Skip to main content

Bioactive Molecules, Nutraceuticals, and Functional Foods in Indian Vegetarian Diet and During Postpartum Healthcare

  • Reference work entry
  • First Online:
Book cover Bioactive Molecules in Food

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Traditionally the majority population of the Indian subcontinent is vegetarian since ancient times due to social and religious guiding principle of the society. Consumption of whole grains of cereals and pulses, fruits, vegetables, and milk products is associated with vegetarian diet. Essentially all meals consist of flatbread, cooked pulses, a vegetable, curd/butter milk, and/or rice. Pulses are consumed in very large quantity, and several salted snacks and sweet preparations are available in the market. Beneficial effects of such products are now being revealed and scientifically validated by modern tools and techniques. In this review, we presented a concise and comprehensive scenario about vegetarian diet in Indian region enforced by caste system associated with religion. This leads to progression of hale and hearty brain and intellectual community of Brahmins consuming only vegetarian diet rich in fruits. Brahmin is a varna (class, caste) in Hinduism specializing as priests, teachers (acharya), and protectors of sacred learning across generations. Marriages within the caste further helped in gradual evolution of Brahmins (a kind of hybridization between superiors). Vegetarian diet is maintained from birth to until death. There is a well-defined and programmed vegetarian herbal diet starting from postpartum care, and beneficial effects of such diet are discussed in light of scientific information available. Effect of bioactive molecules present in these foods and safety aspect are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Agrawal S, Millett CJ, Dhillon PK et al (2014) Type of vegetarian diet, obesity and diabetes in adult Indian population. Nutr J 13:89

    PubMed  PubMed Central  Google Scholar 

  2. Appleby PN, Key TJ (2016) The long-term health of vegetarians and vegans. Proc Nutr Soc 75(3):287–293

    PubMed  Google Scholar 

  3. Shridhar K, Dhillon PK, Bowen L, Kinra S, Bharathi AV et al (2014) The association between a vegetarian diet and cardiovascular disease (CVD) risk factors in India: the Indian Migration Study. PLoS One 9(10):e110586

    PubMed  PubMed Central  Google Scholar 

  4. Anonymous (2017) Vegetarianism by country. https://en.wikipedia.org/wiki/Vegetarianism_by_country. Accessed 13 June 2017

  5. Fraser GE (2016) The vegetarian advantage: its potential for the health of our planet, our livestock, and our neighbors! Forsch Komplementmed 23:66–68

    PubMed  PubMed Central  Google Scholar 

  6. Craig WJ, Mangels AR (2009) Position of the American Dietetic Association: vegetarian diets. J Am Diet Assoc 109:1266–1282

    CAS  PubMed  Google Scholar 

  7. Chauhan A, Semwal DK, Mishra SP, Semwal RB (2015) Ayurvedic research and methodology: present status and future strategies. Ayu 36(4):364

    PubMed  PubMed Central  Google Scholar 

  8. Ramawat KG, Dass S, Mathur M (2009) The chemical diversity of bioactive molecules and therapeutic potential of medicinal plants. In: Ramawat KG (ed) Herbal drugs: ethnomedicine to modern medicine. Springer, Berlin/Heidelberg

    Google Scholar 

  9. West RO, Hayes OB (1968) Diet and serum cholesterol levels: a comparison between vegetarians and non-vegetarians in a Seventh–Day Adventist group. Am J Clin Nutr 21:853–862

    CAS  PubMed  Google Scholar 

  10. Appleby PN, Thorogood M, McPherson K, Mann JL (1995) Associations between plasma lipid concentrations and dietary, lifestyle and physical factors in the Oxford Vegetarian Study. J Hum Nutr Diet 8:305–314

    Google Scholar 

  11. Fraser G, Katuli S, Anousheh R, Knutsen S, Herring P, Fan J (2014) Vegetarian diets and cardiovascular risk factors in black members of the Adventist Health Study-2. Public Health Nutr 17:1–9

    Google Scholar 

  12. Rouse IL, Beilin LJ, Armstrong BK, Vandongen R (1983) Blood pressure lowering effect of a vegetarian diet: controlled trial in normotensive subjects. Lancet 1:5–10

    CAS  PubMed  Google Scholar 

  13. Margetts BM, Beilin LJ, Vandongen R, Armstrong BK (1986) Vegetarian diet in mild hypertension: a randomized controlled trial. Br Med J 293:1468–1471

