Skip to main content

Methanogenesis from Carbon Monoxide

  • Reference work entry
  • First Online:
Biogenesis of Hydrocarbons

Abstract

The biological formation of methane, methanogenesis, constitutes the final step of biomass degradation in anaerobic environments where exogenous electron acceptors are scarce. It is therefore a fundamentally important aspect of the global carbon cycle. The organisms responsible are methanogenic archaea (methanogens), a diverse but monophyletic group within the Euryarchaeota. The major metabolic substrates for methanogenic energy metabolism are H2 + CO2, methylated compounds, and acetate. From a bioenergetic and biochemical standpoint, carbon monoxide (CO), a toxic, odorless, flammable gas, which accrues from incomplete combustion, could be considered an excellent source of energy and carbon for methanogens, but the capacity to grow on CO, i.e., carboxydotrophic growth, has been demonstrated only for a few methanogenic species. It appears that CO is not a well-suited methanogenic substrate due to its toxicity toward transition metal-containing enzymes and the negative reduction potential of the CO2/CO couple. In this chapter, we will summarize current knowledge about the catabolic pathways of CO utilization in hydrogenotrophic and methylotrophic methanogens, how they are coupled to energy conservation, and how they cope with the unfavorable properties of CO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abken HJ, Tietze M, Brodersen J, Bäumer S, Beifuss U, Deppenmeier U (1998) Isolation and characterization of methanophenazine and function of phenazines in membrane-bound electron transport of Methanosarcina mazei Gö1. J Bacteriol 180:2027–2032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blasing TJ (2016) Recent greenhouse gas concentrations. Oak Ridge National Lab, Oak Ridge. https://doi.org/10.3334/CDIAC/atg.032

    Book  Google Scholar 

  • Blaut M, Gottschalk G (1984) Proton motive force-driven synthesis of ATP during methane formation from molecular hydrogen and formaldehyde or carbon dioxide in Methanosarcina barkeri. FEMS Microbiol Lett 24:103–107

    Article  CAS  Google Scholar 

  • Boehning D, Snyder SH (2003) Novel neural modulators. Annu Rev Neurosci 26:105–131

    Article  CAS  PubMed  Google Scholar 

  • Boone DR, Mah RA (1989) Methanobacterium. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology, 1st edn. The Williams & Wilkins Co., Baltimore, pp 2175–2177

    Google Scholar 

  • Boone DR, Whitman WB, Rouviere P (1993) Diversity and taxonomy of methanogens. In: Ferry JG (ed) Methanogenesis. Chapman & Hall, New York, pp 35–80

    Chapter  Google Scholar 

  • Borrel G, Parisot N, Harris HM, Peyretaillade E, Gaci N, Tottey W, Bardot O et al (2014) Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. BMC Genomics 15:679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costa KC, Wong PM, Wang T, Lie TJ, Dodsworth JA, Swanson I, Burn JA et al (2010) Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase. Proc Natl Acad Sci U S A 107:11050–11055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel JS, Solomon S (1998) On the climate forcing of carbon monoxide. J Geophys Res 103:13249–13260

    Article  CAS  Google Scholar 

  • Daniell J, Nagaraju S, Burton F, Kopke M, Simpson SD (2016) Low-carbon fuel and chemical production by anaerobic gas fermentation. Adv Biochem Eng Biotechnol 156:293–321

    PubMed  Google Scholar 

  • Daniels L, Fuchs G, Thauer RK, Zeikus JG (1977) Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol 132:118–126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deppenmeier U (2002) The unique biochemistry of methanogenesis. Prog Nucleic Acid Res Mol Biol 71:223–283

    Article  CAS  PubMed  Google Scholar 

  • Deppenmeier U, Müller V (2008) Life close to the thermodynamic limit: how methanogenic archaea conserve energy. In: Schäfer G, Penefsky HS (eds) Bioenergetics: energy conservation and conversion. Springer, Heidelberg, pp 123–152

