Skip to main content

Inulin-Type Fructans Application in Gluten-Free Products: Functionality and Health Benefits

  • Reference work entry
  • First Online:
  • 4862 Accesses

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

The increasing demand on a high-quality gluten-free (GF) products and an increasing prevalence of GF consumers favors the development of research aimed to improve the overall quality of GF products. To obtain a functional GF product providing the additional health benefits, the fortification of GF food is applied. Recently, inulin-type fructans (ITFs) were proposed as multi-task ingredients of GF products, improving their nutritional and health-related properties. In this chapter, the most recent studies on GF products in which ITFs were applied as valuable ingredients affecting the rheological and technological parameters of GF products are presented. The literature data with the successful applications of ITFs in the GF products and with their health beneficial properties, as presented in this chapter, points to a great potential of ITFs in the GF technology. The promising evidences of beneficial impact of ITFs on characteristic of GF goods may contribute to further development and intensified research on new GF products of superior quality that will be dedicated to people suffering from gluten-related disorders.

This is a preview of subscription content, log in via an institution.

Abbreviations

AGA:

Anti-gliadin

ASD:

Autistic spectrum disorders

ATI:

Amylase and trypsin inhibitor

BMI:

Body mass index

CD:

Celiac disease

DGP:

Anti-deaminated gliadin

DP:

Degree of polymerization

EMA:

Anti-endomysium

FODMAPs:

Fermentable oligo-, di-, and mono-saccharides and polyols

FOS:

Fructooligosaccharides

GF:

Gluten-free

GFD:

Gluten-free diet

HLA:

Human leucocyte antigen

IBD:

Irritable bowel disease

IBS:

Irritable bowel syndrome

IgG:

Immunoglobulin G

ISAPP:

The International Scientific Association of Probitics and Prebiotics

ITFs:

Inulin-type fructans

JAR:

Just-about-right

mRNA:

Messenger RNA

MW:

Molecular weight

NCGS:

Non-celiac gluten sensitivity

QDA:

Quantitative descriptive analysis

RDA:

Recommended daily allowances

SCFA:

Short-chain fatty acids

TLR:

Toll-like receptor

tTG:

Anti-tissue transglutaminase

WA:

Wheat allergy

WDEIA:

Wheat-dependent, exercise-induced anaphylaxis

References

  1. Siró I, Kápolna E, Kápolna B, Lugasi A (2008) Functional food. Product development, marketing and consumer acceptance – a review. Appetite 51(3):456–467

    PubMed  Google Scholar 

  2. Martorell R, Ascencio M, Tascan L, Alfaro T, Young MF, Addo OY, Dary O, Flores-Ayala R (2015) Effectiveness evaluation of the food fortification program of Costa Rica: impact on anemia prevalence and hemoglobin concentration in women and children. Am J Clin Nutr 101:201–217

    Google Scholar 

  3. Sicherer SH, Sampson HA (2014) Food allergy: epidemiology, pathogenesis, diagnosis, and treatment. J Allergy Clin Immunol Pract 133:291–307

    CAS  Google Scholar 

  4. Saturni L, Ferretti G, Bacchetti T (2010) The gluten-free diet: safety and nutritional quality. Forum Nutr 2:16–34

    CAS  Google Scholar 

  5. Ilus T, Kaukinen K, Virta LJ, Pukkala E, Collin P (2014) Incidence of malignancies in diagnosed celiac patients: a population-based estimate. Am J Gastroenterol 109(9):1471–1477

    PubMed  Google Scholar 

  6. Matos ME, Rosell CM (2011) Chemical composition and starch digestibility of different gluten free breads. Plant Foods Hum Nutr 66:224–230

    Google Scholar 

  7. Gallagher E, Gormley TR, Arendt EK (2004) Recent advances in the formulation of gluten-free cereal-based products. Trends Food Sci Technol 15:143–152

    CAS  Google Scholar 

  8. Giménez-Bastida JA, Piskuła MK, Zieliński H (2015) Recent advances in development of gluten-free buckwheat products. Trends Food Sci Technol 44:58–65

