Skip to main content

Nutraceutical Potential of Guava

  • Reference work entry
  • First Online:
Bioactive Molecules in Food

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 4751 Accesses

Abstract

Psidium guajava commonly known as guava is one of the economical fruit crops belonging to the Myrtaceae family and grows in tropical and subtropical region. Largely grown as wild crop or selection variants, disease-free quality planting materials for establishment of guava orchard is necessary. The fruit is also labeled as super-fruit, and because of its unique flavor, taste, and health-promoting qualities, it is regarded as functional food or potent nutraceutical. It is rich in antioxidant compounds and contains a high level of ascorbic acid content, carotenoids, and phenolic compounds. It is acclaimed as the “poor man’s apple of the tropic.” Traditionally guava leaves and fruits are used in folk medicine for the treatment of various ailments like diarrhea, flatulence, gastric pain, wounds, rheumatism, ulcers, etc. Guavas possess antioxidant, antimicrobial, anticancer, antidiabetic, and anti-inflammatory activities, supporting a great therapeutic potential and a wide range of clinical applications. The important active biochemical compounds in guava are essential oils, phenolics, flavonoids, carotenoids, triterpenoids, esters, aldehydes, etc. Guava fruit is highly perishable, so to increase its shelf life, it may be processed into various value-added products like guava juices, squash, nectar, leather, jam, jellies, powder, etc. This chapter describes in detail about the guava plant, ecological requirements for its growth, various methods of its propagations, current knowledge about its nutraceutical properties and its application in preparing guava-based value-added products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Stone B (1970) The flora of Guam. Micronesica 82:373–378

    Google Scholar 

  2. Yahia EM (2018) Fruits and vegetable phytochemicals: chemistry and human health. Wiley, Hoboken, pp 1067–1076

    Google Scholar 

  3. Kaneria M, Chanda S (2011) Phytochemical and Pharmacognostic evaluation of leaves of Psidium guajava L. (Myrtaceae). Pharmacogn 23:32–41

    Google Scholar 

  4. Haida KS, Baron A, Haida KS (2011) Phenolic compounds and antioxidant activity of two varieties of guava and rue. Rev Bras Ciênc Saúde 28:11–19

    Google Scholar 

  5. Begum S, Hassan SI, Siddiqui BS (2002) Two new triterpenoids from the fresh leaves of Psidium guajava. Planta Med 68:1149–1152

    CAS  PubMed  Google Scholar 

  6. Luiz CC, Carlos AF, Santos FV, Lima GPP (2011) Antioxidant content in guava (Psidium guajava) and araca (Psidium spp.) germplasm from different Brazilian regions. Plant Genet Resour Charact Util 9:384–391

    Google Scholar 

  7. Kumar A (2012) Importance for life ‘Psidium guajava’. Int J Res Pharm Biomed Sci 3:137–133

    Google Scholar 

  8. Sanda KA, Grema HA, Geidam YA, Bukar-Kolo YM (2011) Pharmacological aspects of Psidium guajava: an update. Int J Pharmacol 7:316–324

    Google Scholar 

  9. Kamath JV, Rahul N, Ashok Kumar CK, Lakshmi SM (2008) Psidium guajava L.: a review. Int J Green Pharm 2:9–12

    Google Scholar 

  10. Joseph B, Priya M (2011) Review on nutritional, medicinal, and pharmacological properties of guava (Psidium Guajava Linn.). Int J Pharma Bio Sci 2:53–69

    Google Scholar 

  11. Ojewole JA, Awe EO, Chiwororo WD (2008) Antidiarrhoeal activity of Psidium guajava Linn. (Myrtaceae) leaf aqueousextract in rodents. J Smooth Muscle Res 44(6):195–207

    PubMed  Google Scholar 

  12. Keservani RK, Vyas N, Jani S, Raghuvanshi R, Sharma AK (2010) Nutraceutical and functional food as future food: a review. Der Pharmacia Lett 2:106–116

    Google Scholar 

  13. Gupta S, Chauhan D, Mehla K, Sood P, Nair A (2010) An overview of nutraceuticals: current scenario. J Basic Clin Pharm 1:55–62

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ajila CM, Prasada Rao UJS (2013) Mango peel dietary fiber: composition and associated bound phenolics. J Funct Foods 5:444–450