    Google Scholar 

  • Diender M, Stams AJM, Sousa DZ (2015) Pathways and bioenergetics of anaerobic carbon monoxide fermentation. Front Microbiol 6:1275

    Article  PubMed  PubMed Central  Google Scholar 

  • Diender M, Pereira RAG, Wessels HJCT, Stams AJM, Sousa DZ (2016) Proteomic analysis of the hydrogen and carbon monoxide metabolism of Methanothermobacter marburgensis. Front Microbiol 7:1049

    Article  PubMed  PubMed Central  Google Scholar 

  • Eirich LD, Vogels GD, Wolfe RS (1978) Proposed structure for coenzyme F420 from Methanobacterium. Biochemistry 17:4583–4593

    Article  CAS  PubMed  Google Scholar 

  • Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer RK (1997) Crystal structure of methyl coenzyme M reductase – the key enzyme of biological methane formation. Science 278:1457–1462

    Article  CAS  PubMed  Google Scholar 

  • Ferry JG (1997) Enzymology of the fermentation of acetate to methane by Methanosarcina thermophila. Biofactors 6:25–35

    Article  CAS  PubMed  Google Scholar 

  • Ferry JG (1999) Enzymology of one-carbon metabolism in methanogenic pathways. FEMS Microbiol Rev 23:13–38

    Article  CAS  PubMed  Google Scholar 

  • Ferry JG (2010a) Biochemistry of acetotrophic methanogenesis. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology, 1st edn. Springer, Berlin/Heidelberg, pp 357–367

    Chapter  Google Scholar 

  • Ferry JG (2010b) CO in methanogenesis. Ann Microbiol 60:1–12

    Article  CAS  Google Scholar 

  • Fischer R, Thauer RK (1990) Ferredoxin-dependent methane formation from acetate in cell extracts of Methanosarcina barkeri (strain MS). FEBS Lett 269:368–372

    Article  CAS  PubMed  Google Scholar 

  • Fischer F, Lieske R, Winzer K (1931) Biologische Gasreaktionen. Die Umsetzungen des Kohlenoxyds. Biochem Z 236:247–267

    CAS  Google Scholar 

  • Fontecilla-Camps JC (2009) Structure and function of [NiFe]-hydrogenases. Met Ions Life Sci 6:151–178

    Article  CAS  PubMed  Google Scholar 

  • Fricke WF, Seedorf H, Henne A, Krüer M, Liesegang H, Hedderich R, Gottschalk G et al (2006) The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis. J Bacteriol 188:642–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu H, Metcalf WW (2015) Genetic basis for metabolism of methylated sulfur compounds in Methanosarcina species. J Bacteriol 197:1515–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs G, Stupperich E, Thauer RK (1978) Acetate assimilation and the synthesis of alanine, aspartate and glutamate in Methanobacterium thermoautotrophicum. Arch Microbiol 117:61–66

    Article  CAS  PubMed  Google Scholar 

  • Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, FitzHugh W, Calvo S et al (2002) The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12:532–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrity GM, Labeda DP, Oren A (2011) Judicial Commission of the International Committee on Systematics of Prokaryotes – XIIth International (IUMS) congress of bacteriology and applied microbiology. Int J Syst Evol Microbiol 61:2775–2780

    Article  Google Scholar 

  • Gottschalk G (1986) Bacterial fermentations. In: Bacterial Metabolism, 2nd edn. Springer, New York, pp 208–282

    Chapter  Google Scholar 

  • Gottschalk G, Thauer RK (2001) The Na+-translocating methyltransferase complex from methanogenic archaea. Biochim Biophys Acta 1505:28–36

    Article  CAS  PubMed  Google Scholar 

  • Grahame DA (1991) Catalysis of acetyl-CoA cleavage and tetrahydrosarcinapterin methylation by a carbon monoxide dehydrogenase-corrinoid enzyme complex. J Biol Chem 266:22227–22233

    CAS  PubMed  Google Scholar 

  • Grahame DA, Demoll E (1995) Substrate and accessory protein requirements and thermodynamics of acetyl-CoA synthesis and cleavage in Methanosarcina barkeri. Biochemistry 34:4617–4624

