Skip to main content

Methanogenesis in Soils, Wetlands, and Peat

  • Reference work entry
  • First Online:
Book cover Biogenesis of Hydrocarbons

Abstract

Soil is the naturally occurring rock particles and decaying organic matter (humus) on the surface of the Earth, capable of supporting life. It has three components: solid, liquid, and gas. The solid phase is a mixture of mineral and organic matter. Wetlands are areas on which water covers the soil or where water is present either at or near the surface of that soil. Wetlands often host considerable biodiversity and endemism. Their hydrological conditions are characterized by an absence of free oxygen sometimes or always. It favors the development of anaerobic microbial community. In the absence of electron acceptors other than bicarbonate, methane is the end product of organic matter degradation in wetland ecosystems. It makes wetlands important sources of the greenhouse gas CH4 in the context of the problem of global climate changes. Peatlands are a type of wetlands and form when plant material is inhibited from decaying by acidic and anaerobic conditions.

Methane production in peatlands tends to vary tremendously both spatially and temporally and depends on environmental factors such as temperature, pH, and water table, as well as plant cover. In anaerobic peat, acetate and CO2 are the most quantitatively important CH4 precursors. Most studies suggest that acetoclastic methanogenesis is an important pathway for CH4 formation in nutrient-rich fens covered with Carex sedges, whereas CO2 reduction is an important methanogenic pathway in Sphagnum-dominated bogs. Such bogs, the predominant peatlands, are typically acidic (pH < 5) with low concentrations of mineral nutrients. The Sphagnum bog microbes seem to have special metabolic mechanisms to cope with low-mineral and diluted nonbuffered solutions. As a whole, the soil microbial community in wetlands plays an important role in biogeochemical cycles and is crucial to the functions of wetland systems. Research on the diversity and abundance microorganisms in wetlands rapidly develops owing to the advantages of molecular biological methods. The insights into the microbial community functioning and adaptation mechanisms in wetlands provide a valuable background for studies on biotechnological applications of microorganisms inhabiting these ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen R, Chapman SJ, Artz RRE (2013) Microbial communities in natural and disturbed peatlands: a review. Soil Biol Biochem 57:979–994

    Article  CAS  Google Scholar 

  • Angle JC, Morin TH, Solden LM, Narrowe AB, Smith GJ, Borton MA, Rey-Sanchez C, Daly RA, Mirfenderesgi G, Hoyt DW, Riley WJ, Miller CS, Bohrer G, Wrighton KC (2017) Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions. Nat Commun 8:1567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aselmann I, Crutzen PJ (1989) Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J Atmos Chem 8:307–358

    Article  CAS  Google Scholar 

  • Avery GB, Shannon RD, White JR, Martens CS, Alperin MJ (1999) Effect of seasonal changes in the pathways of methanogenesis on the δ13C values of pore water methane in a Michigan peatland. Global Biogeochem Cycles 13:475–484

    Article  CAS  Google Scholar 

  • Basiliko N, Yavitt JB, Dees PM, Merkel SM (2003) Methane biogeochemistry and methanogen communities in two northern peatland ecosystems, New York State. Geomicrobiol J 20:563–577

    Article  CAS  Google Scholar 

  • Beer J, Blodau C (2007) Transport and thermodynamics constrain belowground carbon turnover in a northern peatland. Geochim Cosmochim Acta 71:2989–3002

    Article  CAS  Google Scholar 

  • Bellisario LM, Bubier JL, Moore TR (1999) Controls on CH4 emissions from a northern peatland. Global Biogeochem Cycles 13:81–91

    Article  CAS  Google Scholar 

  • Bhattacharyya A, Majumder NS, Basak P, Mukherji S, Roy D, Nag S, Haldar A, Chattopadhyay D, Mitra S, Bhattacharyya M, Ghosh A (2015) Diversity and distribution of archaea in the mangrove sediment of sundarbans. Archaea:968582. https://doi.org/10.1155/2015/968582

    Article  CAS  Google Scholar 

  • Blake LI, Tveit A, Øvreås L, Head IM, Gray ND (2015) Response of methanogens in Arctic sediments to temperature and methanogenic substrate availability. PLoS One 10:e0129733. https://doi.org/10.1371/journal.pone.0129733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloom AA, Bowman K, Lee M, Turner AJ, Schroeder R, Worden JR, Weidner R, McDonald KC, Jacob DJ (2016) A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models. Geosci Model Dev Discuss. https://doi.org/10.5194/gmd-2016-224