    CAS  Google Scholar 

  15. Singh G, Gupta S, Mishra R, Singh GP (2005) Wedge grafting for rapid multiplication of guava. ICAR News 11:2–3

    Google Scholar 

  16. Singh G (2004) Techniques for producing multiple crops in hi-density planting in guava. ICAR News 10:1–2

    Google Scholar 

  17. Singh G (2007) Recent developments in production of guava. Acta Hort 735:161–176

    Google Scholar 

  18. Deshmukh MM, Sen NL (2001) Evaluation of drip irrigation it’s evaporation based irrigation scheduling distribution patterns on performance of guava. Advan Horti Forestry 8:25–31

    Google Scholar 

  19. Dubey AK, Pathak RA, Pathak RK (2002) Effects of drip irrigation on guava on plant growth and nutrients status of leaves. Progress Hortic 34:56–59

    Google Scholar 

  20. Sharma S, Patra SKR, Roy GB, Bera S (2013) Influence of drip irrigation and nitrogen fertigation on yield and water productivity of guava. The Bioscan 8:783–786

    Google Scholar 

  21. Mercado-Silvaa E, Pedro B, Ma De Los A (1998) Fruit development, harvest index and ripening changes of guava as produced in Central Mexico. Postharvest Biol Technol 13:143–150

    Google Scholar 

  22. Reyes MU, Paul RE (1995) Effect of storage and ethylene treatment on guava (Psidium guajava L.) fruit ripening. Postharvest Biol Technol 6:357–365

    CAS  Google Scholar 

  23. Morton J (1987) Fruits of warm climates. Florida Flair Books, Miami, pp 356–363

    Google Scholar 

  24. Mao SE, Campbell CW (1994) The guava horticultural sciences department fact sheet HS-4. Florida cooperative extension service, Institute of food and agricultural sciences University of Florida

    Google Scholar 

  25. Jiménez-Escrig A, Rincón M, Pulido R, Saura-Calixto F (2001) Guava fruit (Psidium guajava L) as a new source of antioxidant dietary fiber. J Agric Food Chem 49:5489–5493

    PubMed  Google Scholar 

  26. Conway P (2001) Tree medicine: A comprehensive guide to the healing power of over 170 trees. Judy Piatkus Ltd, London, pp 2173–2177

    Google Scholar 

  27. Osorio DV, Acosta LMV, Hincapié GA (2014) Analysis of nutritional and functional properties of dry guava. Ing Univ Bogotá (Colombia) 18(1):159–175

    Google Scholar 

  28. Mercadante AZ, Steck A, Pfander H (1999) Carotenoids from guava: isolation and structure elucidation. J Agric Food Chem 47:145–151

    CAS  PubMed  Google Scholar 

  29. Dolkar D, Bakshi P, Gupta M, Wali VK, Kumar R, Hajarika TK, Kher D (2017) Biochemical changes in guava (Psidium guajava) fruits during different stages of ripening. Indian J Agric Sci 87:257–260

    CAS  Google Scholar 

  30. Saxena M, Saxena J, Nema R, Singh D, Gupta A (2013) Phytochemistry of medicinal plants. J Pharmacogn Phytochem 1:168–182

    Google Scholar 

  31. Randhir R, Lin YT, Shetty K (2004) Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochem 39:637–646

    CAS  Google Scholar 

  32. Velderrain-Rodríguez GR, Palafox-Carlos H, Wall-Medrano A, AyalaZavala JF, Chen CYO, Robles-Sanchez M, Astiazaran-García H, Alvarez-Parrilla E, González-Aguilar GA (2014) Phenolic compounds: their journey after intake. Food Funct 5:189–197

    PubMed  Google Scholar 

  33. Choudhary S, Sharan L, Sinha MP (2012) Phytochemical and antimicrobial screening of Psidium Guajava L. leaf extracts against clinically important gastrointestinal pathogens. J Nat Prod Plant Resour 2:524–529

    Google Scholar 

  34. Pathare P, Nilegaonkar S, Agte V (2017) Factors influencing the nutraceutical activity of guava fruits. Adv Food Sci Eng 1:107–111

    Google Scholar 

  35. Herrmann KM (1995) The shikimate pathway as an entry to aromatic secondary metabolism. Plant Physiol 107:7–12

    CAS  PubMed  PubMed Central  Google Scholar 

  36. De Bruyne T, Pieters L, Deelstra H, Vlietinck A (1999) Condensed vegetable tannins: biodiversity in structure and biological activities. Biochem Syst Ecol 27:445–449

    Google Scholar 

  37. Hagerman A, Riedl K, Jones A, Sovik K, Ritchard N, Hartzfeld R (1998) High molecular weight plant polyphenolics (tannins) as biological antioxidants. J Agric Food Chem 46:1887–1892