    Article  CAS  PubMed  Google Scholar 

  • Grahame DA, Gencic S, DeMoll E (2005) A single operon-encoded form of the acetyl-CoA decarbonylase/synthase multienzyme complex responsible for synthesis and cleavage of acetyl-CoA in Methanosarcina thermophila. Arch Microbiol 184:32–40

    Article  CAS  PubMed  Google Scholar 

  • Graven WM, Long FJ (1954) Kinetics and mechanisms of the two opposing reactions of the equilibrium CO + H2O = CO2 + H2. J Am Chem Soc 76:2602–2607

    Google Scholar 

  • Gullotta F, di Masi A, Coletta M, Ascenzi P (2012) CO metabolism, sensing, and signaling. Biofactors 38:1–13

    Article  CAS  PubMed  Google Scholar 

  • Gunsalus RP, Wolfe RS (1977) Stimulation of CO2 reduction to methane by methyl-coenzyme M in extracts Methanobacterium. Biochem Biophys Res Commun 76:790–795

    Article  CAS  PubMed  Google Scholar 

  • Guss AM, Kulkarni G, Metcalf WW (2009) Differences in hydrogenase gene expression between Methanosarcina acetivorans and Methanosarcina barkeri. J Bacteriol 191:2826–2833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haab P (1990) The effect of carbon monoxide on respiration. Experientia 46:1202–1206

    Article  CAS  PubMed  Google Scholar 

  • Hedderich R, Forzi L (2005) Energy-converting [NiFe] hydrogenases: more than just H2 activation. J Mol Microbiol Biotechnol 10:92–104

    Article  CAS  PubMed  Google Scholar 

  • Hedderich R, Klimmek O, Kröger A, Dirmeier R, Keller M, Stetter KO (1998) Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiol Rev 22:353–381

    Article  CAS  Google Scholar 

  • Henstra AM, Stams AJ (2004) Novel physiological features of Carboxydothermus hydrogenoformans and Thermoterrabacterium ferrireducens. Appl Environ Microbiol 70:7236–7240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess V, Schuchmann K, Müller V (2013) The ferredoxin:NAD+ oxidoreductase (Rnf) from the acetogen Acetobacterium woodii requires Na+ and is reversibly coupled to the membrane potential. J Biol Chem 288:31496–31502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ide T, Bäumer S, Deppenmeier U (1999) Energy conservation by the H2:heterodisulfide oxidoreductase from Methanosarcina mazei Gö1: identification of two proton-translocating segments. J Bacteriol 181:4076–4080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobitz S, Meyer O (1989) Removal of CO dehydrogenase from Pseudomonas carboxydovorans cytoplasmic membranes, rebinding of CO dehydrogenase to depleted membranes, and restoration of respiratory activities. J Bacteriol 171:6294–6299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jasso-Chavez R, Apolinario EE, Sowers KR, Ferry JG (2013) MrpA functions in energy conversion during acetate-dependent growth of Methanosarcina acetivorans. J Bacteriol 195:3987–3994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeoung J-H, Fesseler J, Goetzl S, Dobbek H (2014) Carbon monoxide. Toxic gas and fuel for anaerobes and aerobes: carbon monoxide dehydrogenases. In: Kroneck PMH, Sosa-Torres ME (eds) The metal-driven biogeochemistry of gaseous compounds in the environment. Springer, Dordrecht, pp 37–69

    Chapter  Google Scholar 

  • Jeris JS, McCarty PL (1965) The biochemistry of methane fermentation using 14C tracers. J Water Pollut Control Fed 37:178–192

    CAS  Google Scholar 

  • Jetten MS, Stams AJ, Zehnder AJ (1989) Purification and characterization of an oxygen-stable carbon monoxide dehydrogenase of Methanothrix soehngenii. Eur J Biochem 181:437–441