  • Bodelier PL, Dedysh SN (2013) Microbiology of wetlands. Front Microbiol 4:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Botsch KC, Conrad R (2011) Fractionation of stable carbon isotopes during anaerobic production and degradation of propionate in defined microbial cultures. Org Geochem 42:289–295

    Article  CAS  Google Scholar 

  • Bräuer SL, Cadillo-Quiroz H, Ward RJ, Yavitt JB, Zinder SH (2011) Methanoregula boonei gen. nov., sp. nov., an acidiphilic methanogen isolated from an acidic peat bog. Int J Syst Evol Microbiol 61:45–52. https://doi.org/10.1099/ijs.0.021782-0

    Article  CAS  PubMed  Google Scholar 

  • Bräuer SL, Cadillo-Quiroz H, Yashiro E, Yavitt JB, Zinder SH (2006a) Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature 442:192–194

    Article  PubMed  CAS  Google Scholar 

  • Bräuer SL, Yashiro E, Ueno NG, Yavitt JB, Zinder SH (2006b) Characterization of acid-tolerant H2/CO2-utilizing methanogenic enrichment cultures from an acidic peat bog in New York State. FEMS Microbiol Ecol 57:206–216

    Article  PubMed  CAS  Google Scholar 

  • Bräuer SL, Yavitt JB, Zinder SH (2004) Methanogenesis in McLean Bog, an acidic peat bog in upstate New York: stimulation by H2/CO2 in the presence of rifampicin, or by low concentrations of acetate. Geomicrobiol J 21:433–443

    Article  CAS  Google Scholar 

  • Cao M, Dent JB, Heal OW (1995) Modeling methane emissions from rice paddies. Glob Biogeochem Cycles 9:183–195

    Article  CAS  Google Scholar 

  • Chan OC, Claus P, Casper P, Ulrich A, Lueders T, Conrad R (2005) Vertical distribution of structure and function of the methanogenic archaeal community in lake Dagow sediment. Environ Microbiol 7:1139–1149

    Article  CAS  PubMed  Google Scholar 

  • Cheema S, Zeyer J, Henneberger R (2015) Methanotrophic and methanogenic communities in Swiss alpine fens dominated by Carex rostrate and Eriophorum angustifolium. Appl Environ Microbiol 81:5832–5844. https://doi.org/10.1128/AEM.01519-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Yao S, Wu N, Wang Y, Luo P, Tian J, Gao Y, Sun G (2008) Determinants influencing seasonal variations of methane emissions from alpine wetlands in Zoige Plateau and their implications. J Geophys Res 113:D12303. https://doi.org/10.1029/2006JD008072

    Article  CAS  Google Scholar 

  • Chin KJ, Conrad R (1995) Intermediary metabolism in methanogenic paddy soil and the influence of temperature. FEMS Microbiol Ecol 18:85–102

    Article  CAS  Google Scholar 

  • Cicerone RJ, Oremland RS (1988) Biogeochemical aspects of atmospheric methane. Global Biogeochem Cycles 2:299–327

    Article  CAS  Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O and NO). Microbiol Rev 60:609–640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conrad R (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol 28:193–202

    Article  CAS  Google Scholar 

  • Conrad R (2002) Control of microbial methane production in wetland rice fields. Nutr Cycl Agroecosyst 64:59–69

    Article  CAS  Google Scholar 

  • Conrad R (2005) Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal. Org Geochem 36:739–752

    Article  CAS  Google Scholar 

  • Crawford JW, Harris JA, Ritz JA, Young IM (2005) Towards an evolutionary ecology of life in soil. Trends Ecol Evol 20:81–87

    Article  PubMed  Google Scholar 

  • Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci U S A 99:10494–10499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dedysh SN (2002) Methanotrophic bacteria of acidic Sphagnum peat bogs. Microbiology 71:638–650. (Translated from Mikrobiologiya 71: 741–754)

    Article  CAS  Google Scholar 

  • Dedysh SN, Ivanova AA (2019) Planctomycetes in boreal and subarctic wetlands: diversity patterns and potential ecological functions. FEMS Microbiol Ecol 95(2). https://doi.org/10.1093/femsec/fiy227