    CAS  Google Scholar 

  14. Pettersen BJ, Anousheh R, Fan J, Jaceldo-Siegl K, Fraser GE (2012) Vegetarian diets and blood pressure among white subjects: results from the Adventist Health Study – 2 (AHS-2). Public Health Nutr 15:1909–1916

    PubMed  Google Scholar 

  15. Tonstad W, Stewart K, Oda K, Batech M, Herring RP, Fraser GE (2013) Vegetarian diets and incidence of diabetes in Adventist Health Study-2. Nutr Metab Cardiovasc Dis 23:292–299

    CAS  PubMed  Google Scholar 

  16. Rosell M, Appleby P, Spencer E, Key T (2006) Weight gain over 5 years in 21,966 meat-eating, fish-eating, vegetarian, and vegan men and women in EPIC-Oxford. Int J Obes (Lond) 30:1389–1396

    CAS  PubMed  Google Scholar 

  17. Jaceldo-Siegl K, Fan J, Haddad E, Knutsen S, Bellinger D, Fraser G (2013) Vegetarian dietary patterns associated with biomarkers of cancer risk (Abstract). Am J Epidemiol 177(Suppl 11):S110

    Google Scholar 

  18. Kahleova H, Matoulek M, Malinska H et al (2011) Vegetarian diet improves insulin resistance and oxidative stress markers more than conventional diet in subjects with type 2 diabetes. Diabet Med 28:549–559

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Paalani M, Lee JW, Haddad E, Tonstad S (2011) Determinants of inflammatory markers in a bi-ethnic population. Ethn Dis 21:142–149

    PubMed  Google Scholar 

  20. Schmidt JA, Rinaldi S, Scalbert A et al (2016) Plasma concentrations and intakes of amino acids in male meat eaters, fish-eaters, vegetarians and vegans: a cross-sectional analysis in the EPIC-Oxford cohort. Eur J Clin Nutr 70(3):306–312. https://doi.org/10.1038/ejcn.2015.144

  21. Allen NE, Appleby PN, Davey GK, Kaaks R, Rinaldi S, Key TJ (2002) The associations of diet with serum insulin-like growth factor I and its main binding proteins in 292 women meat-eaters, vegetarians, and vegans. Cancer Epidemiol Biomarkers Prev 11:1441–1448

    CAS  PubMed  Google Scholar 

  22. Wong JM (2014) Gut microbiota and cardiometabolic outcomes: influence of dietary patterns and their associated components. Am J Clin Nutr 100(Suppl 1):369S–377S

    CAS  PubMed  Google Scholar 

  23. Key TJ, Fraser GE, Thorogood M et al (1999) Mortality in vegetarians and nonvegetarians: detailed findings from a collaborative analysis of 5 prospective studies. Am J Clin Nutr 70(Suppl 3):516S–524S

    CAS  PubMed  Google Scholar 

  24. Crowe FL, Appleby PN, Travis RC, Key TJ (2013) Risk of hospitalization or death from ischemic heart disease among British vegetarians and nonvegetarians: results from the EPIC-Oxford cohort study. Am J Clin Nutr 97:597–603

    CAS  PubMed  Google Scholar 

  25. Fraser GE (2005) A comparison of first event CHD rates in two contrasting California populations. J Nutr Health Aging 9:53–58

    CAS  PubMed  Google Scholar 

  26. Tantamango-Bartley Y, Knutsen SF, Knutsen R et al (2016) Are strict vegetarians protected against prostate cancer? Am J Clin Nutr 103:153–160

    CAS  PubMed  Google Scholar 

  27. Orlich MJ, Singh PN, Sabaté J et al (2015) Vegetarian dietary patterns and the risk of colorectal cancers. JAMA Intern Med 175:767–776

    PubMed  PubMed Central  Google Scholar 

  28. Yokoyama Y, Nishimura K, Barnard ND, Takegami M, Watanabe M, Sekikawa A et al (2014) Vegetarian diets and blood pressure: a metaanalysis. JAMA Intern Med 174:577–587

    PubMed  Google Scholar 

  29. Bernstein AM, Sun Q, Hu FB, Stampfer MJ, Manson JE, Willett WC (2010) Major dietary protein sources and risk of coronary heart disease in women. Circulation 122:876–883

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kaluza J, Åkesson A, Wolk A (2015) Long-term processed and unprocessed red meat consumption and risk of heart failure: a prospective cohort study of women. Int J Cardiol 193:42–46