    Article  CAS  PubMed  Google Scholar 

  • Jetten MS, Stams AJ, Zehnder AJ (1992) Methanogenesis from acetate: a comparison of the acetate metabolism in Methanothrix soehngenii and Methanosarcina spp. FEMS Microbiol Rev 10:181–197

    Article  Google Scholar 

  • Joye SB (2012) Microbiology: a piece of the methane puzzle. Nature 491:538–539

    Article  CAS  PubMed  Google Scholar 

  • Kaster AK, Moll J, Parey K, Thauer RK (2011) Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea. Proc Natl Acad Sci U S A 108:2981–2986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaye GWC, Laby TH (1986) Tables of physical and chemical constants, 15th edn. Wiley, New York

    Google Scholar 

  • Keltjens JT, Vogels GD (1993) Conversion of methanol and methylamines to methane and carbon dioxide. In: Ferry JG (ed) Methanogenesis. Chapman & Hall, New York, pp 253–303

    Chapter  Google Scholar 

  • Khalil MAK, Rasmussen RA (1990) The global cycle of carbon monoxide – trends and mass balance. Chemosphere 20:227–242

    Article  CAS  Google Scholar 

  • Kim YM, Park SW (2012) Microbiology and genetics of CO utilization in mycobacteria. Antonie Van Leeuwenhoek 101:685–700

    Article  CAS  PubMed  Google Scholar 

  • King GM, Weber CF (2007) Distribution, diversity and ecology of aerobic CO-oxidizing bacteria. Nat Rev Microbiol 5:107–118

    Article  CAS  PubMed  Google Scholar 

  • Kliefoth M, Langer JD, Matschiavelli N, Oelgeschläger E, Rother M (2012) Genetic analysis of MA4079, an aldehyde dehydrogenase homolog, in Methanosarcina acetivorans. Arch Microbiol 194:75–85

    Article  CAS  PubMed  Google Scholar 

  • Kluyver AJ, Schnellen C (1947) On the fermentation of carbon monoxide by pure cultures of methane bacteria. Arch Biochem 14:57–70

    CAS  PubMed  Google Scholar 

  • Kröninger L, Berger S, Welte C, Deppenmeier U (2016) Evidence for the involvement of two heterodisulfide reductases in the energy-conserving system of Methanomassiliicoccus luminyensis. FEBS J 283:472–483

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni G, Kridelbaugh DM, Guss AM, Metcalf WW (2009) Hydrogen is a preferred intermediate in the energy-conserving electron transport chain of Methanosarcina barkeri. Proc Natl Acad Sci U S A 106:15915–15920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ladapo J, Whitman WB (1990) Method for isolation of auxotrophs in the methanogenic archaebacteria: role of the acetyl-CoA pathway of autotrophic CO2 fixation in Methanococcus maripaludis. Proc Natl Acad Sci U S A 87:5598–5602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leigh JA, Rinehart KL, Wolfe RS (1984) Structure of Methanofuran, the carbon dioxide reduction factor of Methanobacterium thermoautotrophicum. J Am Chem Soc 106:3636–3640

    Article  CAS  Google Scholar 

  • Lessner DJ, Li L, Li Q, Rejtar T, Andreev VP, Reichlen M, Hill K et al (2006) An unconventional pathway for reduction of CO2 to methane in CO-grown Methanosarcina acetivorans revealed by proteomics. Proc Natl Acad Sci U S A 103:17921–17926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Li L, Rejtar T, Lessner DJ, Karger BL, Ferry JG (2006) Electron transport in the pathway of acetate conversion to methane in the marine archaeon Methanosarcina acetivorans. J Bacteriol 188:702–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Li Q, Rohlin L, Kim U, Salmon K, Rejtar T, Gunsalus RP et al (2007) Quantitative proteomic and microarray analysis of the archaeon Methanosarcina acetivorans grown with acetate versus methanol. J Proteome Res 6:759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindahl PA (2002) The Ni-containing carbon monoxide dehydrogenase family: light at the end of the tunnel? Biochemistry 41:2097–2105

    Article  CAS  PubMed  Google Scholar 

  • Lindahl PA, Chang B (2001) The evolution of acetyl-CoA synthase. Orig Life Evol Biosph 31:403–434