    CAS  PubMed  Google Scholar 

  38. Robbins R (2003) Phenolic acids in food: an overview of analytical methodology. J Agric Food Chem 51:2866–2887

    CAS  PubMed  Google Scholar 

  39. Miean KH, Mohamed S (2001) Flavonoid (Myricetin, Quercetin, Kaempferol, Luteolin, and Apigenin) content of edible tropical plants. J Agric Food Chem 49:3106–3112

    CAS  PubMed  Google Scholar 

  40. Misra K, Seshadri TR (1967) Chemical components of the fruits of Psidium guava. Phytochemistry 7:641–645

    Google Scholar 

  41. Chen YH, Zhou T, Zhang YJ, Zou ZF, Wang F, Xu DP (2015) Evaluation of antioxidant and anticancer activities of guava. Int J Food Nutr Saf 6(1):1–9

    Google Scholar 

  42. Mahattanatawee K, Manthey JA, Luzio G, Talcott ST, Goodner KL, Baldwin EA (2006) Total antioxidant activity and fiber content of select Florida grown tropical fruits. J Agric Food Chem 54(19):7355–7363

    CAS  PubMed  Google Scholar 

  43. Rishika D, Sharma R (2012) An update of pharmacological activity of Psidium guajava in the management of various disorders. Int J Pharm Sci Res 3:3577–3584

    Google Scholar 

  44. Fennema OR (1996) Food chemistry, 3rd edn. Marcel Dekker, New York

    Google Scholar 

  45. Fennema OR (1977) Loss of vitamins in fresh and frozen foods. Food Technol 31(12):32

    CAS  Google Scholar 

  46. Uddin MS, Hawlader MNA, Ding L, Mujumdar AS (2002) Degradation of ascorbic acid in dried guava during storage. J Food Eng 51:21–26

    Google Scholar 

  47. Macdougall D (2002) Colour in food. Woodhead publishing, Abington/Cambridge, pp 190–211; 278–286

    Google Scholar 

  48. Deshpande SS, Deshpande US, Salunkhe DK (1995) Nutritional and health aspects of food antioxidants. In: Madhavi DL, Deshpande SS, Salunkhe DK (eds) Food antioxidants – technological, toxicological and health perspectives. Marcel Dekker, New York, pp 361–382

    Google Scholar 

  49. Rao AV, Agarwal S (1999) Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases: a review. Nutr Res 19:305–323

    CAS  Google Scholar 

  50. Oliveira Dda S, Lobato AL, Ribeiro SM, Santana AM, Chaves JB et al (2010) Carotenoids and vitamin C during handling and distribution of guava (Psidium guajava L.), mango (Mangifera indica L.), and papaya (Carica papaya L.) at commercial restaurants. J Agric Food Chem 58:6166–6172

    PubMed  Google Scholar 

  51. Barbalho SM, Farinazzi-Machado FM, de Alvares Goulart R, Brunnati AC, Ottoboni AM et al (2012) Psidium guajava (guava): a plant of multipurpose medicinal plants. Med Aromat Plants 1:104

    Google Scholar 

  52. Oliver-Bever (1986) Bep: medicinal plants in tropical West Africa. Cambridge University Press, Cambridge

    Google Scholar 

  53. Ngamukote S, Mäkynen K, Thilawech T, Adisakwattana S (2011) Cholesterol lowering activity of the major polyphenols in grape seed. Molecules 16:5054–5061

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Gosmann G, Barlette AG, Dhamer T, Arçari DP, Santos JC (2012) Phenolic compounds from Maté (Ilex paraguariensis) inhibit Adipogenesis in 3T3-L1 Preadipocytes. Plant Foods Hum Nutr 67:156–161

    CAS  PubMed  Google Scholar 

  55. Arima H, Danno G (2002) Isolation of antimicrobial compounds from guava (Psidium guajava L.) and their structural elucidation. Biosci Biotech Bioch 66:1727–1730

    CAS  Google Scholar 

  56. Nadkarni KM, Nadkarni AK (1999) Indian materia medica – with ayurvedic, unani-tibbi, siddha, allopathic, homeopathic, naturopathic and home remedies, vol 1. Popular Prakashan Private Ltd., Bombay

    Google Scholar 

  57. Bisht R, Chanyal S, Agrawal PK (2016) Antimicrobial and phytochemical analysis of leaf extract of medicinal fruit plants. Asian J Pharm Clin Res 9:131–136

    CAS  Google Scholar 

  58. Hassimotto NM, Genovese MI (2005) Antioxidant activity of dietary fruits, vegetables, and commercial frozen fruit pulps. J Agric Food Chem 53:2928–2935

    CAS  PubMed  Google Scholar 

  59. Healthaliciousness.com (2008) Nutrient facts comparison for common guava, strawberry guava, and oranges (http://www.healthaliciousness.com/nutritionfacts/sbsl.php?one=9139&two=9140&three=9200). Retrieved. 2008-DEC-21.