    PubMed  Google Scholar 

  31. Fretts AM, Follis JL, Nettleton JA et al (2015) Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: a meta-analysis of 50,345 Caucasians. Am J Clin Nutr 102:1266–1278

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pan A, Sun Q, Bernstein AM et al (2013) Changes in red meat consumption and subsequent risk of type 2 diabetes mellitus: three cohorts of US men and women. JAMA Intern Med 173:1328–1335

    CAS  PubMed  Google Scholar 

  33. Lippi G, Mattiuzzi C, Cervellin G (2016) Meat consumption and cancer risk: a critical review of published metaanalyses. Crit Rev Oncol Hematol 97:1–14

    PubMed  Google Scholar 

  34. Hotz C, Gibson RS (2007) Traditional food-processing and preparation practices to enhance the bioavailability of micronutrients in plant-based diets. J Nutr 137:1097e100

    Google Scholar 

  35. Reich D, Thangaraj K, Patterson N, Price AL, Singh L (2009) Reconstructing Indian population history. Nature 461:489–495

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Moorjani P, Thangaraj K, Patterson N, Lipson M et al (2013) Genetic evidence for recent population mixture in India. Am J Hum Genet 93:422–438

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sarkar P, Dhumal C, Panigrahi SS, Choudhary R (2015) Traditional and Ayurvedic foods of Indian origin. J Ethn Foods 2(3):97–109

    Google Scholar 

  38. Achaya KT (1994) Indian food: a historical companion. Oxford University Press, Delhi

    Google Scholar 

  39. Renfrew C (1990) Archaeology and language: the puzzle of Indo-European origins. Cambridge University Press, New York

    Google Scholar 

  40. Costantini L (1984) The beginning of agriculture in the Kachi Plain: the evidence of Mehrgarh. In: Allchin B (ed) South Asian archaeology 1981. Cambridge University Press, Cambridge

    Google Scholar 

  41. Fuller DQ (2011) Finding plant domestication in the Indian subcontinent. Curr Anthropol 52(S4):S347–S362

    Google Scholar 

  42. Witzel M (1999) Substrate languages in Old Indo-Aryan (Rigvedic, Middle and Late Vedic). Electron J Vedic Stud 5:1–67

    Google Scholar 

  43. Census of India (2001) http://censusindia.gov.in/. Accessed 12 Oct 2017

  44. Census of India (2011) http://censusindia.gov.in/. Accessed 12 Oct 2017

  45. Tamang R, Thangaraj K (2012) Genomic view on the peopling of India. Investig Genet 3:20

    PubMed  PubMed Central  Google Scholar 

  46. Mirmiran P, Noori N, Beheshti M, Azizi ZF (2009) Fruit and vegetable consumption and risk factors for cardiovascular disease. Metabolism 58(4):460–468

    CAS  PubMed  Google Scholar 

  47. He FJ, Nowson CA, MacGregor GA (2006) Fruit and vegetable consumption and stroke: meta-analysis of cohort studies. Lancet 367(9507):320–326

    PubMed  Google Scholar 

  48. Brüssow H, Parkinson SJ (2014) You are what you eat. Nat Biotechnol 32:243–245

    PubMed  Google Scholar 

  49. Sen CT (2004) Food culture in India. Greenwood Publishing Group, Santa Barbara

    Google Scholar 

  50. Phan MA, Paterson J, Bucknall M, Arcot J (2016) Interactions between phytochemicals from fruits and vegetables: effects on bioactivities and bioavailability. Crit Rev Food Sci Nutr 17:1–20

    Google Scholar 

  51. Slavin J (2004) Whole grains and human health. Nutr Res Rev 17(1):99–110

    PubMed  Google Scholar 

  52. Huggett AC, Schliter B (1996) Research needs for establishing the safety of functional foods. Nutr Rev 54:S143–S148

    CAS  PubMed  Google Scholar 

  53. Hallifrisch A, Hall J (2000) Textbook of medical physiology. Saunders, Philadelphia

    Google Scholar 

  54. Teradal D, Joshi N, Aladakatti RH (2017) Therapeutic evaluation of grain based functional food formulation in a geriatric animal model. J Food Sci Technol 54(9):2789–2796

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Dixit AA, Azar KMJ, Gardener CD, Palaippan NP (2011) Incorporation of whole grain, ancient grains in to a modern Asian Indian diet to reduce the burden of chronic disease. Nutr Rev 69(8):479–488

