Skip to main content

Sweet Potato: Bioactive Compounds and Health Benefits

  • Reference work entry
  • First Online:
Bioactive Molecules in Food

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 4759 Accesses

Abstract

Sweet potato, a delicious root vegetable, possesses high nutritional value. It is reported to exhibit anticancer, antidiabetic, and anti-inflammatory activities and to be a natural alternative to estrogen therapy. Sweet potatoes are a rich source of phytochemical compounds, and plant-derived compounds always have been an important source of several clinically useful biomolecules. This chapter aims to focus on the health benefits and phytochemical composition of sweet potato with special emphasis on 4-ipomeanol. 4-Ipomeanol, produced by infected sweet potatoes, is a potential anticancer agent. Earlier studies revealed that bioactivation of 4-ipomeanol to a cytotoxic metabolite occurred particularly in tissues that are abundant in specific P450 mixed function oxidase enzymes. Based on the above rationale, 4-ipomeanol was the first agent to undergo clinical development as an anticancer agent especially against lung cancer. 4-Ipomeanol as a potential prodrug for P450-directed gene therapy of liver and brain cancers has also been investigated. Recent findings suggest that 18F-labelled 4-ipomeanol could be used in imaging tumors and monitoring enzyme/prodrug interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Purseglove JW (1972) Tropical crops: dicotyledons, vol 1. Longman, London

    Google Scholar 

  2. Woolfe JA (1992) Sweet potato–past and present. Cambridge University Press, Cambridge

    Google Scholar 

  3. Loebenstein G, Fuentes S, Cohen J, Salazar LF (2003) Sweet potato. In: Loebenstein G, Thottappilly G (eds) Virus and virus-like diseases of major crops in developing countries. Kluwer, Dordrecht

    Google Scholar 

  4. Zhao G, Kan J, Li Z, Chen Z (2005) Characterization and immunostimulatory activity of an (1→6)-a-D-glucan from the root of Ipomoea batatas. Int Immunopharmacol 5:1436–1445

    CAS  PubMed  Google Scholar 

  5. Parle M, Monika (2015) Sweet potato as a super food. Int J Res Ayurveda Pharm 6:557–562

    Google Scholar 

  6. Abel C, Busia K (2005) An exploratory ethno botanical study of the practice of herbal medicine by the Akan peoples of Ghana. Altern Med Rev 10:112–122

    PubMed  Google Scholar 

  7. Pochapski MT, Fosquiera EC, Esmerino LA, Santos EB, Farago PV, Santos FA et al (2011) Phytochemical screening, antioxidant, and antimicrobial activities of the crude leaves’ extract from Ipomoea batatas (L.) Lam. Pharmacogn Mag 7:165–170

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ludvik B, Neuffer B, Pacini G (2004) Efficacy of Ipomoea batatas (Caiapo) on diabetes control in type 2 diabetic subjects treated with diet. Diabetes Care 27:436–440

    PubMed  Google Scholar 

  9. Emmanuel N (2010) Ethno medicines used for treatment of prostatic disease in Foumban, Cameroon. Afr J Pharm Pharmacol 4:793–805

    Google Scholar 

  10. Duke JA, Wain KK (1981) Medicinal plants of the world. Computer index with more than 85,000 entries, 3 vols, Plants genetics and germplasm Institute. Agriculture Research Service, Beltsville, Maryland

    Google Scholar 

  11. Diaz JL (1976) Usos de las Plantas Medicinales de Mexico. Monografias Cientificas II. Instituto Mexican para el Estudio de las Plantas Medicinales, A.C., Mexico

    Google Scholar 

  12. Reed CF (1976) Information summaries on 1000 economic plants. Typescripts submitted to the USDA

    Google Scholar 

  13. Motsa NM, Modi AT, Mabhaudhi T (2015) Sweet potato (Ipomoea batatas L.) as a drought tolerant and food security crop. S Afr J Sci 111:11–12

    Google Scholar 

  14. Anbuselvi S, Muthumani S (2014) Phytochemical and antinutritional constituents of sweet potato. J Chem Pharm Res 6:380–383