  60. Ghosh P, Mandal A, Chakraborty P et al (2010) Triterpenoids from Psidium guajava with biocidal activity. Indian J Pharm Sci 2:504–507

    Google Scholar 

  61. Chen KC, Peng CC, Chiu WT, Cheng YT, Huang GT, Hsieh CL (2010) Action mechanism and signal pathways of Psidium guajava L. aqueous extract in killing prostate cancer LNCaP cells. Nutr Cancer 62:260–270

    PubMed  Google Scholar 

  62. Kaljee ML, Dinh TV, Lorenz VS, Becky GL, Gia CD, Huu TL, Tan MT, Kim TLT, Clemens JD, Duc TD (2004) Healthcare use for diarrhoea and dysenter in actual and hypothetical cases, Nha Trang, Viet Nam. J Health Popul Nutr 22:139–149

    PubMed  Google Scholar 

  63. Metwally AM, Omar AA, Harraz FM, El Sohafy SM (2010) Phytochemical investigation and antimicrobial activity of Psidium guajava L leaves. Pharmacogn Mag 6:212–218

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ojezele MO, Agunbiade S (2013) Phytochemical constituents and medicinal properties of different extracts of Anacardium occidentale and Psidium guajava. Asian J Biomed Pharm Sci 3:20–23

    Google Scholar 

  65. Thuaytong W, Anprung P (2011) Bioactive compounds and prebiotic activity in Thailand-grown red and white guava fruit (Psidium guajava L.). Food Sci Technol Int 17:205–212

    CAS  PubMed  Google Scholar 

  66. Uchôa-thomaz AMA, Sousa EC, Carioca JOB, Morais SMD, Lima AD, Martins CG, Alexandrino CD, Ferreira PAT, Rodrigues ALM, Rodrigues SP, Thomaz JCDA, Silva JDR, Rodrigues LL (2014) Chemical composition, fatty acid profile and bioactive compounds of guava seeds (Psidium guajava L.). Food Sci Technol 34:485–492

    Google Scholar 

  67. Pelegrini PB, Murad AM, Silva LP, Dos Santos RC, Costa FT, Tagliari PD, Bloch C Jr, Noronha EF, Miller RN, Franco OL (2008) Identification of a novel storage glycine-rich peptide from guava (Psidium guajava) seeds with activity against gram-negative bacteria. Pub Med 29:1271–1279

    CAS  Google Scholar 

  68. Prior RL, Cao G, Martin A, Sofic E, McEwen J, O’Brien C, Lischner N, Ehlenfeldt M, Kalt W, Krewer G, Mainland CM (1998) Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J Agr Food Chem 46:2686–2693

    CAS  Google Scholar 

  69. Budin SB, Ismail H, Chong PL (2013) Psidium guajava fruit peel extract reduces oxidative stress of pancreas in streptozotocin-induced diabetic rats. Sains Malays 42:707–713

    Google Scholar 

  70. Huang CS, Yin MC, Chiu LC (2011) Antihyperglycemic and antioxidative potential of Psidium guajava fruit in streptozotocin-induced diabetic rats. Food Chem Toxicol 49:2189–2195

    CAS  PubMed  Google Scholar 

  71. Nor NM, Yatim AM (2011) Effects of pink guava (Psidium guajava) puree supplementation on antioxidant enzyme activities and organ function of spontaneous hypertensive rat. Sains Malays 40:369–372

    CAS  Google Scholar 

  72. Chen HY, Yen GC (2007) Antioxidant activity and free radical-scavenging capacity of extracts from guava (Psidium guajava L.) leaves. Food Chem 101:686–694

    CAS  Google Scholar 

  73. Hernández-Acosta MA, Castro-Vargas HI, Parada-Alfonso F (2011) Integrated utilization of guava (Psidium guajava L.): antioxidant activity of phenolic extracts obtained from guava seeds with supercritical Co2-ethanol. J Braz Chem Soc 22:2383–2390