    PubMed  Google Scholar 

  56. Rebello CJ, Greenway FL, Finley JW (2014) Whole grains and pulses: a comparison of the nutritional and health benefits. J Agric Food Chem 62(29):7029–7049

    CAS  PubMed  Google Scholar 

  57. Nikmaram N, Dar B, Roohinejad S, Koubaa M, Barba FJ, Greiner R, Johnson SK (2017) Recent advances in γ-aminobutyric acid (GABA) properties in pulses: an overview. J Sci Food Agric 97:2681–2689

    CAS  PubMed  Google Scholar 

  58. FAO (Food and Agriculture Organization) (2014) Statistics division. Rome. Accessed 25 July 2017

    Google Scholar 

  59. Bhattacharya M (2015) A historical exploration of Indian diets and a possible link to insulin resistance syndrome. Appetite 95:421–454

    PubMed  Google Scholar 

  60. Liu RH (2003) Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr 78(Suppl):517S–520S

    CAS  PubMed  Google Scholar 

  61. Liu RH (2013) Health-promoting components of fruits and vegetables in the diet. Adv Nutr 4:384S–392S

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kalra EK (2003) Nutraceutical: definition and introduction. AAPS PharmSci 5(3):1–2

    Google Scholar 

  63. Food and Agriculture Organization of the United Nations (2017) http://www.fao.org/worldfoodsituation/csdb/en/. Accessed 25 July 2017

  64. Rao NBS (2003) Bioactive phytochemicals in Indian foods and their potential in health promotion and disease prevention. Asia Pac J Clin Nutr 12(1):9–22

    CAS  PubMed  Google Scholar 

  65. Birch GG, Parker KJ (1982) Dietary fibre. Applied Science Publications, London

    Google Scholar 

  66. Arshad MS, Kwon JH, Anjum FM, Sohaib M et al (2017) Wheat antioxidants, their role in bakery industry, and health perspective. In: Wanyera R, Owuoche J (eds) Wheat improvement, management and utilization. InTech, London, UK. https://doi.org/10.5772/67276

  67. Nepali S, Ki HH, Lee JH, Lee HY, Kim DK, Lee YM (2017) Wheatgrass-derived polysaccharide has antiinflammatory, anti-oxidative and anti-apoptotic effects on LPS-induced hepatic injury in mice. Phytother Res 31(7):1107–1116

    CAS  PubMed  Google Scholar 

  68. Idehen E, Tang Y, Sang S (2017) Bioactive phytochemicals in barley. J Food Drug Anal 25(1):148–161

    CAS  PubMed  Google Scholar 

  69. Gangopadhyay N, Hossain MB, Rai DK, Brunton NP (2017) A review of extraction and analysis of bioactives in oat and barley and scope for use of novel food processing technologies. Molecules 20(6):10884–10909

    Google Scholar 

  70. Gupta RK, Gupta K, Sharma A, Das M, Ansari IA, Dwivedi PD (2017) Health risks and benefits of chickpea (Cicer arietinum) consumption. J Agric Food Chem 65(1):6–22

    CAS  PubMed  Google Scholar 

  71. Tang D, Dong Y, Ren H, Li L, He C (2014) A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chem Cent J 8:4

    PubMed  PubMed Central  Google Scholar 

  72. Wahby MM, Mohammed DS, Newairy AA, Abdou HM, Zaky A (2017) Aluminum-induced molecular neurodegeneration: the protective role of genistein and chickpea extract. Food Chem Toxicol 107(Pt A):57–67

    CAS  PubMed  Google Scholar 

  73. Boers HM, MacAulay K, Murray P, Dobriyal R, Mela DJ, Spreeuwenberg MA (2017) Efficacy of fibre additions to flatbread flour mixes for reducing post-meal glucose and insulin responses in healthy Indian subjects. Br J Nutr 117(3):386–394

    CAS  PubMed  Google Scholar 

  74. Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4(8):118–126

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Stefanis L, Burke RE, Greene LA (1997) Apoptosis in neurodegenerative disorders. Curr Opin Neurol 10:299–305

    CAS  PubMed  Google Scholar 

  76. Shashirekha MN, Mallikarjuna SE, Rajarathnam S (2015) Status of bioactive compounds in foods, with focus on fruits and vegetables. Crit Rev Food Sci Nutr 55(10):1324–1339