  • Dedysh SN, Liesack W, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Bares AM, Panikov NS, Tiedje JM (2000) Methylocellapalustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50:955–969

    Article  CAS  PubMed  Google Scholar 

  • Dedysh SN, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Liesack W, Tiedje JM (2002) Methylocapsaacidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 52:251–261

    Article  CAS  PubMed  Google Scholar 

  • Dijkstra FA, Prior SA, Runion GB, Torbert HA, Tian H, Lu C, Venterea RT (2012) Effects of elevated carbon dioxide and increased temperature on methane andnitrous oxide fluxes: evidence from field experiments. Front Ecol Environ 10:520–527. https://doi.org/10.1890/120059

    Article  Google Scholar 

  • Drake L, Küsel K, Matthies C (2013) Acetogenic prokaryotes. In: Rosenberg E, De Long EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: prokaryotic physiology and biochemistry, 4th edn. Springer, Berlin/Heidelberg, pp 3–60

    Chapter  Google Scholar 

  • Duddleston KN, Kinney MA, Keine RP, Hines ME (2002) Anaerobic microbial biogeochemistry in a northern bog: acetate as a dominant metabolic end product. Global Biogeochem Cycles 16:11-1–11-9

    Article  CAS  Google Scholar 

  • Fey A, Conrad R (2000) Effect of temperature on carbon and electron flow and on the archaeal community in methanogenic rice field soil. Appl Environ Microbiol 66:4790–4797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frenzel P, Bosse U, Janssen PH (1999) Rice roots and methanogenesis in a paddy soil: ferric iron as an alternative electron acceptor in the rooted soil. Soil Biol Biochem 31:421–430

    Article  CAS  Google Scholar 

  • Friedrich MW (2005) Methyl-coenzyme M reductase genes: unique functional markers for methanogenic and anaerobic methane-oxidizing archaea. Methods Enzymol 397:428–442

    Article  CAS  PubMed  Google Scholar 

  • Frolking S, Crill P (1994) Climate controls on temporal variability of methane flux from a poor fen in southeastern New Hampshire: measurement and modeling. Global Biogeochem Cycles 8:385–397

    Article  CAS  Google Scholar 

  • Galand PE, Fritze H, Conrad R, Yrjälä K (2005) Pathways for methanogenesis and diversity of methanogenic archaea in three boreal peatland ecosystems. Appl Environ Microbiol 71:2195–2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galand PE, Saarnio S, Fritze H, Yrjälä K (2002) Depth related diversity of methanogen Archaea in Finnish oligotrophic fen. FEMS Microbiol Ecol 42:441–449

    Article  CAS  PubMed  Google Scholar 

  • Glagolev MV, Sabrekov AF, Kleptsova IE, Filippov IV, Lapshina ED, Machida T, Maksyutov SS (2012) Methane emission from bogs in the subtaiga of Western Siberia: the development of standard model. Eurasian Soil Sci 45:947–957. https://doi.org/10.1134/S106422931210002X

    Article  CAS  Google Scholar 

  • Gutknecht JL, Goodman RM, Balser TC (2006) Linking soil process and microbial ecology in freshwater wetland ecosystems. Plant Soil 289:17–34

    Article  CAS  Google Scholar 

  • Haddaway NR, Burden A, Evans CD, Healey JR, Jones DL, Dalrymple SE, Pullin AS (2014) Evaluating effects of land management on greenhouse gas fluxes and carbon balances in boreo-temperate lowland peatland systems. Environ Evid 3:5. https://doi.org/10.1186/2047-2382-3-5

    Article  Google Scholar 

  • Hattori S (2008) Syntrophic acetate-oxidizing microbes in methanogenic environments. Microbes Environ 23:118–127

    Article  PubMed  Google Scholar 

  • He S, Malfatti SA, McFarland JW, Anderson FE, Pati A, Huntemann M, Tremblay J, Glavina del Rio T, Waldrop MP, Windham-Myers L, Tringe SG (2015) Patterns in wetland microbial community composition and functional gene repertoire associated with methane emissions. mBio 6:e00066-15. https://doi.org/10.1128/mBio.00066-15. Bailey MJ, ed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hines ME, Duddleston KN (2001) Carbon flow to acetate and C1 compounds in northern wetlands. Geophys Res Lett 28:4251–4254