    Google Scholar 

  9. Drabińska N, Zieliński H, Krupa-Kozak U (2016) Technological benefits of inulin-type fructans application in gluten-free products – a review. Trends Food Sci Technol 56:149–157

    Google Scholar 

  10. Van Laere A, Van Den Ende W (2002) Inulin metabolism in dicots: chicory as a model system. Plant Cell Environ 25:803–813

    Google Scholar 

  11. Shoaib M, Shehzad A, Omar M, Rakha A, Raza H, Sharif HR, Shakeel A, Ansari A, Niazi S (2016) Inulin: properties, health benefits and food applications. Carbohydr Polym 147:444–454

    CAS  PubMed  Google Scholar 

  12. Kelly G (2008) Inulin-type prebiotics: a review: part 1. Altern Med Rev 13(4):315–329

    PubMed  Google Scholar 

  13. Bosscher D (2009) Fructan prebiotics derived from inulin. In: Charalampopoulos D, Rastall A (eds) Prebiotics and probiotics science and technology. Springer, New York

    Google Scholar 

  14. Barclay T, Ginic-Markovic M, Cooper P, Petrovsky N (2010) Inulin – a versatile polysaccharide with multiple pharmaceutical and food chemical uses. J Excipients Food Chem 1(3):27–50

    CAS  Google Scholar 

  15. Ronkart SN, Blecker CS, Fourmanoir H, Fougnies C, Deroanne C, Van Herck JC, Paquot M (2007) Isolation and identification of inulooligosaccharides resulting from inulin hydrolysis. Anal Chim Acta 604(1):81–87

    CAS  PubMed  Google Scholar 

  16. Ozimek LK, Kralj S, Van der Maarel MJ, Dijkhuizen L (2006) The levansucrase and inulosucrase enzymes of lactobacillus reuteri 121 catalyse processive and non-processive transglycosylation reactions. Microbiology 152:1187–1196

    CAS  PubMed  Google Scholar 

  17. Mensink MA, Frijlink HW, Maarschalk KV, Hinrichs WLJ (2015) Inulin, a flexible oligosaccharide I: review of its physicochemical characteristics. Carbohydr Polym 130:405–419

    CAS  PubMed  Google Scholar 

  18. Apolinario AC, Damasceno BPGD, Beltrao NED, Pessoa A, Converti A, da Silva JA (2014) Inulin-type fructans: a review on different aspects of biochemical and pharmaceutical technology. Carbohydr Polym 101:368–378

    CAS  PubMed  Google Scholar 

  19. Livingston DP, Hincha DK, Heyer AG (2009) Fructan and its relationship to abiotic stress tolerance in plants. Cell Mol Life Sci 66(13):2007–2023

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tarrega A, Rocafull A, Costell E (2010) Effect of blends of short and long-chain inulin on the rheological and sensory properties of prebiotic low-fat custards. LWT-Food Sci Technol 43(3):556–562

    CAS  Google Scholar 

  21. Lopez-Molina D, Navarro-Martinez MD, Melgarejo FR, Hiner ANP, Chazarra S, Rodriguez-Lopez JN (2005) Molecular properties and prebiotic effect of inulin obtained from artichoke (Cynara Scolymus L.) Phytochemistry 66(12):1476–1484

    CAS  PubMed  Google Scholar 

  22. Garcia ML, Caceres E, Selgas MD (2006) Effect of inulin on the textural and sensory properties of mortadella, a Spanish cooked meat product. Int J Food Sci Technol 41(10):1207–1215

    CAS  Google Scholar 

  23. Capriles VD, Soares RAM, Silva MEMPE, Areas JAG (2009) Effect of fructans-based fat replacer on chemical composition, starch digestibility and sensory acceptability of corn snacks. Int J Food Sci Technol 44(10):1895–1901

    CAS  Google Scholar 

  24. Zahn S, Pepke F, Rohm H (2010) Effect of inulin as a fat replacer on texture and sensory properties of muffins. Int J Food Sci Technol 45(12):2531–2537

    CAS  Google Scholar 

  25. Beriain MJ, Gomez I, Petri E, Insausti K, Sarries MV (2011) The effects of olive oil emulsified alginate on the physico-chemical, sensory, microbial, and fatty acid profiles of low-salt, inulin-enriched sausages. Meat Sci 88(1):189–197

    CAS  PubMed  Google Scholar 

  26. Hinrichs WLJ, Prinsen MG, Frijlink HW (2001) Inulin glasses for the stabilization of therapeutic proteins. Int J Pharm 215(1–2):163–174

    CAS  PubMed  Google Scholar 

  27. Imran S, Gillis RB, Kok MS, Harding SE, Adams GG (2012) Application and use of inulin as a tool for therapeutic drug delivery. Biotechnol Genet Eng Rev 28:33–45

    CAS  PubMed  Google Scholar 

  28. Roberfroid MB (2007) Inulin-type fructans: functional food ingredients. J Nutr 137(11):2493–2502

    Google Scholar 

  29. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125(6):1401–1412

    CAS  PubMed  Google Scholar 

  30. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K, Reid G (2017) Expert consensus document: the international scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14(8):491–502

    PubMed  Google Scholar 

  31. Slavin J (2013) Fiber and prebiotics: mechanisms and health benefits. Forum Nutr 5:1417–1435

    CAS  Google Scholar 

  32. Madrigal L, Sangronis E (2007) Inulin and derivates as key ingredients in functional foods. Arch Latinoam Nutr 57(4):387–396

    CAS  PubMed  Google Scholar 

  33. Langlands SJ, Hopkins MJ, Coleman N, Cummings JH (2004) Prebiotic carbohydrates modify the mucosa associated microflora of the human large bowel. Gut 53(11):1610–1616

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Krupa-Kozak U, Markiewicz L, Lamparski G, Juśkiewicz J (2017) Administration of inulin-supplemented gluten-free diet modified calcium absorption and caecal microbiota in rats in a calcium-dependent manner. Forum Nutr 9(7):702

    Google Scholar 

  35. Zhu L, Qin S, Zhai S, Gao Y, Li L (2017) Inulin with different degrees of polymerization modulates composition of intestinal microbiota in mice. FEMS Microbiol Lett 364(10):fnx075

    Google Scholar 

  36. Gibson GR, Beatty ER, Wang X, Cummings JH (1995) Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108(4):975–982

    CAS  PubMed  Google Scholar 

  37. Buddington RK, Williams CH, Chen SC, Witherly SA (1996) Dietary supplement of neosugar alters the fecal flora and decreases activities of some reductive enzymes in human subjects. Am J Clin Nutr 63:709–716

    CAS  PubMed  Google Scholar 

  38. Rao VA (2001) The prebiotic properties of oligofructose at low intake levels. Nutr Res 21:843–848

    CAS  Google Scholar 

  39. Tuohy KM, Finlay RK, Wynne AG, Gibson GR (2001) A human volunteer study on the prebiotic effects of HP-inulin – faecal bacteria enumerated using fluorescent in situ hybridization (FISH). Anaerobe 7:113–118

    CAS  Google Scholar 

  40. Salazar N, Dewulf EM, Neyrinck AM, Bindels LB, Cani PD, Mahillon J, de Vos WM, Thissen JP, Gueimonde M, de Los Reyes-Gavilán CG, Delzenne NM (2015) Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clin Nutr 34(3):501–507

    CAS  PubMed  Google Scholar 

  41. Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C, Hardt PD (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 18(1):190–195

    PubMed  Google Scholar 

  42. Bouhnik Y, Raskine L, Champion K, Andrieux C, Penven S, Jacobs H, Simoneau G (2007) Prolonged administration of low-dose inulin stimulates the growth of bifidobacteria in humans. Nutr Res 27:187–193

    CAS  Google Scholar 

  43. Kleessen B, Schwarz S, Boehm A, Fuhrmann H, Richter A, Henle T, Krueger M (2007) Jerusalem artichoke and chicory inulin in bakery products affect faecal microbiota of healthy volunteers. Br J Nutr 98:540–549

    CAS  PubMed  Google Scholar 

  44. Institute of Medicine, Food and Nutrition Board (2002) Dietary reference intakes: energy, carbohydrates, fiber, fat, fatty acids, cholesterol, protein and amino acids. National Academies Press, Washington, DC

    Google Scholar 

  45. Turner ND, Lupton JR (2011) Dietary fiber. Adv Nutr 2(2):151–152

    PubMed  PubMed Central  Google Scholar 

  46. Anderson JW, Baird P, Davis RH, Ferreri S, Knudtson M, Koraym A, Waters V, Williams CL (2009) Health benefits of dietary fiber. Nutr Rev 67:188–205

    PubMed  Google Scholar 

  47. Romo C, Mize K, Warfel K (2008) Addition of hi-maize, natural dietary fiber, to a commercial cake mix. J Am Diet Assoc 108:76–77

    Google Scholar 

  48. Roberfroid M, Slavin J (2000) Nondigestible oligosaccharides. Crit Rev Food Sci Nutr 40(6):461–480

    CAS  PubMed  Google Scholar 

  49. Cherbut C (2002) Inulin and oligofructose in the dietary fibre concept. Br J Nutr 87(Suppl 2):S159–S162

    CAS  PubMed  Google Scholar 

  50. Kleessen B, Hartmann L, Blaut M (2003) Fructans in the diet cause alterations of intestinal mucosal architecture, released mucins and mucosa-associated bifidobacteria in gnotobiotic rats. Br J Nutr 89(5):597–606

    CAS  PubMed  Google Scholar 

  51. Strugala V, Allen A, Dettmar PW, Pearson JP (2003) Colonic mucin: methods of measuring mucus thickness. Proc Nutr Soc 62(1):237–243

    CAS  PubMed  Google Scholar 

  52. Liu TW, Cephas KD, Holscher HD, Kerr KR, Mangian HF, Tappenden KA, Swanson KS (2016) Nondigestible fructans alter gastrointestinal barrier function, gene expression, histomorphology, and the microbiota profiles of diet-induced obese C57BL/6J mice. J Nutr 146(5):949–956

    CAS  PubMed  Google Scholar 

  53. Ten Bruggencate SJ, Bovee-Oudenhoven IM, Lettink-Wissink ML, Van der Meer R (2003) Dietary fructo-oligosaccharides dose-dependently increase translocation of salmonella in rats. J Nutr 133:2313–2318

    PubMed  Google Scholar 

  54. Bovee-Oudenhoven IM, ten Bruggencate SJ, Lettink-Wissink ML, van der Meer R (2003) Dietary fructo-oligosaccharides and lactulose inhibit intestinal colonisation but stimulate translocation of salmonella in rats. Gut 52:1572–1578

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Barrat E, Michel C, Poupeau G, David-Sochard A, Rival M, Pagniez A, Champ M, Darmaun D (2008) Supplementation with galactooligosaccharides and inulin increases bacterial translocation in artificially reared newborn rats. Pediatr Res 64(1):34–39

    PubMed  Google Scholar 

  56. Jain PK, McNaught CE, Anderson AD, MacFie J, Mitchell CJ (2004) Influence of synbiotic containing Lactobacillus acidophilus La5, Bifidobacterium lactis Bb 12, Streptococcus thermophilus, Lactobacillus bulgaricus and oligofructose on gut barrier function and sepsis in critically ill patients: a randomised controlled trial. Clin Nutr 23:467–475

    PubMed  Google Scholar 

  57. Olguin F, Araya M, Hirsch S, Brunser O, Ayala V, Rivera R, Gotteland M (2005) Prebiotic ingestion does not improve gastrointestinal barrier function in burn patients. Burns 31:482–488

    CAS  PubMed  Google Scholar 

  58. Ten Bruggencate SJ, Bovee-Oudenhoven IM, Lettink-Wissink ML, Katan MB, van der Meer R (2006) Dietary fructooligosaccharides affect intestinal barrier function in healthy men. J Nutr 136:70–74

    PubMed  Google Scholar 

  59. Russo F, Linsalata M, Clemente C, Chiloiro M, Orlando A, Marconi E, Chimienti G, Riezzo G (2012) Inulin-enriched pasta improves intestinal permeability and modifies the circulating levels of zonulin and glucagon-like peptide 2 in healthy young volunteers. Nutr Res 32(12):940–946

    CAS  PubMed  Google Scholar 

  60. Duggan C, Penny ME, Hibberd P, Gil A, Huapaya A, Cooper A, Coletta F, Emenhiser C, Kleinman RE (2003) Oligofructose-supplemented infant cereal: 2 randomized, blinded, community-based trials in Peruvian infants. Am J Clin Nutr 77:937–942

    CAS  PubMed  Google Scholar 

  61. Kleessen B, Sykura B, Zunft HJ, Blaut M (1997) Effects of inulin and lactose on fecal microflora, microbial activity, and bowel habit in elderly constipated persons. Am J Clin Nutr 65:1397–1402

    CAS  PubMed  Google Scholar 

  62. Moore N, Chao C, Yang L, Storm H, Oliva-Hemker M, Saavedra JM (2003) Effects of fructo-oligosaccharide-supplemented infant cereal: a double-blind, randomized trial. Br J Nutr 90:581–587

    CAS  PubMed  Google Scholar 

  63. Cani PD, Joly E, Horsmans Y, Delzenne NM (2006) Oligofructose promotes satiety in healthy human: a pilot study. Eur J Clin Nutr 60(5):567–572

    CAS  PubMed  Google Scholar 

  64. Genta S, Cabrera W, Habib N, Pons J, Carillo IM, Grau A, Sánchez S (2009) Yacon syrup: beneficial effects on obesity and insulin resistance in humans. Clin Nutr 28(2):182–187

    CAS  PubMed  Google Scholar 

  65. Parnell JA, Reimer RA (2009) Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr 89(6):1751–1759

    CAS  PubMed  Google Scholar 

  66. Verhoef SP, Meyer D, Westerterp KR (2011) Effects of oligofructose on appetite profile, glucagon-like peptide 1 and peptide YY3-36 concentrations and energy intake. Br J Nutr 106(11):1757–1762

    CAS  PubMed  Google Scholar 

  67. Hume MP, Nicolucci AC, Reimer RA (2017) Prebiotic supplementation improves appetite control in children with overweight and obesity: a randomized controlled trial. Am J Clin Nutr 105(4):790–799. https://doi.org/10.3945/ajcn.116.140947

    Article  CAS  PubMed  Google Scholar 

  68. Archer BJ, Johnson SK, Devereux HM, Baxter AL (2004) Effect of fat replacement by inulin or lupin-kernel fibre on sausage patty acceptability, post-meal perceptions of satiety and food intake in men. Br J Nutr 91(4):591–599

    CAS  PubMed  Google Scholar 

  69. Hess JR, Birkett AM, Thomas W, Slavin JL (2011) Effects of short-chain fructooligosaccharides on satiety responses in healthy men and women. Appetite 56(1):128–134

    CAS  PubMed  Google Scholar 

  70. Karalus M, Clark M, Greaves KA, Thomas W, Vickers Z, Kuyama M, Slavin J (2012) Fermentable fibers do not affect satiety or food intake by women who do not practice restrained eating. J Acad Nutr Diet 112(9):1356–1362

    PubMed  Google Scholar 

  71. Mozaffarian D, Ludwig DS (2015) Dietary cholesterol and blood cholesterol concentrations-reply. JAMA 314(19):2084–2085

    PubMed  Google Scholar 

  72. Letexier D, Diraison F, Beylot M (2003) Addition of inulin to a moderately high-carbohydrate diet reduces hepatic lipogenesis and plasma triacylglycerol concentrations in humans. Am J Clin Nutr 77:559–564