    CAS  PubMed  Google Scholar 

  77. Ansari P, Afroz N, Jalil S, Azad SB, Mustakim MG, Anwar S, Haque SM, Hossain SM, Tony RR, Hannan JM (2017) Anti-hyperglycemic activity of Aegle marmelos (L.) corr. is partly mediated by increased insulin secretion, α-amylase inhibition, and retardation of glucose absorption. J Pediatr Endocrinol Metab 30(1):37–47

    PubMed  Google Scholar 

  78. Shinde PB, Katekhaye SD, Mulik MB, Laddha KS (2014) Rapid simultaneous determination of marmelosin, umbelliferone and scopoletin from Aegle marmelos fruit by RP-HPLC. J Food Sci Technol 51(9):2251–2255

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Sun G, Zheng Z, Lee MH, Xu Y, Kang S et al (2017) Chemoprevention of colorectal cancer by artocarpin, a dietary phytochemical from Artocarpus heterophyllus. J Agric Food Chem 65(17):3474–3480

    CAS  PubMed  Google Scholar 

  80. Yao X, Wu D, Dong N, Ouyang P, Pu J et al (2016) Moracin C, A phenolic compound isolated from Artocarpus heterophyllus, suppresses lipopolysaccharide-activated inflammatory responses in murine raw264.7 macrophages. Int J Mol Sci 17(8):1199

    PubMed  PubMed Central  Google Scholar 

  81. Krishna KL, Paridhavi M, Patel JA (2008) Review on nutritional, medicinal and pharmacological properties of Papaya (Carica papaya Linn.). Nat Prod Radiance 7(4):364–373

    Google Scholar 

  82. Somanah J, Bourdon E, Bahorun T (2017) Extracts of Mauritian Carica papaya (var. solo) protects SW872 and HepG2 cells against hydrogen peroxide induced oxidative stress. J Food Sci Technol 54(7):1917–1927

    PubMed  PubMed Central  Google Scholar 

  83. Aptekmann NP, Cesar TB (2010) Orange juice improved lipid profile and blood lactate of overweight middle-aged women subjected to aerobic training. Maturitas 67(4):343–347

    CAS  PubMed  Google Scholar 

  84. Giampieri F, Forbes-Hernandez TY, Gasparrini M et al (2017) The healthy effects of strawberry bioactive compounds on molecular pathways related to chronic diseases. Ann N Y Acad Sci 1398(1):62–71. https://doi.org/10.1111/nyas.13373

  85. Naz S, Farooq U, Khan A et al (2017) Antidepressent effect of two new benzyl derivatives from wild strawberry Fragaria vesca var. nubicola Lindl. ex Hook.f. Front Pharmacol 8:469

    PubMed  PubMed Central  Google Scholar 

  86. González-Aguilar G, Robles-Sánchez RM, Martínez-Téllez MA, Olivas GI, Alvarez-Parrilla E, de la Rosa LA (2008) Bioactive compounds in fruits: health benefits and effect of storage conditions. Stewart Postharvest Rev 3:8

    Google Scholar 

  87. Yoon H, Liu RH (2007) Effect of selected phytochemicals and apple extracts on NF-κB activation in human breast cancer MCF-7 cells. J Agric Food Chem 55:3167–3317

    CAS  PubMed  Google Scholar 

  88. Khurana RK, Kaur R, Lohan S, Singh KK, Singh B (2016) Mangiferin: a promising anticancer bioactive. Pharm Pat Anal 5(3):169–181

    CAS  PubMed  Google Scholar 

  89. López-Cobo A, Verardo V, Diaz-de-Cerio E, Segura-Carretero A, Fernández-Gutiérrez A, Gómez-Caravaca AM (2017) Use of HPLC- and GC-QTOF to determine hydrophilic and lipophilic phenols in mango fruit (Mangifera indica L.) and its by-products. Food Res Int 100(Pt 3):423–434

    PubMed  Google Scholar 

  90. Matkowski A, Kuś P, Góralska E, Woźniak D (2013) Mangiferin – a bioactive xanthonoid, not only from mango and not just antioxidant. Mini Rev Med Chem 13(3):439–455

    CAS  PubMed  Google Scholar 

  91. Shah KA, Patel MB, Patel RJ, Parmar PK (2010) Mangifera indica (Mango). Pharmacogn Rev 4(7):42–48

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Alese MO, Adewole SO, Akinwunmi KF, Omonisi AE, Alese OO (2017) Aspirin-induced gastric lesions alters EGFR and PECAM-1 immunoreactivity in wistar rats: modulatory action of flavonoid fraction of Musa paradisiaca. Maced J Med Sci 5(5):569–577