    Google Scholar 

  15. Panigoro R, Dhianwaty D (2014) Total glucose and crude fiber in local red sweet potato [Ipomoea batatas L. (Lam)] tuber. Int J Pharm Pharm Sci 6:147–149

    CAS  Google Scholar 

  16. Woolfe J (1992) Sweet potato an untapped food resource. Cambridge University Press, Cambridge, UK

    Google Scholar 

  17. Bovell-Benjamin AC (2007) Sweet potato: a review of its past, present and future roles in human nutrition. Adv Food Nutr Res 52:1–59

    CAS  PubMed  Google Scholar 

  18. Walter WM, Catignani GL, Yow LL, Porter DH (1983) Protein nutritional value of sweet potato flour. J Agric Food Chem 31:947–949

    CAS  PubMed  Google Scholar 

  19. https://www.livescience.com/46016-sweet-potato-nutrition.html

  20. Laurie SM, Van Den Berg AA, Magoro MD, Kgonyane MC (2004) Breeding of sweet potato and evaluation of imported cultivars in South Africa. Afr Crop Sci J 12:189–196

    Google Scholar 

  21. Leighton CS (2007) Nutrient and sensory quality of orange-fleshed sweet potato. MSc dissertation, University of Pretoria, Pretoria

    Google Scholar 

  22. Alam MK, Rana ZH, Islam SN (2016) Comparison of the proximate composition, total carotenoids and total polyphenol content of nine orange-fleshed sweet potato varieties grown in Bangladesh. Foods 5:64

    PubMed  PubMed Central  Google Scholar 

  23. Sanoussi F, Adjatin A, Dansi A, Adebowale A, Sanni LO, Sanni A (2016) Mineral composition of ten elites sweet potato (Ipomoea batatas [L.] Lam.) Landraces of Benin. Int J Curr Microbiol App Sci 5:103–115

    CAS  Google Scholar 

  24. Shafe MO, Eze ED, Ubhenin AE, Tende JA (2016) Effects of aqueous tuber extract of Ipomea batatas on cardiac enzymes, lipid profile and organ weights in Wistar rats. J Basic Appl Res 4:414–417

    Google Scholar 

  25. Mercy Margaret T, Krishna P, Revathi B, Eswar Tony D, Sathish Kumar M, Narendra Babu A (2013) Assessment of in vitro anti inflammatory activity of aqueous extract of Ipomoea batatas tubers. Asian J Res Biol Pharm Sci 1:47–53

    Google Scholar 

  26. https://www.organicfacts.net/health-benefits/vegetable/health-benefits-of-sweet-potatoes.html

  27. Washio M, Mori M, Sakauchi F, Watanabe Y, Ozasa K, Hayashi K et al (2005) Risk factors for kidney cancer in a Japanese population: findings from the JACC study. J Epidemiol 15:S203–S211

    PubMed  PubMed Central  Google Scholar 

  28. Shekhar S, Mishra D, Buragohain AK, Chakraborty N (2015) Comparative analysis of phytochemicals and nutrient availability in two contrasting cultivars of sweet potato (Ipomoea batatas L.) Food Chem 173:957–965

    CAS  PubMed  Google Scholar 

  29. Nwosisi S, Nandwani D, Ravi R (2017) Bioactive compounds in organic sweetpotato. J Adv Mol Biol 1:81–90

    Google Scholar 

  30. Sucharitha M, Kotesh M, Devika K, Naresh Y, Kiran M (2016) Evaluation of diuretic activity of aqueous extract of Ipomoea batatas (L). Sch J Appl Med Sci 4:1902–1905

    Google Scholar 

  31. Park SY, Lee SY, Yang JW, Lee J-S, Oh S-D, Oh S, Lee SM, Lim M-H, Park SK, Jang J-S, Cho HS, Yeo Y (2016) Comparative analysis of phytochemicals and polar metabolites from colored sweet potato (Ipomoea batatas L.) tubers. Food Sci Biotechnol 25:283

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Oluyori PA, Olatunji GA (2016) Antimicrobial and antioxidant activity of peels’ extracts from Ipomoea Batatas L. Phytochem Anal 6:157–164

    Google Scholar 

  33. Rosas-Ramírez D, Pereda-Miranda R (2013) Resin glycosides from the yellow-skinned variety of sweet potato (Ipomoea batatas). J Agric Food Chem 61:9488–9494