    Article  CAS  PubMed  Google Scholar 

  • Ljungdahl LG (1994) The acetyl-CoA pathway and the chemiosmotic generation of ATP during acetogenesis. In: Ferry JG (ed) Acetogenesis. Chapman & Hall, New York, pp 63–87

    Chapter  Google Scholar 

  • Lovley DR, Ferry JG (1985) Production and consumption of hydrogen during growth of Methanosarcina spp. on acetate. Appl Environ Microbiol 49:247–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo G, Wang W, Angelidaki I (2013) Anaerobic digestion for simultaneous sewage sludge treatment and CO biomethanation: process performance and microbial ecology. Environ Sci Technol 47:10685–10693

    CAS  PubMed  Google Scholar 

  • Martin W, Russell MJ (2007) On the origin of biochemistry at an alkaline hydrothermal vent. Philos Trans R Soc Lond Ser B Biol Sci 362:1887–1925

    Article  CAS  Google Scholar 

  • Matschiavelli N (2015) Analyse der Formiat-Bildung in Methanosarcina acetivorans. PhD thesis, Department of Biology, Technische Universität Dresden, Dresden

    Google Scholar 

  • Matschiavelli N, Rother M (2015) Role of a putative tungsten-dependent formylmethanofuran dehydrogenase in Methanosarcina acetivorans. Arch Microbiol 197:379–388

    Article  CAS  PubMed  Google Scholar 

  • Matschiavelli N, Oelgeschläger E, Cocchiararo B, Finke J, Rother M (2012) Function and regulation of isoforms of carbon monoxide dehydrogenase/acetyl-CoA synthase in Methanosarcina acetivorans. J Bacteriol 194:5377–5387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maynard EL, Lindahl PA (1999) Evidence of a molecular tunnel connecting the active sites for CO2 reduction and acetyl-CoA synthesis in acetyl-CoA synthase from Clostridium thermoaceticum. J Am Chem Soc 121:9221–9222

    Article  CAS  Google Scholar 

  • McInerney MJ, Struchtemeyer CG, Sieber J, Mouttaki H, Stams AJ, Schink B, Rohlin L et al (2008) Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann N Y Acad Sci 1125:58–72

    Article  CAS  PubMed  Google Scholar 

  • Meuer J, Kuettner HC, Zhang JK, Hedderich R, Metcalf WW (2002) Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. Proc Natl Acad Sci U S A 99:5632–5637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer O, Schlegel HG (1983) Biology of aerobic carbon monoxide-oxidizing bacteria. Annu Rev Microbiol 37:277–310

    Article  CAS  PubMed  Google Scholar 

  • Meyer O, Jacobitz S, Krüger B (1986) Biochemistry and physiology of aerobic carbon monoxide-utilizing bacteria. FEMS Microbiol Rev 39:161–179

    Article  CAS  Google Scholar 

  • Moran JJ, House CH, Vrentas JM, Freeman KH (2008) Methyl sulfide production by a novel carbon monoxide metabolism in Methanosarcina acetivorans. Appl Environ Microbiol 74:540–542

    Article  CAS  PubMed  Google Scholar 

  • Morgan RM, Pihl TD, Nölling J, Reeve JN (1997) Hydrogen regulation of growth, growth yields, and methane gene transcription in Methanobacterium thermoautotrophicum ΔH. J Bacteriol 179:889–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller V, Blaut M, Gottschalk G (1993) Bioenergetics of methanogenesis. In: Ferry JG (ed) Methanogenesis. Chapman & Hall, New York, pp 360–406

    Chapter  Google Scholar 

  • Murrell JC (2010) The aerobic methane oxidizing bacteria (methanotrophs). In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 1953–1966

    Chapter  Google Scholar 

  • Nelson MJ, Ferry JG (1984) Carbon monoxide-dependent methyl coenzyme M methylreductase in acetotrophic Methosarcina spp. J Bacteriol 160:526–532