    Google Scholar 

  93. Mittal P, Gupta V, Kaur G, Garg AK, Singh A (2010) Phytochemistry and pharmacological activities of Psidium guajava: a review. Int J Pharm Sci Res 1(9):9–19

    Google Scholar 

  94. Kumar V, Aneesh KA, Kshemada K et al (2017) Amalaki rasayana, a traditional Indian drug enhances cardiac mitochondrial and contractile functions and improves cardiac function in rats with hypertrophy. Sci Rep 7(1):8588

    PubMed  PubMed Central  Google Scholar 

  95. Zhang J, Miao D, Zhu WF et al (2017) Biological activities of phenolics from the fruits of Phyllanthus emblica Linn. (Euphorbiaceae). Chem Biodivers. https://doi.org/10.1002/cbdv.201700404

  96. Gumienna M, Szwengiel A, Górna B (2016) Bioactive components of pomegranate fruit and their transformation by fermentation processes. Eur Food Res Technol 242:631–640

    CAS  Google Scholar 

  97. Sahebkar A, Ferri C, Giorgini P, Bo S, Nachtigal P, Grassi D (2016) Effects of pomegranate juice on blood pressure: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 115:149–161

    PubMed  Google Scholar 

  98. George BP, Abrahamse H, Hemmaragala NM (2017) Phenolics from Rubus fairholmianus induces cytotoxicity and apoptosis in human breast adenocarcinoma cells. Chem Biol Interact S0009-2797(17):30392–30397

    Google Scholar 

  99. Figueiras Abdala A, Mendoza N, Valadez Bustos N, Escamilla Silva EM (2017) Antioxidant capacity analysis of blackberry extracts with different phytochemical compositions and optimization of their ultrasound assisted extraction. Plant Foods Hum Nutr. https://doi.org/10.1007/s11130-017-0616-3

  100. Shrikanta A, Kumar A, Govindaswamy V (2015) Resveratrol content and antioxidant properties of underutilized fruits. J Food Sci Technol 52(1):383–390

    CAS  PubMed  Google Scholar 

  101. Srivastava S, Chandra D (2013) Pharmacological potentials of Syzygium cumini: a review. J Sci Food Agric 93(9):2084–2093

    CAS  PubMed  Google Scholar 

  102. Tahergorabi Z, Abedini MR, Mitra M, Fard MH, Beydokhti H (2015) “Ziziphus jujuba”: a red fruit with promising anticancer activities. Pharmacogn Rev 9(18):99–106

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Gao QH, Wu CS, Wang M (2013) The jujube (Ziziphus jujuba Mill.) fruit: a review of current knowledge of fruit composition and health benefits. J Agric Food Chem 61(14):3351–3363

    CAS  PubMed  Google Scholar 

  104. Duarte CEM, Abranches MV, Silva PF, de Paula SO, Cardoso SA, Oliveira LL (2017) A new TRAF-like protein from B. oleracea ssp. botrytis with lectin activity and its effect on macrophages. Int J Biol Macromol 94(Pt A):508–514

    CAS  PubMed  Google Scholar 

  105. Morales-López J, Centeno-Álvarez M, Nieto-Camacho A, López MG, Pérez-Hernández E, Pérez-Hernández N, Fernández-Martínez E (2017) Evaluation of antioxidant and hepatoprotective effects of white cabbage essential oil. Pharm Biol 55(1):233–241

    PubMed  Google Scholar 

  106. Maji AK, Banerji P (2016) Phytochemistry and gastrointestinal benefits of the medicinal spice, Capsicum annuum L. (Chilli): a review. J Complement Integr Med 13(2):97–122

    PubMed  Google Scholar 

  107. Lone BA, Chishti MZ, Bhat FA, Tak H, Bandh SA, Khan A (2017) Evaluation of anthelmintic antimicrobial and antioxidant activity of Chenopodium album. Trop Anim Health Prod. https://doi.org/10.1007/s11250-017-1364-y

  108. Morris JB, Wang ML (2017) Functional vegetable guar (Cyamopsis tetragonoloba L. Taub.) accessions for improving flavonoid concentrations in immature pods. J Diet Suppl 14(2):146–157

    CAS  PubMed  Google Scholar 

  109. Sharma P, Dubey G, Kaushik S (2011) Chemical and medico-biological profile of Cyamopsis tetragonoloba (L) Taub: an overview. J Appl Pharma Sci 1:32–37