    PubMed  Google Scholar 

  34. Kang H, Kwak Y-G, Koppula S (2014) Protective effect of purple sweet potato (Ipomoea batatas Linn, Convolvulaceae) on neuroinflammatory responses in lipopolysaccharide-stimulated microglial cells. Trop J Pharm Res 13:1257–1262

    Google Scholar 

  35. Choi JH, Choi CY, Lee KJ, Hwang YP, Chung YC, Jeong HG (2009) Hepatoprotective effects of an anthocyanin fraction from purple-fleshed sweet potato against acetaminophen-induced liver damage in mice. J Med Food 12:320–326

    Google Scholar 

  36. Cuevas Montilla E, Hillebrand S, Winterhalter P (2010) Anthocyanins in purple sweet potato (Ipomoea batatas L.) varieties. Fruit Veg Cereal Sci Biotechnol 5:19–24

    Google Scholar 

  37. Aldi Y, Dillasamola D, Florina T, Friardi D (2016) Activity and capacity test of macrophage peritoneal cell and number leukocyte of ethanol extract purple sweet potato peel Ipomoea batatas (L.) Lam. Res J Pharm Biol Chem Sci 7:178–186

    CAS  Google Scholar 

  38. Jung JK, Lee SU, Kozukue N, Levin CE, Friedman M (2011) Distribution of phenolic compounds and antioxidative activities in parts of sweet potato (Ipomoea batata L.) plants and in home processed roots. J Food Compos Anal 24:29–37

    CAS  Google Scholar 

  39. Pochapski MT, Fosquiera EC, Esmerino LA, Dos Santos EB, Farago PV, Santos FA, Groppo FC (2011) Phytochemical screening, antioxidant, and antimicrobial activities of the crude leaves’ extract from Ipomoea batatas (L.) Lam. Pharmacogn Mag 26:165–170

    Google Scholar 

  40. Hesam F, Taheri Tehrani R, Balali GR (2015) Evaluation of β-amylase activity of sweet potato (Ipomoea batatas) cultivated in Iran. J Food Biosci Technol 5:41–48

    Google Scholar 

  41. Wilson BJ, Yang DTC, Boyd MR (1970) Toxicity of mould-damaged sweet potatoes (Ipomoea batatas). Nature 227:521–522

    CAS  PubMed  Google Scholar 

  42. Clark CA, Lawrence A, Martin FA (1981) Accumulation of furanoterpenoids in sweet potato tissue following inoculation with different pathogens. Phytopathology 71:708–711

    CAS  Google Scholar 

  43. Remya M, Subha S (2015) Production of 4-ipomeanol, an anticancer agent from the root tubers and rhizogenic callus of Ipomoea batatas Lam. – a comparative study. Indian J Exp Biol 53:297–304

    Google Scholar 

  44. Remya M, Subha S (2017) Optimization of process parameters for bioproduction, isolation and purification of 4-ipomeanol, an anticancer agent from cell suspension cultures of Ipomoea batatas (L.) Lam. Indian J Exp Biol 55:191–196

    Google Scholar 

  45. https://pubchem.ncbi.nlm.nih.gov/compound/4-Ipomeanol

  46. Remya M, Subha S (2014) Sweet potato [Ipomoea batatas (L.) Lam.] – a valuable medicinal food: a review. J Med Food 17(7):733–741

    Google Scholar 

  47. Boyd MR, Burka LT, Harris TM, Wilson BJ (1974) Lung-toxic furanoterpenoids produced by sweet potatoes (Ipomoea batatas) following microbial infection. Biochim Biophys Acta 337:184–195

    CAS  PubMed  Google Scholar 

  48. Boyd MR, Wilson BJ, Harris TM (1972) Confirmation by chemical synthesis of the structure of 4-ipomeanol, a lung-toxic metabolite of the sweet potato, Ipomoea batatas. Nat New Biol 236:158–159

    CAS  PubMed  Google Scholar 

  49. Krauss J, Bracher F, Unterreitmeier D (2005) A new approach towards (±)-4-ipomeanol and its 2-furyl regioisomer. Turk J Chem 29:635–639