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien JM, Wolkin RH, Moench TT, Morgan JB, Zeikus JG (1984) Association of hydrogen metabolism with unitrophic or mixotrophic growth of Methanosarcina barkeri on carbon monoxide. J Bacteriol 158:373–375

    PubMed  PubMed Central  Google Scholar 

  • Odom JM, Peck HD (1981) Hydrogen cycling as a general mechanism for energy coupling in the sulfate-reducing bacteria, Desulfovibrio sp. FEMS Microbiol Lett 12:74–50

    Article  Google Scholar 

  • Oelgeschläger E (2009) Genetische und physiologische Analysen des Kohlenmonoxid-Stoffwechsels in Methanosarcina acetivorans. PhD thesis, Department of Molecular Biosciences, Johann Wolfgang Goethe-Universität, Frankfurt am Main

    Google Scholar 

  • Oelgeschläger E, Rother M (2008) Carbon monoxide-dependent energy metabolism in anaerobic bacteria and archaea. Arch Microbiol 190:257–269

    Article  PubMed  CAS  Google Scholar 

  • Oelgeschläger E, Rother M (2009a) In vivo role of three fused corrinoid/methyl transfer proteins in Methanosarcina acetivorans. Mol Microbiol 72:1260–1272

    Article  PubMed  CAS  Google Scholar 

  • Oelgeschläger E, Rother M (2009b) Influence of carbon monoxide on metabolite formation in Methanosarcina acetivorans. FEMS Microbiol Lett 292:254–260

    Article  PubMed  CAS  Google Scholar 

  • Peters JW (2009) Carbon monoxide and cyanide ligands in the active site of [FeFe]-hydrogenases. Met Ions Life Sci 6:179–218

    Article  CAS  PubMed  Google Scholar 

  • Pomper BK, Saurel O, Milon A, Vorholt JA (2002) Generation of formate by the formyltransferase/hydrolase complex (Fhc) from Methylobacterium extorquens AM1. FEBS Lett 523:133–137

    Article  CAS  PubMed  Google Scholar 

  • Ragsdale SW (2004) Life with carbon monoxide. Crit Rev Biochem Mol Biol 39:165–195

    Article  CAS  PubMed  Google Scholar 

  • Ragsdale SW, Kumar M (1996) Nickel-containing carbon monoxide dehydrogenase/acetyl-CoA synthase. Chem Rev 96:2515–2539

    Article  CAS  PubMed  Google Scholar 

  • Rivera M, Rodriguez JC (2009) The dual role of heme as cofactor and substrate in the biosynthesis of carbon monoxide. Met Ions Life Sci 6:241–293

    Article  CAS  PubMed  Google Scholar 

  • Rother M, Metcalf WW (2004) Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. Proc Natl Acad Sci U S A 101:16929–16934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rother M, Oelgeschläger E, Metcalf WW (2007) Genetic and proteomic analyses of CO utilization by Methanosarcina acetivorans. Arch Microbiol 188:463–472

    Article  CAS  PubMed  Google Scholar 

  • Sancho Navarro S, Cimpoia R, Bruant G, Guiot SR (2016) Biomethanation of syngas using anaerobic sludge: shift in the catabolic routes with the CO partial pressure increase. Front Microbiol 7:1188

    Article  PubMed  PubMed Central  Google Scholar 

  • Saunois M, Bousquet P, Poulter B, Peregon A, Ciais P, Canadell JG, Dlugokencky EJ et al (2016) The global methane budget 2000–2012. Earth Syst Sci Data 8:697–751

    Article  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schlegel K, Leone V, Faraldo-Gomez JD, Müller V (2012a) Promiscuous archaeal ATP synthase concurrently coupled to Na+ and H+ translocation. Proc Natl Acad Sci U S A 109:947–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlegel K, Welte C, Deppenmeier U, Müller V (2012b) Electron transport during aceticlastic methanogenesis by Methanosarcina acetivorans involves a sodium-translocating Rnf complex. FEBS J 279:4444–4452