    Google Scholar 

  110. Shakib MC, Gabrial SG, Gabrial GN (2015) Beetroot-carrot juice intake either alone or in combination with antileukemic drug ‘chlorambucil’ as a potential treatment for chronic lymphocytic leukemia. Maced J Med Sci 3(2):331–336

    Google Scholar 

  111. Zaini RG, Brandt K, Clench MR, Le Maitre CL (2012) Effects of bioactive compounds from carrots (Daucus carota L.), polyacetylenes, beta-carotene and lutein on human lymphoid leukaemia cells. Anticancer Agents Med Chem 12(6):640–652

    CAS  PubMed  Google Scholar 

  112. Prajapati RP, Kalariya M, Parmar SK, Sheth NR (2010) Phytochemical and pharmacological review of Lagenaria sicereria. J Ayurveda Integr Med 1(4):266–272

    PubMed  PubMed Central  Google Scholar 

  113. Fachinan R, Fagninou A, Nekoua MP et al (2017) Evidence of immunosuppressive and Th2 immune polarizing effects of antidiabetic Momordica charantia fruit juice. Biomed Res Int. https://doi.org/10.1155/2017/9478048

  114. Dandawate PR, Subramaniam D, Padhye SB, Anant S (2016) Bitter melon: a panacea for inflammation and cancer. Chin J Nat Med 14(2):81–100

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Gutierrez RM, Perez RL (2004) Raphanus sativus (Radish): their chemistry and biology. Sci World J 4:811–837

    Google Scholar 

  116. Capel C, Yuste-Lisbona FJ, López-Casado G (2017) QTL mapping of fruit mineral contents provides new chances for molecular breeding of tomato nutritional traits. Theor Appl Genet 130(5):903–913

    CAS  PubMed  Google Scholar 

  117. Gerszberg A, Hnatuszko-Konka K, Kowalczyk T, Kononowicz AK (2015) Tomato (Solanum lycopersicum L.) in the service of biotechnology. Plant Cell Tissue Organ Cult 120(3):881–902

    CAS  Google Scholar 

  118. Das M, Barua N (2013) Pharmacological activities of Solanum melongena linn. (brinjal plant). Int J Green Pharm 7(4):274–277

    Google Scholar 

  119. Lester GE, Makus DJ, Hodges DM (2010) Relationship between fresh-packaged spinach leaves exposed to continuous light or dark and bioactive contents: effects of cultivar, leaf size, and storage duration. J Agric Food Chem 58(5):2980–2987

    CAS  PubMed  Google Scholar 

  120. Panda V, Mistry K, Sudhamani S, Nandave M, Ojha SK (2017) Amelioration of abnormalities associated with the metabolic syndrome by Spinacia oleracea (Spinach) consumption and aerobic exercise in rats. Oxid Med Cell Longev. https://doi.org/10.1155/2017/2359389

  121. Roberts JL, Moreau R (2016) Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bioactives. Food Funct 7(8):3337–3353

    CAS  PubMed  Google Scholar 

  122. Blenning CE, Paladine H (2005) An approach to the postpartum office visit. Am Fam Physician 72:2491–2498

    PubMed  Google Scholar 

  123. Chen LW, Low YL, Fok D et al (2013) Dietary changes during pregnancy and the postpartum period in Singaporean Chinese, Malay and Indian women: the GUSTO birth cohort study. Public Health Nutr 17(9):1930–1938

    PubMed  Google Scholar 

  124. Choudhry UK (1996) Traditional practices of women from India pregnancy childbirth, and newborn care. J Obstet Gynecol Neonatal Nurs 26:533–539

    Google Scholar 

  125. Abu-Saad K, Fraser D (2010) Maternal nutrition and birth outcomes. Epidemiol Rev 32:5–25

    PubMed  Google Scholar 

  126. Hayat L, al-Sughayer MA, Afzal M (1999) Fatty acid composition of human milk in Kuwaiti mothers. Comp Biochem Physiol B Biochem Mol Biol 124:261–267

    CAS  PubMed  Google Scholar 

  127. Cervera P, Ngo J (2001) Dietary guidelines for the breastfeeding woman. Public Health Nutr 4:1357–1362

    CAS  PubMed  Google Scholar 

  128. Piccoli GB, Clari R, Vigotti FN et al (2015) Vegan–vegetarian diets in pregnancy: danger or panacea? A systematic narrative review. BJOG 122:623–633

