. (2003). Association between caste and genotype in the termite Mastotermes darwiniensis Froggatt (Isoptera: Mastotermitidae). Australian Journal of Entomology, 42, 1–5.

    Article  Google Scholar 

  11. Hayashi, Y., Lo, N., Miyata, H., & Kitade, O. (2007). Sex-linked genetic influence on caste determination in a termite. Science, 318, 985–987.

    Article  CAS  Google Scholar 

  12. He, X. J., Zhang, X. C., Jiang, W. J., Barron, A. B., Zhang, J. H., & Zeng, Z. J. (2016). Starving honey bee (Apis mellifera) larvae signal pheromonally to worker bees. Scientific Reports, 6, 22359.

    Article  CAS  Google Scholar 

  13. Helms Cahan, S., & Keller, L. (2003). Complex hybrid origin of genetic caste determination in harvester ants. Nature, 424, 306–309.

    Article  CAS  Google Scholar 

  14. Helms Cahan, S., & Vinson, S. B. (2003). Reproductive division of labor between hybrid and nonhybrid offspring in a fire ant hybrid zone. Evolution, 57, 1562–1570.

    Article  Google Scholar 

  15. Hughes, W. O. H., Sumner, S., Van Borm, S., & Boomsma, J. J. (2003). Worker caste polymorphism has a genetic basis in Acromyrmex leaf-cutting ants. Proceedings of the National Academy of Sciences of the United States of America, 100, 9394–9397.

    Article  CAS  Google Scholar 

  16. Jaffe, R., Kronauer, D. J. C., Kraus, F. B., Boomsma, J. J., & Moritz, R. F. A. (2007). Worker caste determination in the army ant Eciton burchellii. Biology Letters, 3, 513–516.

    Article  Google Scholar 

  17. Julian, G. E., Fewell, J. H., Gadau, J., Johnson, R. A., & Larrabee, D. (2002). Genetic determination of the queen caste in an ant hybrid zone. Proceedings of the National Academy of Sciences of the United States of America, 99, 8157–8160.

    Article  CAS  Google Scholar 

  18. Kerr, W. E. (1950). Genetic determination of castes in the genus Melipona. Genetics, 35, 143–152.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kucharski, R., Maleszka, J., Forêt, S., & Maleszka, R. (2008). Nutritional control of reproductive status in honeybees via DNA methylation. Science, 319, 1827–1830.

    Article  CAS  Google Scholar 

  20. Li-Byarlay, H. (2016). The function of DNA methylation marks in social insects. Frontiers in Ecology and Evolution, 4, 57.

    Article  Google Scholar 

  21. Libbrecht, R., Oxley, P. R., Keller, L., & Kronauer, D. J. C. (2016). Robust DNA methylation in the clonal raider ant brain. Current Biology, 26, 391–395.

    Article  CAS  Google Scholar 

  22. Linksvayer, T. A. (2006). Direct, maternal, and sibsocial genetic effects on individual and colony traits in an ant. Evolution, 60, 2552–2561.

    Article  Google Scholar 

  23. Linksvayer, T. A., & Wade, M. J. (2005). The evolutionary origin and elaboration of sociality in the aculeate Hymenoptera: Maternal effects, sib-social effects, and heterochrony. Quarterly Review of Biology, 80, 317–336.

    Article  Google Scholar 

  24. Lo, N., Hayashi, Y., & Kitade, O. (2009). Should environmental caste determination be assumed for termites? American Naturalist, 173, 848–853.

    Article  Google Scholar 

  25. Lo, N., Li, B., & Ujvari, B. (2012). DNA methylation in the termite Coptotermes lacteus. Insectes Sociaux, 59, 257–261.

    Article  Google Scholar 

  26. Maleszka, R. (2016). Epigenetic code and insect behavioural plasticity. Current Opinion in Insect Science, 15, 45–52.

    Article  Google Scholar 

  27. Page, R. E., Fondrk, M. K., & Robinson, G. E. (1993). Selectable components of sex allocation in colonies of the honeybee (Apis mellifera L.). Behavioral Ecology, 4, 239–245.

    Article  Google Scholar 

  28. Rheindt, F., Strehl, C., & Gadau, J. (2005). A genetic component in the determination of worker polymorphism in the Florida harvester ant Pogonomyrmex badius. Insectes Sociaux, 52, 163–168.

    Article  Google Scholar 

  29. Schwander, T., & Keller, L. (2008). Genetic compatibility affects queen and worker caste determination. Science, 322, 552.

    Article  CAS  Google Scholar 

  30. Schwander, T., Lo, N., Beekman, M., Oldroyd, B. P., & Keller, L. (2010). Nature versus nurture in social insect caste differentiation. Trends in Ecology & Evolution, 25, 275–282.

    Article  Google Scholar 

  31. Smith, C. R., Mutti, N. S., Jasper, W. C., Naidu, A., Smith, C. D., & Gadau, J. (2012). Patterns of DNA methylation in development, division of labor and hybridization in an ant with genetic caste determination. PLoS One, 7, e42433.

    Article  CAS  Google Scholar 

  32. Standage, D. S., Berens, A. J., Glastad, K. M., Severin, A. J., Brendel, V. P., & Toth, A. L. (2016). Genome, transcriptome and methylome sequencing of a primitively eusocial wasp reveal a greatly reduced DNA methylation system in a social insect. Molecular Ecology, 25, 1769–1784.

    Article  CAS  Google Scholar 

  33. Terrapon, N., Li, C., Robertson, H. M., Ji, L., Meng, X., et al. (2014). Molecular traces of alternative social organization in a termite genome. Nature Communications, 5, 3636.

    Article  CAS  Google Scholar 

  34. Vargo, E. L. (2019). Diversity of termite breeding systems. Insects, 10, 52.

    Article  Google Scholar 

  35. Volny, V. P., & Gordon, D. M. (2002). Genetic basis for queen-worker dimorphism in a social insect. Proceedings of the National Academy of Sciences of the United States of America, 99, 6108–6111.

    Article  CAS  Google Scholar 

  36. Welch, M., & Lister, R. (2014). Epigenomics and the control of fate, form and function in social insects. Current Opinion in Insect Science, 1, 31–38.

    Article  Google Scholar 

  37. Winter, U., & Buschinger, A. (1986). Genetically mediated queen polymorphism and caste determination in the slave-making ant, Harpagoxenus sublaevis (Hymenoptera: Formicidae). Entomologia Generalis, 11, 125–137.

    Article  Google Scholar 

  38. Yamamoto, Y., & Matsuura, K. (2012). Genetic influence on caste determination underlying the asexual queen succession system in a termite. Behavioral Ecology and Sociobiology, 66, 39–46.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham J. Thompson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Thompson, G.J., Chernyshova, A.M. (2020). Caste Differentiation: Genetic and Epigenetic Factors. In: Starr, C. (eds) Encyclopedia of Social Insects. Springer, Cham. https://doi.org/10.1007/978-3-319-90306-4_178-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90306-4_178-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90306-4

  • Online ISBN: 978-3-319-90306-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics