Skip to main content

Introduction to Microbial Hydrocarbon Production: Bioenergetics

  • Reference work entry
  • First Online:
Biogenesis of Hydrocarbons

Abstract

Microorganisms play an essential role in the global carbon budget with methanogenesis being a significant global source of methane. The ability to produce hydrocarbons other than methane is widespread among microorganisms, and the diversity of hydrocarbon structures that are made is remarkable. However, other than microbial methane production, we know very little about the biochemical processes involved in microbial hydrocarbon formation. Methane production from natural polymers involves a consortium of interacting microbial species. Gibbs free energy yields associated with methanogenesis depend significantly on environmental conditions, especially temperature, activities (concentrations) of substrates and products, and pH, and are typically substantially smaller in natural systems than in growth-optimized cultures. The Gibbs free energy changes involved in the conversion of hydrocarbons, fatty and aromatic acids, alcohols, and hydrogen to methane are close to thermodynamic equilibrium. The low Gibbs free energy changes by which methanogenic consortia operate imply the existence of a minimum free energy change needed to sustain microbial growth, e.g., a biological energy quantum (BEQ), which is supported both by theoretical considerations and experimental data. Methanogenic consortia provide excellent models to study interspecies interactions and highly efficient energy economies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitken CM, Jones DM, Larter SR (2004) Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature 431:291–294

    Article  CAS  PubMed  Google Scholar 

  • Aiyuk S, Forrez I, de Lieven K, van Haandel A, Verstraete W (2006) Anaerobic and complementary treatment of domestic sewage in regions with hot climates-a review. Bioresour Technol 97:2225–2241

    Article  CAS  PubMed  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  CAS  PubMed  Google Scholar 

  • Buckel W, Thauer RK (2013) Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim Biophys Acta 1827:94–113

    Article  CAS  PubMed  Google Scholar 

  • Cord-Ruwisch R, Seitz H-J, Conrad R (1988) The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch Microbiol 149:350–357

    Article  CAS  Google Scholar 

  • Costa E, Perez J, Kreft JU (2006) Why is metabolic labour divided in nitrification? Trends Microbiol 14:213–219

    Article  CAS  PubMed  Google Scholar 

  • Dennis M, Kolattukudy PE (1992) A cobalt-porphyrin enzyme converts a fatty aldehyde to a hydrocarbon and CO. Proc Natl Acad Sci U S A 89:5306–5310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deppenmeier U (2002) The unique biochemistry of methanogenesis. Prog Nucleic Acid Res Mol Biol 71:223–283

    Article  CAS  PubMed  Google Scholar 

  • Dolfing J (2013) Syntrophic propionate oxidation via butyrate: a novel window of opportunity under methanogenic conditions. Appl Environ Microbiol 79:4515–4516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drake HL (1994) Acetogenesis. Chapman & Hall, New York

    Google Scholar 

  • Dwyer DF, Weeg-Aerssens E, Shelton DR, Tiedje JM (1988) Bioenergetic conditions of butyrate metabolism by a syntrophic, anaerobic bacterium in coculture with hydrogen-oxidizing methanogenic and sulfidogenic bacteria. Appl Environ Microbiol 54:1354–1359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ehhalt D, Prather M, Dentener F, Derwent R, Dlugokencky E, Holland E, Isaksen I, Katima J, Kirchhoff V, Matson P, Midgley P, Wang M (2001) Atmospheric chemistry and greenhouse gases. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 881pp

    Google Scholar 

  • Elshahed MS, McInerney (2001) Is interspecies hydrogen transfer needed for toluene degradation under sulfate-reducing conditions? FEMS Microbiol Ecol 35:163–169

    Article  CAS  PubMed  Google Scholar 

  • Ficker M, Krastel K, Orlicky S, Edwards E (1999) Molecular characterization of a toluene-degrading methanogenic consortium. Appl Environ Microbiol 65:5576–5585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gieg LM, Duncan KE, Suflita JM (2008) Bioenergy production via microbial conversion of residual oil to natural gas. Appl Environ Microbiol 74:3022–3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hattori S, Galushko AS, Kamagata Y, Schink B (2005) Operation of the CO dehydrogenase/acetyl coenzyme A pathway in both acetate oxidation and acetate formation by the syntrophically acetate-oxidizing bacterium Thermacetogenium phaeum. J Bacteriol 187:3471–3476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–352

    Article  CAS  PubMed  Google Scholar 

  • Hedderich R, Whitman W (2006) Physiology and biochemistry of the methane-producing Archaea. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes: an evolving electronic resource for the microbial community, 3, vol 2. Springer, New York, pp 1050–1079

    Chapter  Google Scholar 

  • Heider J, Spormann AM, Beller HR, Widdel F (1999) Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol Rev 22:459–473

    Article  Google Scholar 

  • Heijnen JJ (1999) Bioenergetics of microbial growth. In: Flickinger MC, Derew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation. Wiley, New York, pp 267–291

    Google Scholar 

  • Heijnen JJ, vanDijken JP (1992) In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms. Biotechnol Bioeng 39:833–858

    Article  CAS  PubMed  Google Scholar 

  • Hinrichs K-U, Hayes JM, Bach W, Spivack AJ, Hmelo LR, Holm NG, Johnson CG, Sylva SP (2006) Biological formation of ethane and propane in the deep marine subsurface. Proc Natl Acad Sci U S A 103:14684–14689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoehler T (2004) Biological energy requirements as quantitative boundary conditions for life in the subsurface. Geobiology 2:205–215

    Article  Google Scholar 

  • Hoehler TM, Alperin MJ, Albert DM et al (2001) Apparent minimum free energy requirements for methanogenic archaea and sulfate-reducing bacteria in an anoxic marine sediment. FEMS Microbiol Ecol 38:33–41

    Article  CAS  Google Scholar 

  • Hoehler TM, Albert DB, Alperin MJ, Bebout BM, Martens CS, DesMarais DJ (2002) Comparative ecology of H2 cycling in sedimentary and phototrophic ecosystems. Antonie Van Leeuwenhoek 81:575–585

    Article  CAS  PubMed  Google Scholar 

  • Ilag L, Curtis RW (1968) Production of ethylene by fungi. Science 159:1357–1358

    Article  CAS  PubMed  Google Scholar 

  • Jackson BE, McInerney MJ (2002) Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature 415:454–456

    Article  CAS  PubMed  Google Scholar 

  • Jones DM, Head IM, Gray ND, Adams JJ, Rowan AK, Aitken CM, Bennett B, Huang H, Brown A, Bowler BFJ, Oldenburg T, Erdmann M, Larter SR (2008) Crude oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451:176–180

    Article  CAS  PubMed  Google Scholar 

  • Julsing MK, Rijpkema M, Woerdenbag HJ, Quax WJ, Kayser O (2007) Functional analysis of genes involved in biosynthesis of isoprene in Bacillus subtilis. Appl Microbiol Biotechnol 75:1377–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalacheva GS, Zhila NO, Volova TG (2002) Lipid and hydrocarbon compositions of a collection strain and a wild sample of green microalga Botryococcus. Aquat Ecol 36:317–330

    Article  CAS  Google Scholar 

  • Keppler F, Hamilton JTG, Braß M, Röckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191

    Article  CAS  PubMed  Google Scholar 

  • Koga Y, Morii H (2007) Biosynthesis of ether-type polar lipids in archaea and evolutionary considerations. Microbiol Mol Biol Rev 71:97–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krulwich TA (1995) Alkaliphiles: ‘basic’ molecular problems of pH tolerance and bioenergetics. Mol Microbiol 15:403–410

    Article  CAS  PubMed  Google Scholar 

  • Krulwich TA (2000) Alkaliphilic prokaryotes. In The prokaryotes (ed. M. Dworkin). Springer. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (ed) The prokaryotes: an evolving electronic resource for the microbial community, vol 2. Springer, New York, pp 309–336

    Google Scholar 

  • Ladygina N, Dedyukhina EG, Vainshtein MB (2006) A review on microbial synthesis of hydrocarbons. Process Biochem 41:1001–1014

    Article  CAS  Google Scholar 

  • Laso-Pérez R, Wegener G, Knittel K, Widdel F, Harding KJ (2016) Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature 539:396–401

    Article  PubMed  Google Scholar 

  • Lelieveld J, Crutzen PJ, Dentener FJ (1998) Changing concentration, lifetimes and climate forcing of atmospheric methane. Tellus B 50:128–150

    Article  Google Scholar 

  • Leng L, Yang P, Singh S, Zhuang H et al (2018) A review on the bioenergetics of anaerobic microbial metabolism close to the thermodynamic limits and its implications for digestion applications. Bioresour Technol 247:1095–1106

    Article  CAS  PubMed  Google Scholar 

  • Lever MA, Rogers KL, Lloyd KG, Overmann J, Schink B, Thauer RK, Hoehler TM, Jørgensen BB (2015) Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiol Ecol 39:688–728

    Article  CAS  Google Scholar 

  • Li F, Hinderberger J, Seedorf H, Zhang J, Buckel W, Thauer RK (2008) Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyrylCoA dehydrogenase/Etf complex from Clostridium kluyveri. J Bacteriol 190:843–850

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR (1985) Minimum threshold for hydrogen metabolism in methanogenic bacteria. Appl Environ Microbiol 49:1530–1531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch JM (1972) Identification of substrates and isolation of microorganisms responsible for ethylene production in the soil. Nature 240:45–46

    Article  CAS  Google Scholar 

  • Mackie RI, White BA (eds) (1997) Gastrointestinal microbiology, vol 1. Chapman & Hall, New York

    Google Scholar 

  • McCarty PL (1971) Energetics and kinetics of anaerobic treatment. In: Gould RF (ed) Anaerobic biological treatment processes. American Chemical Society, Washington, DC, pp 91–107

    Chapter  Google Scholar 

  • McInerney MJ, Beaty PS (1988) Anaerobic community structure from a nonequilibrium thermodynamic perspective. Can J Microbiol 34:487–493

    Article  CAS  Google Scholar 

  • McInerney MJ, Struchtemeyer CG, Sieber J, Mouttaki H, Stams AJM, Schink B, Rohlin L, Gunsalus RP (2008) Physiology, ecology, phylogeny and genomics of microorganisms capable of syntrophic metabolism. Ann N Y Acad Sci 1125:58–72

    Article  CAS  PubMed  Google Scholar 

  • Meckenstock RU (1999) Fermentative toluene degradation in anaerobic defined syntrophic cocultures. FEMS Microbiol Lett 177:67–73

    Article  CAS  PubMed  Google Scholar 

  • Montag D, Schink B (2015) Biogas process parameters – energetics and kinetics of secondary fermentations in methanogenic biomass degradation. Appl Microbiol Biotechnol 100:1019–1026

    Article  PubMed  Google Scholar 

  • Park M-O (2005) New pathway for long-chain n-alkane synthesis via 1-alcohol in Vibrio furnissii M1. J Bacteriol 187:1426–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeiffer T, Schuster S, Bonhoeffer S (2001) Cooperation and competition in the evolution of ATP-producing pathways. Science 292:504–507

    Article  CAS  PubMed  Google Scholar 

  • Schaefer G, Engelhard M, Mueller V (1999) Bioenergetics of the archaea. Microbiol Mol Biol Rev 63:570–620

    Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schink B, Stams AJM (2002) Syntrophism among prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes: an evolving electronic resource for the microbial community, vol 2. Springer, New York, pp 309–336

    Google Scholar 

  • Schink B, Montag D, Keller A, Muller N (2017) Hydrogen or formate – alternative key players in methanogenic degradation. Environ Microbiol Rep 9:189–202

    Article  CAS  PubMed  Google Scholar 

  • Schöcke L, Schink B (1997) Energetics of methanogenic benzoate degradation by Syntrophus gentianae in syntrophic coculture. Microbiology 143:2345–2351

    Article  PubMed  Google Scholar 

  • Scholten JC, Conrad R (2000) Energetics of syntrophic propionate oxidation in defined batch and chemostat cocultures. Appl Environ Microbiol 66:2934–2942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seitz HJ, Schink B, Pfennig P, Conrad R (1990) Energetics of syntrophic ethanol oxidation in defined chemostat cocultures. 1. Energy requirement for hydrogen production and hydrogen oxidation. Arch Microbiol 155:82–88

    Article  CAS  Google Scholar 

  • Shock EL, Helgeson HC (1988) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C. Geochim Cosmochim Acta 52:2009–2036

    Article  CAS  Google Scholar 

  • Shock EL, Helgeson HC (1990) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: standard partial molal properties of organic species. Geochim Cosmochim Acta 54:915–945

    Article  CAS  Google Scholar 

  • Spahn S, Brandt K, Müller V (2015) A low phosphorylation potential in the acetogen Acetobacterium woodii reflects its lifestyle at the thermodynamic edge of life. Arch Microbiol 197:745–751

    Article  CAS  PubMed  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tornabene TG (1980) Formation of hydrocarbons by bacteria and algae. Basic Life Sci 18:421–438

    Google Scholar 

  • Tornabene TG (1982) Microorganisms as hydrocarbon producers. Experientia 38:43–46

    Article  CAS  Google Scholar 

  • Tran QH, Unden G (1998) Changes in the proton potential and the cellular energetics of Escherichia coli during growth by aerobic and anaerobic respiration or by fermentation. Eur J Biochem 251:538–543

    Article  CAS  PubMed  Google Scholar 

  • Ueno Y, Yamada K, Yoshida N, Maruyama S, Isozaki Y (2006) Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440:516–519

    Article  CAS  PubMed  Google Scholar 

  • Wackett LP (2008) Microbial-based motor fuels: science and technology. Microb Biotechnol 1:211–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warikoo V, McInerney MJ, Robinson JA, Suflita JM (1996) Interspecies acetate transfer influences the extent of anaerobic benzoate degradation by syntrophic consortia. Appl Environ Microbiol 62:26–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Widdel F, Boetius A, Rabus R (2006) Anaerobic biodegradation of hydrocarbons including methane. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes: an evolving electronic resource for the microbial community, vol 2. Springer, New York, pp 1028–1049

    Chapter  Google Scholar 

  • Wilhelms A, Larter SR, Head I, Farrimond P, di-Primio R, Zwach C (2001) Biodegradation of oil in uplifted basins prevented by deep-burial sterilization. Nature 411:1034–1037

    Article  CAS  PubMed  Google Scholar 

  • Youngblood WW, Blumer M (1973) Alkanes and alkenes in marine benthic algae. Mar Biol 21:163–172

    Article  CAS  Google Scholar 

  • Zedelius J, Rabus R, Grundmann O, Werner I, Brodkorb D et al (2011) Alkane degradation under anoxic conditions by a nitrate-reducing bacterium with possible involvement of the electron acceptor in substrate activation. Environ Microbiol 3:125–135

    CAS  Google Scholar 

  • Zinder SH (1993) Physiological ecology of methanogens. In: Ferry JG (ed) Methanogenesis: ecology, physiology, biochemistry & genetics. Chapman & Hall, London, pp 128–206

    Chapter  Google Scholar 

  • Zinder SH, Koch M (1984) Non-acetoclastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch Microbiol 138:263–272

    Article  CAS  Google Scholar 

  • Zwolinski MD, Harris RF, Hickey WJ (2000) Microbial consortia involved in the anaerobic degradation of hydrocarbons. Biodegradation 11:141–158

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Schink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Schink, B., McInerney, M.J., Hoehler, T., Gunsalus, R.P. (2019). Introduction to Microbial Hydrocarbon Production: Bioenergetics. In: Stams, A., Sousa, D. (eds) Biogenesis of Hydrocarbons. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-78108-2_1

Download citation

Publish with us

Policies and ethics