    CAS  PubMed  Google Scholar 

  129. Cai YZ, Sun M, Corke H (2003) Antioxidant activity of betalains from plants of the amaranthaceae. J Agric Food Chem 51:2288–2294

    CAS  PubMed  Google Scholar 

  130. Jain N, Goyal S, Ramawat KG (2011) Evaluation of antioxidant properties and total phenolic content of medicinal plants used in diet therapy during postpartum. Int J Pharm Pharm Sci 3(3):248–253

    Google Scholar 

  131. Butt MS, Sultan MT (2011) Ginger and its health claims: molecular aspects. Crit Rev Food Sci Nutr 51(5):383–393

    CAS  PubMed  Google Scholar 

  132. Ramawat KG, Merillon JM (2013) Handbook of natural products – phytochemistry, botany, metabolism, vol I. Springer, Heidelberg

    Google Scholar 

  133. Ramawat KG (2009) Herbal drugs: ethnomedicine to modern medicine. Springer, Heidelberg

    Google Scholar 

  134. Khare CP (2007) Indian medicinal plants: an illustrated dictionary. Springer, Berlin/Heidelberg

    Google Scholar 

  135. Kuroda S, Watanabe M, Santo T, Shimizuishi Y, Takano T et al (2010) Postpartum increase of serum thioredoxin concentration and the relation to CD8 lymphocytes. Ann Clin Biochem 47:62–66

    CAS  PubMed  Google Scholar 

  136. Harzer G, Dieterich I, Haug M (1984) Effects of the diet on the composition of human milk. Ann Nutr Metab 28:231–239

    CAS  PubMed  Google Scholar 

  137. Nasser R, Stephen AM, Goh YK, Clandinin MT (2010) The effect of a controlled manipulation of maternal dietary fat intake on medium and long chain fatty acids in human breast milk in Saskatoon, Canada. Int Breastfeed J 5(1):3

    PubMed  PubMed Central  Google Scholar 

  138. Innis SM (2007) Human milk: maternal dietary lipids and infant development. Proc Nutr Soc 66:397–404

    CAS  PubMed  Google Scholar 

  139. Hachey DL, Thomas MR, Emken EA, Garza C, Brown-Booth L, Adlof RO, Klein PD (1987) Human lactation: maternal transfer to dietary triglycerides labeled with stable isotopes. J Lipid Res 28:1185–1192

    CAS  PubMed  Google Scholar 

  140. Emken EA, Adlof RO, Hachey DL, Garza C, Thomas MR, Brown-Booth L (1989) Incorporation of deuterium-labeled fatty acids into human milk, plasma and lipoprotein phospholipids and cholesterol esters. J Lipid Res 30:395–402

    CAS  PubMed  Google Scholar 

  141. Thompson BJ, Smith S (1985) Biosynthesis of fatty acids by lactating human breast epithelial cells: an evaluation of the contribution to the overall composition of human milk fat. Pediatr Res 19:139–143

    CAS  PubMed  Google Scholar 

  142. Fritsche J, Steinhart H (1998) Analysis, occurrence, and physiological properties of trans fatty acids (TFA) with particular emphasis on conjugated linoleic acid isomers (CLA): a review. Fett-Lipid 100:190–210

    CAS  Google Scholar 

  143. Ritzenthaler KL, McGuire MK, Falen R, Shultz TD, Dasgupta N, McGuire MA (2001) Estimation of conjugated linoleic acid intake by written dietary assessment methodologies underestimates actual intake evaluated by food duplicate methodology. J Nutr 131:1548–1554

    CAS  PubMed  Google Scholar 

  144. Rist L, Mueller A, Barthel C et al (2007) Influence of organic diet on the amount of conjugated linoleic acids in breast milk of lactating women in the Netherlands. Br J Nutr 97(4):735–743

    CAS  PubMed  Google Scholar 

  145. Rist L, Zweidler R, von Mandach U (2003) In: Freyer B (ed) Contributions to the 7th research conference on organic agriculture: organic agriculture of the future. University of Natural Resources and Applied Life Sciences, Vienna, pp 237–240

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Arora, J., Ramawat, K.G. (2019). Bioactive Molecules, Nutraceuticals, and Functional Foods in Indian Vegetarian Diet and During Postpartum Healthcare. In: Mérillon, JM., Ramawat, K.G. (eds) Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-78030-6_71

Download citation

Publish with us

Policies and ethics