    Article  CAS  Google Scholar 

  • Hoj L, Olsen RA, Torsvik VL (2005) Archaeal communities in High Arctic wetlands at Spitsbergen, Norway (78 degrees N) as characterized by 16S rRNA gene fingerprinting. FEMS Microbiol Ecol 53:89–101

    Article  CAS  PubMed  Google Scholar 

  • Horn MA, Matthies C, Küsel K, Schramm A, Drake HL (2003) Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat. Appl Environ Microbiol 69:74–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornibrook ERC, Longstaffe FJ, Fyfe WS (2000) Evolution of stable carbon isotope compositions for methane and carbondioxide in freshwater wetlands and other anaerobic environments. Geochim Cosmochim Acta 64:1013–1027

    Article  CAS  Google Scholar 

  • Houweling S, Bergamaschi P, Chevallier F, Heimann M, Kaminski T, Krol M, Michalak AM, Patra P (2017) Global inverse modeling of CH4 sources and sinks: an overview of methods. Atmos Chem Phys 17:235–256. https://doi.org/10.5194/acp-17-235-2017

    Article  CAS  Google Scholar 

  • Hunger S, Gӧβner AS, Drake HL (2015) Anaerobic trophic interactions of contrasting methane-emitting mire soils: processes versus taxa. FEMS Microbiol Ecol 91. https://doi.org/10.1093/femsec/fiv045

  • Hunger S, Schmidt O, Hilgarth M, Horn MA, Kolb S, Conrad R, Drake HL (2011) Competing formate- and carbon dioxide-utilizing prokaryotes in an anoxic methane-emitting fen soil. Appl Environ Microbiol 77:3773–3785. https://doi.org/10.1128/AEM.00282-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IPCC (2013) Carbon and other biogeochemical cycles, Chapter 6. In: Climate change 2013: The Physical Science Basis. Global methane budget, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. pp 505–510 

    Google Scholar 

  • Jiang N, Wang Y, Dong X (2010) Methanol as the primary methanogenic and acetogenic precursor in the cold Zoige wetland at Tibetan Plateau. Microbiol Ecol 60:206–213. https://doi.org/10.1007/s00248-009-9602-0

    Article  CAS  Google Scholar 

  • Juottonen H, Kotiaho M, Robinson D, Merilä P, Fritze H, Tuittila E-T (2015) Microform-related community patterns of methane-cycling microbes in boreal Sphagnum bogs are site specific. FEMS Microbiol Ecol 91:fiv094. https://doi.org/10.1093/femsec/fiv094

    Article  CAS  PubMed  Google Scholar 

  • Keller J, Bridgham SD (2007) Pathways of anaerobic carbon cycling across an ombrotrophic-minerotrophic peatland gradient. Limnol Oceanogr 52:96–107

    Article  CAS  Google Scholar 

  • Kelley CA, Dise NB, Martens CS (1992) Temporal variations in the stable carbon isotopic composition of methane emitted from Minnesota peatlands. Glob Biogeochem Cycles 6:263–269

    Article  Google Scholar 

  • Kelsey KC, Leffler AJ, Beard KH, Schmutz JA, Choi RT, Welker JM (2016) Interactions among vegetation, climate, and herbivory control greenhouse gas fluxes in a subarctic coastal wetland. J Geophys Res Biogeosci 121. https://doi.org/10.1002/2016JG003546

    CAS  Google Scholar 

  • Kotsyurbenko OR (2005) Trophic interactions in the methanogenic microbial communityof low-temperature terrestrial ecosystems. FEMS Microbiol Ecol 53:3–13

    Article  CAS  PubMed  Google Scholar 

  • Kotsyurbenko OR, Chin K-J, Glagolev MV, Stubner S, Simankova MV, Nozhevnikova AN, Conrad R (2004) Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog. Environ Microbiol 6:1159–1173