    Article  CAS  PubMed  Google Scholar 

  • Schmehl M, Jahn A, Meyer zu Vilsendorf A, Hennecke S, Masepohl B, Schuppler M, Marxer M et al (1993) Identification of a new class of nitrogen fixation genes in Rhodobacter capsulatus: a putative membrane complex involved in electron transport to nitrogenase. Mol Gen Genet 241:602–615

    Article  CAS  PubMed  Google Scholar 

  • Seravalli J, Ragsdale SW (2000) Channeling of carbon monoxide during anaerobic carbon dioxide fixation. Biochemistry 39:1274–1277

    Article  CAS  PubMed  Google Scholar 

  • Shima S, Thauer RK, Ermler U (2009) Carbon monoxide as intrinsic ligand to iron in the active site of [Fe]-hydrogenase. Met Ions Life Sci 6:219–240

    Article  CAS  PubMed  Google Scholar 

  • Sipma J, Henstra AM, Parshina SM, Lens PN, Lettinga G, Stams AJ (2006) Microbial CO conversions with applications in synthesis gas purification and bio-desulfurization. Crit Rev Biotechnol 26:41–65

    Article  CAS  PubMed  Google Scholar 

  • Slobodkin AI, Sokolova TG, Lysenko AM, Wiegel J (2006) Reclassification of Thermoterrabacterium ferrireducens as Carboxydothermus ferrireducens comb. nov., and emended description of the genus Carboxydothermus. Int J Syst Evol Microbiol 56:2349–2351

    Article  CAS  PubMed  Google Scholar 

  • Sokolova TG, Henstra AM, Sipma J, Parshina SN, Stams AJ, Lebedinsky AV (2009) Diversity and ecophysiological features of thermophilic carboxydotrophic anaerobes. FEMS Microbiol Ecol 68:131–141

    Article  CAS  PubMed  Google Scholar 

  • Sorokin DY, Makarova KS, Abbas B, Ferrer M, Golyshin PN, Galinski EA, Ciordia S et al (2017) Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat Microbiol 2:17081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sowers KR, Baron SF, Ferry JG (1984) Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl Environ Microbiol 47:971–978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stojanowic A, Hedderich R (2004) CO2 reduction to the level of formylmethanofuran in Methanosarcina barkeri is non-energy driven when CO is the electron donor. FEMS Microbiol Lett 235:163–167

    Article  CAS  PubMed  Google Scholar 

  • Stupperich E, Hammel KE, Fuchs G, Thauer RK (1983) Carbon monoxide fixation into the carboxyl group of acetyl coenzyme a during autotrophic growth of Methanobacterium. FEBS Lett 152:21–23

    Article  CAS  PubMed  Google Scholar 

  • Svetlitchnaia T, Svetlitchnyi V, Meyer O, Dobbek H (2006) Structural insights into methyltransfer reactions of a corrinoid iron-sulfur protein involved in acetyl-CoA synthesis. Proc Natl Acad Sci U S A 103:14331–14336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svetlitchnyi V, Dobbek H, Meyer-Klaucke W, Meins T, Thiele B, Romer P, Huber R et al (2004) A functional Ni-Ni-[4Fe-4S] cluster in the monomeric acetyl-CoA synthase from Carboxydothermus hydrogenoformans. Proc Natl Acad Sci U S A 101:446–451

    Article  CAS  PubMed  Google Scholar 

  • Swinnerton JW, Linnenbom VJ, Lamontagne RA (1970) The ocean: a natural source of carbon monoxide. Science 167:984–986

    Article  CAS  PubMed  Google Scholar 

  • Tallant TC, Paul L, Krzycki JA (2001) The MtsA subunit of the methylthiol:coenzyme M methyltransferase of Methanosarcina barkeri catalyses both half-reactions of corrinoid-dependent dimethylsulfide: coenzyme M methyl transfer. J Biol Chem 276:4485–4493