    CAS  PubMed  Google Scholar 

  73. Balcazar-Munoz BR, Martinez-Abundis E, Gonzalez-Ortiz M (2003) Effect of oral inulin administration on lipid profile and insulin sensitivity in subjects with obesity and dyslipidemia. Rev Med Chil 131:597–604

    PubMed  Google Scholar 

  74. Russo F, Chimienti G, Riezzo G, Pepe G, Petrosillo G, Chiloiro M, Marconi E (2008) Inulin-enriched pasta affects lipid profile and Lp(a) concentrations in Italian young healthy male volunteers. Eur J Nutr 47(8):453–459

    CAS  PubMed  Google Scholar 

  75. Yamashita K, Kawai K, Itakura M (1984) Effects of fructooligosaccharides on blood glucose and serum lipids in diabetic subjects. Nutr Res 4:961–966

    CAS  Google Scholar 

  76. Luo J, Rizkalla SW, Alamowitch C, Boussairi A, Blayo A, Barry JL, Laffitte A, Guyon F, Bornet FR, Slama G (1996) Chronic consumption of short-chain fructooligosaccharides by healthy subjects decreased basal hepatic glucose production but had no effect on insulin-stimulated glucose metabolism. Am J Clin Nutr 63:939–945

    CAS  PubMed  Google Scholar 

  77. Pedersen A, Sandstrom B, van Amelsvoort JM (1997) The effect of ingestion of inulin on blood lipids and gastrointestinal symptoms in healthy females. Br J Nutr 78:215–222

    CAS  PubMed  Google Scholar 

  78. van Dokkum W, Wezendonk B, Srikumar TS, van den Heuvel EG (1999) Effect of nondigestible oligosaccharides on large-bowel functions, blood lipid concentrations and glucose absorption in young healthy male subjects. Eur J Clin Nutr 53:1–7

    PubMed  Google Scholar 

  79. Liu F, Prabhakar M, Ju J, Long H, Zhou HW (2017) Effect of inulin-type fructans on blood lipid profile and glucose level: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr 71(1):9–20

    CAS  PubMed  Google Scholar 

  80. Krupa-Kozak U, Świątecka D, Bączek N, Brzóska MM (2016) Inulin and fructooligosaccharide affect in vitro calcium uptake and absorption from calcium-enriched gluten-free bread. Food Funct 7:1950–1958

    CAS  PubMed  Google Scholar 

  81. Coudray C, Tressol JC, Gueux E, Rayssiguier Y (2003) Effects of inulin-type fructans of different chain length and type of branching on intestinal absorption and balance of calcium and magnesium in rats. Eur J Nutr 42:91–98

    CAS  PubMed  Google Scholar 

  82. Griffin IJ, Davila PM, Abrams SA (2002) Non-digestible oligosaccharides and calcium absorption in girls with adequate calcium intakes. Br J Nutr 87(Suppl 2):S187–S191

    CAS  PubMed  Google Scholar 

  83. Griffin IJ, Hicks PMD, Heaney RP, Abrams SA (2003) Enriched chicory inulin increases calcium absorption mainly in girls with lower calcium absorption. Nutr Res 23:901–909

    CAS  Google Scholar 

  84. Yasuda K, Roneker KR, Miller DD, Welch RM, Lei XG (2006) Supplemental dietary inulin affects the bioavailability of iron in corn and soybean meal to young pigs. J Nutr 136(12):3033–3038

    CAS  PubMed  Google Scholar 

  85. Yap KW, Mohamed S, Yazid AM, Maznah I, Meyer DM (2005) Dose response effects of inulin on fecal short-chain fatty acids content and mineral absorption of formula fed infants. Nutr Food Sci 35:208–219

    Google Scholar 

  86. van den Heuvel EG, Muys T, van Dokkum W, Schaafsma G (1999) Oligofructose stimulates calcium absorption in adolescents. Am J Clin Nutr 69:544–548