    Article  CAS  PubMed  Google Scholar 

  • Kotsyurbenko OR, Friedrich MW, Simankova MV, Nozhevnikova AN, Golyshin PN, Timmis KN, Conrad R (2007) Shift from acetoclastic to H2-dependent methanogenmesis in a West Siberian peat bog at low pH values and isolation of an acidophilic Methanobacterium strain. Appl Environ Microbiol 73:2344–2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotsyurbenko OR, Glagolev MV, Nozhevnikova AN, Conrad R (2001) Competition between homoacetogenic bacteria and methanogenic archaea for hydrogen at low temperature. FEMS Microbiol Ecol 38:153–159

    Article  CAS  Google Scholar 

  • Kotsyurbenko OR, Nozhevnikova AN, Soloviova TI, Zavarzin GA (1996) Methanogenesis at low temperatures by microflora of tundra wetland soil. Antonie Van Leeuwenhoek 69:75–86

    Article  CAS  PubMed  Google Scholar 

  • Küsel K, Blӧthe M, Schulz D, Reiche M, Drake HL (2008) Microbial reduction of iron and porewater biogeochemistry in acidic peatlands. Biogeosciences 5:1537–1549

    Article  Google Scholar 

  • Kutzbach L, Wagner D, Pfeiffer EM (2004) Effect of microrelief and vegetation on methane emission from wet polygonal tundra, Lena Delta, Northern Siberia. Biogeochemistry 69:341–362. https://doi.org/10.1023/B:BIOG.0000031053.81520.db

    Article  CAS  Google Scholar 

  • Kwon MJ, Beulig F, Ilie I, Wildner M, Küsel K, Merbold L, Mahecha MD, Zimov N, Zimov SA, Heimann M, Schuur EAG, Kostka JE, Kolle O, Hilke I, Göckede M (2017) Plants, microorganisms, and soil temperatures contribute to a decrease in methane fluxes on a drained Arctic floodplain. Glob Chang Biol 23:2396–2412

    Article  PubMed  Google Scholar 

  • Laanbroek HJ (2010) Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review. Ann Bot-Lond 105:141–153

    Article  CAS  Google Scholar 

  • Lansdown JM, Quay PD, King SL (1992) CH4 production via CO2 reduction in a temperate bog: a source of 13C-depleted CH4. Geochim Cosmochim Acta 56:3493–3503

    Article  CAS  Google Scholar 

  • Li T, Li H, Zhang Q, Ma Z, Yu L, Lu Y, Niu Z, Sun W, Liu J (2019) Prediction of CH4 emissions from potential natural wetlands on the Tibetan Plateau during the 21st century. Sci Total Environ 657:498–508

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Liu D, Ding W, Kang H, Freeman C, Yuan J, Xiang J (2015) Substrate sources regulate spatial variation of metabolically active methanogens from two contrasting freshwater wetlands. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-015-6912-7

    Article  CAS  PubMed  Google Scholar 

  • Matthews E, Fung I (1987) Methane emission from natural wetlands: global distribution, area and environmental characteristics of sources. Global Biogeochem Cycles 1:61–86

    Article  CAS  Google Scholar 

  • McDonald IR, Upton M, Hall G, Pickup RW, Edwards C, Saunders JR, Ritchie DA, Murrell JC (1999) Molecular ecological analysis of methanogens and methanotrophs in a blanket bog peat. Microbiol Ecol 38:225–233

    Article  CAS  Google Scholar 

  • Metje M, Frenzel P (2005) Effect of temperature on anaerobic ethanol oxidation and methanogenesis in acidic peat from a Northern wetland. Appl Environ Microbiol 71:8191–8200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metje M, Frenzel P (2007) Methanogenesis and methanogenic pathways in a peat from subarctic permafrost. Environ Microbiol 9:954–964

    Article  CAS  PubMed  Google Scholar 

  • Narihiro T, Sekiguchi Y (2011) Oligonucleotide primers, probes and molecular methods for the environmental monitoring of methanogenic archaea. Microb Biotechnol 4:585–602. https://doi.org/10.1111/j.1751-7915.2010.00239.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narrowe AB, Angle JC, Daly RA, Stefanik KC, Wrighton KC, Miller CS (2017) High-resolution sequencing reveals unexplored archaeal diversity in freshwater wetland soils. Environ Microbiol 19:2192–2209