    Article  CAS  PubMed  Google Scholar 

  • Terlesky KC, Ferry JG (1988) Ferredoxin requirement for electron transport from the carbon monoxide dehydrogenase complex to a membrane-bound hydrogenase in acetate-grown Methanosarcina thermophila. J Biol Chem 263:4075–4079

    CAS  PubMed  Google Scholar 

  • Thauer RK (1988) Citric-acid cycle, 50 years on. Modifications and an alternative pathway in anaerobic bacteria. Eur J Biochem 176:497–508

    Article  CAS  PubMed  Google Scholar 

  • Thauer RK (2011) Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2. Curr Opin Microbiol 14:292–299

    Article  CAS  PubMed  Google Scholar 

  • Thauer RK (2012) The Wolfe cycle comes full circle. Proc Natl Acad Sci U S A 109:15084–15085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591

    Article  CAS  PubMed  Google Scholar 

  • Thauer RK, Kaster AK, Goenrich M, Schick M, Hiromoto T, Shima S (2010) Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu Rev Biochem 79:507–536

    Article  CAS  PubMed  Google Scholar 

  • Tietze M, Beuchle A, Lamla I, Orth N, Dehler M, Greiner G, Beifuss U (2003) Redox potentials of methanophenazine and CoB-S-S-CoM, factors involved in electron transport in methanogenic archaea. Chembiochem 4:333–3356

    Article  CAS  PubMed  Google Scholar 

  • Vepachedu VR, Ferry JG (2012) Role of the fused corrinoid/methyl transfer protein CmtA during CO-dependent growth of Methanosarcina acetivorans. J Bacteriol 194:4161–4168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner T, Ermler U, Shima S (2016) The methanogenic CO2 reducing-and-fixing enzyme is bifunctional and contains 46 [4Fe-4S] clusters. Science 354:114–117

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Tomb JF, Ferry JG (2011) Electron transport in acetate-grown Methanosarcina acetivorans. BMC Microbiol 11:165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasserfallen A, Nölling J, Pfister P, Reeve J, Conway de Macario E (2000) Phylogenetic analysis of 18 thermophilic Methanobacterium isolates supports the proposals to create a new genus, Methanothermobacter gen. nov., and to reclassify several isolates in three species, Methanothermobacter thermautotrophicus comb. nov., Methanothermobacter wolfeii comb. nov., and Methanothermobacter marburgensis sp. nov. Int J Syst Evol Microbiol 50 Pt 1:43–53

    Article  CAS  PubMed  Google Scholar 

  • Weinstock B, Niki H (1972) Carbon monoxide balance in nature. Science 176:290–292

    Article  CAS  PubMed  Google Scholar 

  • Welte C, Deppenmeier U (2011) Re-evaluation of the function of the F420 dehydrogenase in electron transport of Methanosarcina mazei. FEBS J 278:1277–1287

    Article  CAS  PubMed  Google Scholar 

  • Welte C, Deppenmeier U (2014) Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens. Biochim Biophys Acta 1837:1130–1147

    Article  CAS  PubMed  Google Scholar 

  • Whitman WB, Bowen TL, Boone DR (2006) The methanogenic bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes-a handbook on the biology of bacteria, 3rd edn. Springer, New York, pp 165–207

    Google Scholar 

  • Wuebbles DJ, Hayhoe K (2002) Atmospheric methane and global change. Earth-Sci Rev 57:177–210

    Article  CAS  Google Scholar 

  • Yan Z, Wang M, Ferry JG (2017) A ferredoxin- and F420H2-dependent, electron-bifurcating, heterodisulfide reductase with homologs in the domains bacteria and archaea. MBio 8:e02285-02216

    Article  Google Scholar 

  • Zeikus JG, Wolfe RS (1972) Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109:707–715

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments 

We are grateful for financial support from the Deutsche Forschungsgemeinschaft and the Bundesministerium für Bildung und Forschung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Rother .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Schöne, C., Rother, M. (2019). Methanogenesis from Carbon Monoxide. In: Stams, A., Sousa, D. (eds) Biogenesis of Hydrocarbons. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-78108-2_4

Download citation

Publish with us

Policies and ethics