    CAS  Google Scholar 

  50. Krauss J, Unterreitmeier D (2005) Synthesis of new lipophilic ipomeanol analogues and their cytotoxic activities. Arch Pharm 338:44–48

    CAS  Google Scholar 

  51. Boyd MR, Reznik-Schuller H (1984) Metabolic basis for the pulmonary clam cells as a target for pulmonary carcinogenesis. Toxicol Rather 12:56–61

    CAS  Google Scholar 

  52. Dutcher JS, Boyd MR (1979) Species and strain differences in target organ alkylation and toxicity by 4-ipomeanol: predictive value of covalent binding in studies of target organ toxicities by reactive metabolites. Biochem Pharmacol 28:3367–3372

    CAS  PubMed  Google Scholar 

  53. Buckpitt AR, Statham CN, Boyd MR (1982) In vivo studies on the target tissue metabolism, covalent binding, glutathione depletion, and toxicity of 4-ipomeanol in birds, species deficient in pulmonary enzymes for metabolic activation. Toxicol Appl Pharmacol 65:38–52

    CAS  PubMed  Google Scholar 

  54. Boyd MR, Burka LT, Wilson BE (1975) Distribution, excretion and binding of radioactivity in the rat after intraperitoneal administration of the lung-toxic fur [14C] 4-ipomeanol. Toxicol Appl Pharmacol 32:147–157

    CAS  PubMed  Google Scholar 

  55. Boyd MR (1977) Evidence for the Clara cells as a site of cytochrome P450 dependent mixed function oxidase activity in lung. Nature (Land) 269:713–715

    CAS  Google Scholar 

  56. Boyd MR, Burka LT (1978) In vivo studies on the relationship between target organ alkylation and the pulmonary toxicity of a chemically reactive metabolite of 4-ipomeanol. J Pharmacol Exp Ther 207:687–697

    CAS  PubMed  Google Scholar 

  57. Serabjit-Singh CJ, Nisho SJ, Philpot RM, Plopper CG (1988) The distribution of cytochrome P450 monooxygenase in cells of the rabbit lung: an ultrastructural immunochemical characterization. Mol Pharmacol 33:279–289

    CAS  PubMed  Google Scholar 

  58. Brooks P, Lawley PW (1964) Evidence for the binding of polynuclear aromatic hydrocarbons to the nucleic acids of mouse skin: relation between carcinogenic power of hydrocarbons and their binding to deoxyribonucleic acid. Nature (London) 202:781–784

    Google Scholar 

  59. Boyd MR (1980) Biochemical mechanisms in chemical-induced lung injury: roles of metabolic activation. Crit Rev Toxicol 7:103–176

    CAS  PubMed  Google Scholar 

  60. McLemore TL, Liu MC, Blacker PC, Gregg M, Alley MC, Abbotl BJ, Shoemaker RH, Bohlman ME, Liltersl CC, Hubbard WC, Brennan RH, McMahon JB, Fine DL, Eggleston JC, Mayo JG, Boyd MR (1987) Novel intrapulmonary model for orthotopic propagation of human lung cancers in athymic nude mice. Cancer Res 47:5132–5140

    CAS  PubMed  Google Scholar 

  61. McLemore T, Coudert B, Adelberg S, Liu MC, Hubbard WC, Litters CC, Eggleston JC, Boyd MR (1988) Metabolic activation of 4-ipomeanol by human pulmonary carcinoma cells propagated in vitro and intrabronchially in nude mice. Clin Res 36:498A

    Google Scholar 

  62. Christian MC, Wittes RE, Leyland-Jones B, McLemore TL, Smith AC, Grieshaber CK, Chabner BA, Boyd MR (1989) Ipomeanol: a novel investigational new drug for lung cancer. J Natl Cancer Inst 81:1133–1143

    CAS  PubMed  Google Scholar 

  63. Buckpitt AR, Boyd MR (1982) Metabolic activation of 4-ipomeanol by avian tissue microsomes. Toxicol Appl Pharmacol 65:53–62

    CAS  PubMed  Google Scholar 

  64. Wolf CR, Statham CN, McMenamin MG et al (1982) The relationship between the catalytic activities of the lung-specific toxicity of the furan derivative, 4-ipomeanol. Mol Pharmacol 22:738–744