    Article  CAS  PubMed  Google Scholar 

  • Nisbet RER, Fisher R, Nimmo RH, Bendall DS, Crill PM, Gallego-Sala AV, Hornibrook ERC, López-Juez E, Lowry D, Nisbet PBR, Shuckburgh EF, Sriskantharajah S, Howe CJ, Nisbet EG (2009) Emission of methane from plants. Proc R Soc B 276:1347–1354. https://doi.org/10.1098/rspb.2008.1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nüsslein B, Chin KJ, Eckert W, Conrad R (2001) Evidence for anaerobic syntrophic acetate oxidation during methane production in the profundal sediment of subtropical Lake Kinneret (Israel). Environ Microbiol 3:460–470

    Article  PubMed  Google Scholar 

  • Prasse CE, Baldwin AH, Yarwood SA (2015) Site history and edaphic features override the influence of plant species on microbial communities in restored tidal freshwater wetlands. Appl Environ Microbiol 81:3482–3491. https://doi.org/10.1128/AEM.00038-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popp TJ, Chanton JP, Whiting GJ, Grant N (1999) Methane stable isotope distribution at a carex dominated fen in north central alberta. Glob Biogeochem Cycles 13:1063–1077

    Article  CAS  Google Scholar 

  • Roden EE, Wetzel RG (2002) Kinetics of microbial Fe(III) oxide reduction in freshwater wetland sediments. Limnol Oceanogr 47:198–211

    Article  CAS  Google Scholar 

  • Russell JB (1991) Intracellular pH of acid-tolerant ruminal bacteria. Appl Environ Microbiol 57:3383–3384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sabrekov AF, Runkle BRK, Glagolev MV, Kleptsova IE, Maksyutov SS (2014) Seasonal variability as a source of uncertainty in the West Siberian regional CH4 flux upscaling. Environ Res Lett 9:045008. https://doi.org/10.1088/1748-9326/9/4/045008

    Article  CAS  Google Scholar 

  • Serkebaeva YM, Kim Y, Liesack W, Dedysh SN (2013) Pyrosequencing-based assessment of the bacteria diversity in surface and subsurface peat layers of a northern wetland, with focus on poorly studied phyla and candidate divisions. PLoS One 8:e63994. https://doi.org/10.1371/journal.pone.0063994

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheid D, Stubner S, Conrad R (2003) Effects of nitrate- and sulfate-amendment on the methanogenic populations in rice root incubations. FEMS Microbiol Ecol 43:309–315

    Article  CAS  PubMed  Google Scholar 

  • Schulz S, Matsuyama H, Conrad R (1997) Temperature dependence of methane production from different precursors in a profundal sediment (Lake Constance). FEMS Microbiol Ecol 22:207–213

    Article  CAS  Google Scholar 

  • Smagin AV, Glagolev MV (2001) Mathematical models of generation, uptake and emission of methane by the soil. Proceedings of the international field symposium “West Siberian Peatlands and carbon cycle: past and present”, Noyabr’sk, 18–22 Aug 2001. Sibprint Agency, Novosibirsk, pp 127–130

    Google Scholar 

  • Sӧllinger A, Schwab C, Weinmaier T, Loy A, Tveit AT, Schleper C, Urich T (2016) Phylogenetic and genomic analysis of Methanomassilii coccales in wetlands and animal intestinal tracts reveals clade-specific habitat preferences. FEMS Microbiol Ecol 92:fiv149. https://doi.org/10.1093/femsec/fiv149

    Article  CAS  Google Scholar 

  • Stewart AJ, Wetzel RG (1982) Influence of dissolved humic materials on carbon assimilation and alkaline phosphatase activity in natural algal-bacterial assemblages. Freshw Biol 12:369–380

    Article  CAS  Google Scholar 

  • Stoeva MK, Aris-Brosou S, Chételat J, Hintelmann H, Pelletier P, Poulain AJ (2014) Microbial community structure in lake and wetland sediments from a high arctic polar desert revealed by targeted transcriptomics. PLoS ONE 9:e89531. https://doi.org/10.1371/journal.pone.0089531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ström L, Ekberg A, Mastepanov M, Christensen TR (2003) The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Glob Chang Biol 9:1185–1192

    Article  Google Scholar 

  • Turunen J, Tomppo E, Tolonen K, Reinikainen A (2002) Estimating carbon accumulation rates of undrained mires in Finland – application to boreal and subarctic regions. The Holocene 12:69–80