    Google Scholar 

  74. Dinarello (2010) Anti-inflammatory agents: present and future. Cell 140:935–950

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ojewole JA (2010) Anti inflammatory and analgesic effects of Psidium guajava Linn. (Myrtaceae) leaf aqueous extract in rats and mice. Methods Find Exp Clin Pharmacol 28:441–446

    Google Scholar 

  76. Jang M, Jeong SW, Cho SK, Ahn KS, Lee JH, Yang DC, Kim JC (2014) Anti-inflammatory effects of an ethanolic extract of guava (Psidium guajava L.) leaves in vitro and in vivo. J Med Food 17:678–685

    CAS  PubMed  Google Scholar 

  77. Weni L, Harliansyah W (2011) Anti-inflammatory activity of the extract of guava leaves (Psidium guajava L) in the rat (Rattus norvegicus L). Indones J Cancer Chemopre 2:169–172

    Google Scholar 

  78. Soman S, Rajamanickam C, Rauf AA, Indira M (2011) Beneficial effects of Psidium guajava leaf extract on diabetic myocardium. Exp Toxicol Pathol 65:91–95

    Google Scholar 

  79. Wu JW, Hsieh CL, Wang HY, Chen HY (2009) Inhibitory effects of guava (Psidium guajava L) leaf extracts and its active compounds on the glycation process of protein. Food Chem 113:78–84

    CAS  Google Scholar 

  80. Lin CY, Yin MC (2012) Renal protective effects of extracts from guava fruit (Psidium guajava L) in diabetic mice. Plant Food Hum Nutr 67:303–308

    CAS  Google Scholar 

  81. Ojewole J (2005) Hypoglycemic and hypotensive effects of Psidium guajava Linn. (Myrtaceae) leaf aqueous extract. Method Find Exp Clin 27:689–695

    CAS  Google Scholar 

  82. Chuang PT, Shen SC, Wu NJ, Wu JSB (2008) Anti-peroxidation effect of guava (Psidium guajava Linn.) leaf soluble solids in vitro and in streptozotocin/nicotinamide-induced diabetic rats. J Sci Food Agric 88:2173–2179

    CAS  Google Scholar 

  83. Cheng FC, Shen SC, Wu JSB (2009) Effect of guava (Psidium guajava L) leaf extract on glucose uptake in rat hepatocytes. J Food Sci 74:H132–H138

    CAS  PubMed  Google Scholar 

  84. Rai PK, Jaiswal D, Mehta S, Wathal G (2009) Anti-hyperglycaemic potential of Psidium guajava raw fruit peel. Indian J Med Res 129:561–565

    PubMed  Google Scholar 

  85. Oh WK, Lee CH, Lee MS, Bae EY, Sohn CB, Oh H, Kim BY, Ahn JS (2005) Antidiabetic effects of extracts from Psidium guajava. J Ethnopharmacol 96:411–415

    PubMed  Google Scholar 

  86. Shen SC, Cheng FC, Wu NJ (2008) Effect of guava (Psidium guajava Linn) leaf soluble solids on glucose metabolism in type 2 diabetic rats. Phytother Res 22:1458–1464

    PubMed  Google Scholar 

  87. Rapaka R, Vennam SR (2012) Evaluation and comparison of anti-diabetic activity of hydroalcoholic extracts of fresh and dry leaves of Psidium guajava in type-ii diabetes mellitus Int. Res J Pharm App Sci 2:62–65

    Google Scholar 

  88. Burkill HM (1997) The useful plants of West Tropical Africa, families M-R. Royal Bot Gard Kew 4:89–93

    Google Scholar 

  89. Lutterodt GD, Ismail A, Basheer RH, Baharudin HM (1999) Antimicrobial effects of Psidium guajava extract as one mechanism of its Antidiarrhoeal action. Malays J Med Sci 6:17–20

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Rodriguez RC, Cruz PH, Rios HG (2001) Lectins in fruits having gastrointestinal activity their participation in hemagglunating property of Escherichia coli O157. Arch Med Res 32:251–257

    Google Scholar 

  91. Lutterodt GD (1992) Inhibition of microlax-induced experimental diarrhea with narcotic-like extracts of Psidium guajava leaf in rats. J Ethnopharmacol 37:151–157

    CAS  PubMed  Google Scholar 

  92. Lutterodt GD, Maleque A (1998) Effects on mice locomotor activity of a narcotic-like principle from Psidium guajava leaves. J Ethnopharmacol 24:219–231

    Google Scholar 

  93. Lin J, Puckree T, Mvelase TP (2002) Anti-diarrhoeal evaluation of some medicinal plants used by Zulu traditional healers. J Ethnopharmacol 79:53–56

    CAS  PubMed  Google Scholar 

  94. Biswas B, Rogers K, McLaughlin F, Daniels D, Yadav A (2013) Antimicrobial activities of leaf extracts of Guava (Psidium guajava L) on two gram-negative and gram-positive bacteria. Int J Microbiol:1–7. Hindawi Publishing Corporation 2013:746165

    Google Scholar 

  95. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods-a review. Int J Food Microbiol 94:223–253

    CAS  PubMed  Google Scholar 

  96. Goncalves FA, Andrade Neto M, Bezerra JNS et al (2008) Antibacterial activity of guava, Psidium guajava Linnaeus, leaf extracts on diarrhea-causing enteric bacteria isolated from seabob shrimp, Xiphopenaeus kroyeri (Heller). Rev Inst Med Trop Sao Paulo 50:11–15

    PubMed  Google Scholar 

  97. Deena M, Moideen KAV, Prasad SR (2016) Preferential inhibition of bacterial elastase over human neutrophil elastase by leaf extracts of Psidium guajava: an in vitro study. Natl J Physiol Pharm 6:123–127

    Google Scholar 

  98. Okechukwu RI, Ujowundu CO, Okika WO, Ukaoma AA, Anuforo HU, Ezea CO (2015) Studies on the phytochemical and antibacterial activities of aqueous and ethanol extracts of Psidium guajava and Moringa oleifera. Sch Acad J Biosci 3:320–324

    CAS  Google Scholar 

  99. Braga T, Dores R, Ramos C, Evangelista F, Tinoco L, Varotti F, Carvalho M, Sabino A (2014) Antioxidant, antibacterial and antitumor activity of ethanolic extract of the Psidium guajava leaves. Am J Plant Sci 5:3492–3500

    Google Scholar 

  100. Ashrafa A, Sarfraza RD, Muhammad AR, Adeel M, Muhammad SNN (2016) Chemical composition, antioxidant, antitumor, anticancer and cytotoxic effects of Psidium guajava leaf extracts. Pharm Biol 54:1971–1981

    Google Scholar 

  101. Ryu NH, Park KR, Kim SM, Yun HM, Nam D, Lee SG, Jang HJ, Ahn KS, Kim SH, Shim BS, Choi SH, Mosaddik A, Cho SK, Ahn KS (2012) A hexane fraction of guava leaves (Psidium guajava L) induces anticancer activity by suppressing AKT/mammalian target of rapamycin/ribosomal p 70 S6 kinase in human prostate cancer cells. J Med Food 15:231–241

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Salib JY, Michael HN (2004) Cytotoxic phenylethanol glycosides from Psidium guajava seeds. Phytochemical 65:2091–2093

    CAS  Google Scholar 

  103. Moreno MA, Zampini Catiana I, Costamagna M, Sayago JE, Ordoñez RM, Isla MI (2014) Phytochemical composition and antioxidant capacity of Psidium guajava fresh fruits and flour. Nutr Sci 5:725–732

    Google Scholar 

  104. Lanier F (2005) Phytochemical, antioxidant, and storage stability of thermally processed guava (Psidium guajava) and guava juice blends. M.Sc University of Florida, Gainesville

    Google Scholar 

  105. Verma AK, Rajkumar V, Banerjee R, Biswas S, Das AK (2013) Guava (Psidium guajava L.) powder as an antioxidant dietary fibre in sheep meat nuggets. Asian Australas J Anim Sci 26(6):886–895

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Verma M, Singh J, Kaur D, Mishra V, Rai GK (2015) Effect of various dehydration methods and storage on physicochemical properties of guava powder. J Food Sci Technol 52:528–534

    CAS  Google Scholar 

  107. Castelo-Branco VN, Lago MG, Minuzzo DA, Moura-Nunes N, Torres AG, Nunes JC, Monteiro M (2016) Bread formulated with guava powder was enriched in phenolic and aroma compounds, and was highly acceptable by consumers. J Food Sci Technol 53:4168–4178

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Moni Gupta or Sachin Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gupta, M., Wali, A., Anjali, Gupta, S., Annepu, S.K. (2019). Nutraceutical Potential of Guava. In: Mérillon, JM., Ramawat, K.G. (eds) Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-78030-6_85

Download citation

Publish with us

Policies and ethics