    CAS  PubMed  Google Scholar 

  65. Rowinsky EK, Noe DA, Ettinger DS, Christian MC, Lubejko BG, Fishman EK, Sartorius SE, Boyd MR, Donehower RC (1993) Phase I and pharmacological study of the pulmonary cytotoxin 4-ipomeanol on a single dose schedule in lung cancer patients: hepatotoxicity is dose limiting in humans. Cancer Res 5:1794–1801

    Google Scholar 

  66. Kasturi VK, Dearing MP, Piscitelli SC, Russell EK, Sladek GG, O’Neil K, Turner GA, Morton TL, Christian MC, Johnson BE, Kelley MJ (1998) Phase I study of a five-day dose schedule of 4-ipomeanol in patients with non-small cell lung cancer. Clin Cancer Res 4:2095–2102

    CAS  PubMed  Google Scholar 

  67. Lakhanpal S, Donehower RC, Rowinsky EK (2001) Phase II study of 4-ipomeanol, a naturally occurring alkylating furan, in patients with advanced hepatocellular carcinoma. Invest New Drugs 19:69–76

    CAS  PubMed  Google Scholar 

  68. Czerwinski M, McLemore TL, Philpot RM et al (1991) Metabolic activation of 4-ipomeanol by complementary DNA expressed human cytochromes P-450: evidence for species specific metabolism. Cancer Res 51:4636–4638

    CAS  PubMed  Google Scholar 

  69. Rainov NG, Dobberstein KU, Sena-Esteves M et al (1998) New prodrug activation gene therapy for cancer using cytochrome P450 4B1 and 2-aminoanthracene/4-ipomeanol. Hum Gene Ther 9:1261–1273

    CAS  PubMed  Google Scholar 

  70. Mohr L, Rainov NG, Mohr UG, Wands JR (2000) Rabbit cytochrome P450 4B1: a novel prodrug activating gene for pharmacogene therapy of hepatocellular carcinoma. Cancer Gene Ther 7:1008–1014

    CAS  PubMed  Google Scholar 

  71. Wiek C, Eva MS, Katharina R, Marcel F, Mariko N, Edward JK, Wolfgang K, Vladimir YY, Christof MK, Allan ER, Hanenberg H (2015) Identification of amino acid determinants in CYP4B1 for optimal catalytic processing of 4-ipomeanol. Biochem J 1:103–114

    Google Scholar 

  72. Hsu H, Rainov NG, Quinones A, Eling DJ, Sakamoto KM, Spear MA (2003) Combined radiation and cytochrome CYP4B1/4-ipomeanol gene therapy using the EGR1 promoter. Anticancer Res 23:2723–2728

    CAS  PubMed  Google Scholar 

  73. Jang SJ, Kang JH, Lee TS, Kim SJ, Kim KI, Lee YJ, Cheon GJ, Choi CW, Lim SM (2010) Prodrug-activating gene therapy with rabbit cytochrome P450 4B1/4-ipomeanol or 2-aminoanthracene system in glioma cells. Nucl Med Mol Imaging 44:193–198

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Roellecke K, Virts EL, Einholz R, Edson KZ, Altvater B, Rossig C, von Laer D, Scheckenbach K, Wagenmann M, Reinhardt D, Kramm CM, Rettie AE, Wiek C, Hanenberg H (2016) Optimized human CYP4B1 in combination with the alkylator prodrug 4-ipomeanol serves as a novel suicide gene system for adoptive T-cell therapies. Gene Ther 23:615–626

    CAS  PubMed  Google Scholar 

  75. Moon BS, Jang SJ, Lee TS, Chi DY, Lee BC, Kang JH, Kim SE (2013) Synthesis and evaluation of a 18F-labeled 4-ipomeanol as an imaging agent for CYP4B1 gene prodrug activation therapy. Cancer Biother Radiopharm 28:588–597

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mohanraj, R. (2019). Sweet Potato: Bioactive Compounds and Health Benefits. In: Mérillon, JM., Ramawat, K.G. (eds) Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-78030-6_62

Download citation

Publish with us

Policies and ethics