    Article  Google Scholar 

  • Tveit A, Schwacke R, Svenning MM, Urich T (2012) Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms. ISME J 7:299–311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tveit A, Urich T, Svenning MM (2014) Metatranscriptomic analysis of Arctic peat soil microbiota. Appl Environ Microbiol 80:5761–5772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upton M, Hill B, Edwards C, Saunders JR, Ritchie DA, Lloyd D (2000) Combined molecular ecological and confocal laser scanning microscopic analysis of peat bog methanogen populations. FEMS Microbiol Lett 193:275–281

    Article  CAS  PubMed  Google Scholar 

  • Utsumi M, Belova SE, King GM, Uchiyama H (2003) Phylogenetic comparison of methanogen diversity in different wetland soils. J Gen Appl Microbiol 49:75–83

    Article  CAS  PubMed  Google Scholar 

  • Vigano I, van Weelden H, Holzinger R, Keppler F, McLeod A, Röckmann T (2008) Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components. Biogeosciences 5:937–947

    Article  CAS  Google Scholar 

  • Wang Y, Yang H, Ye C, Chen X, Xie B, Huang C, Zhang J, Xu M (2013) Effects of plant species on soil microbial processes and CH4 emission from constructed wetlands. Environ Pollut 174:273e278. https://doi.org/10.1016/j.envpol.2012.11.032

    Article  CAS  Google Scholar 

  • Webster KL, Bhatti JS, Thompson DK, Nelson SA, Shaw CH, Bona KA, Hayne SL, Kurz WA (2018) Spatially-integrated estimates of net ecosystem exchange and methane fluxes from Canadian peatlands. Carbon Balance Manag 13:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whalen M (1993) The global methane cycle. Annu Rev Earth Planet Sci 21:407–426

    Article  Google Scholar 

  • Whalen SC, Reeburgh WS (2000) Methane oxidation, production, and emission at contrasting sites in a boreal bog. Geomicrobiol J 17:237–251

    Article  CAS  Google Scholar 

  • Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314

    Article  CAS  Google Scholar 

  • Williams RT, Crawford RL (1984) Methane production in Minnesota peatlands. Appl Environ Microbiol 47:1266–1271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiaofeng XX, Yuan F, Hanson PJ, Wullschleger SD, Thornton PE, Riley WJ, Song X, Graham DE, Song C, Tian H (2016) Reviews and syntheses: four decades of modeling methane cycling in terrestrial ecosystems. Biogeosciences 13:3735–3755. https://doi.org/10.5194/bg-13-3735-2016

    Article  CAS  Google Scholar 

  • Xu X, Yuan F, Hanson PJ, Wullschleger SD, Thornton PE, Riley WJ, Song X, Graham DE, Song C, Tian H (2016) Reviews and syntheses: four decades of modeling methane cycling in terrestrial ecosystems. Biogeosciences 13:3735–3755

    Article  CAS  Google Scholar 

  • Yavitt JB, Basiliko N, Turetsky MR, Hay AG (2006) Methanogenesis and methanogen diversity in three peatland types of the discontinuous permafrost zone, boreal western continental Canada. Geomicrobiol J 23:641–651

    Article  CAS  Google Scholar 

  • Yavitt JB, Lang GE, Wieder RK (1987) Control of carbon mineralization to CH4 and CO2 in anaerobic, Sphagnum-derived peat from Big Run Bog, West Virginia. Biogeochemistry 4:141–157

    Article  CAS  Google Scholar 

  • Yavitt JB, Yashiro E, Cadillo-Quiroz H, Zinder SH (2012) Methanogen diversity and community composition in peatlands of the central to northern Appalachian Mountain region. North Am Biogeochem 109:117–131. https://doi.org/10.1007/s10533-011-9644-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. S.N. Dedysh for her valuable advices during the preparation of this manuscript.

This work was supported by a grant from the Russian Science Foundation (17-17-01204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. R. Kotsyurbenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kotsyurbenko, O.R., Glagolev, M.V., Merkel, A.Y., Sabrekov, A.F., Terentieva, I.E. (2019). Methanogenesis in Soils, Wetlands, and Peat. In: Stams, A., Sousa, D. (eds) Biogenesis of Hydrocarbons. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-78108-2_9

Download citation

Publish with us

Policies and ethics