    PubMed  Google Scholar 

  87. Abrams SA, Griffin IJ, Hawthorne KM, Liang L, Gunn SK, Darlington G, Ellis KJ (2005) A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am J Clin Nutr 82:471–476

    CAS  PubMed  Google Scholar 

  88. Legette LL, Lee WH, Martin BR, Story JA, Campbell JK, Weaver CM (2012) Prebiotics enhance magnesium absorption and inulin-based fibres exert chronic effects on calcium utilization in a postmenopausal rodent model. J Food Sci 77(4):H88–H94

    CAS  PubMed  Google Scholar 

  89. Holloway L, Moynihan S, Abrams SA, Kent K, Hsu AR, Friedlander AL (2007) Effects of oligofructose-enriched inulin on intestinal absorption of calcium and magnesium and bone turnover markers in postmenopausal women. Br J Nutr 97:365–372

    CAS  PubMed  Google Scholar 

  90. Wieser H (2007) Chemistry of gluten proteins. Food Microbiol 24(2):115–119

    CAS  PubMed  Google Scholar 

  91. Kucek LK, Veenstra LD, Amnuaycheewa P, Sorrells ME (2015) A grounded guide to gluten: how modern genotypes and processing impact wheat sensitivity. Compr Rev Food Sci Food Saf 14:285–302

    CAS  PubMed  Google Scholar 

  92. Elli L, Villalta D, Roncoroni L, Barisani D, Ferrero S, Pellegrini N, Bardella MT, Valiante F, Tomba C, Carroccio A, Bellini M, Soncini M, Cannizzaro R, Leandro G (2017) Nomenclature and diagnosis of gluten-related disorders: a position statement by the Italian Association of Hospital Gastroenterologists and Endoscopists (AIGO). Dig Liver Dis 49(2):138–146

    CAS  PubMed  Google Scholar 

  93. Maiuri L, Ciacci C, Ricciardelli I, Vacca L, Raia V, Auricchio S, Picard J, Osman M, Quaratino S, Londei M (2003) Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease. Lancet 362:30–37

    CAS  PubMed  Google Scholar 

  94. Wieser H, Bushuk W, MacRitchie F (2006) The polymeric glutenins. In: Wrigley C, Bekes F, Bushuk W (eds) Gliadin and glutenin: the unique balance of wheat quality. American Association of Cereal Chemistry, St. Paul

    Google Scholar 

  95. Jansens KJA, Lagrain B, Rombouts I, Brijs K, Smet M, Delcour JA (2011) Effect of temperature, time and wheat gluten moisture content on wheat gluten network formation during thermomolding. J Cereal Sci 54(3):434–441

    CAS  Google Scholar 

  96. Malalagoda M, Simsek S (2017) Celiac disease and cereal proteins. Food Hydrocoll 68:108–113

    Google Scholar 

  97. Arranz E, Fernandez-Bañares F, Rosell CM, Rodrigo L, Peña AS (2015) Advances in the understanding of gluten related pathology and the evolution of gluten-free foods. OmniaScience, Barcelona. http://www.omniascience.com/monographs/index.php/monograficos/issue/view/24

  98. Ludvigsson JF, Card TR, Kaukinen K, Bai J, Zingone F, Sanders DS, Murray JA (2015) Screening for celiac disease in the general population and in high-risk groups. United European Gastroenterol J 3(2):106–120

    PubMed  PubMed Central  Google Scholar 

  99. Fasano A, Berti I, Gerarduzzi T, Not T, Colletti RB, Drago S, Elitsur Y, Green PH, Guandalini S, Hill ID, Pietzak M, Ventura A, Thorpe M, Kryszak D, Fornaroli F, Wasserman SS, Murray JA, Horvath K (2003) Prevalence of coeliac disease in at-risk and not-at-risk groups in the United States: a large multicenter study. Arch Intern Med 163:286–292

    PubMed  Google Scholar 

  100. Sapone A, Bai JC, Ciacci C, Dolinsek J, Green PHR, Hadjivassiliou M, Kaukinen K, Rostami K, Sanders DS, Schumann M, Ullrich R, Villalta D, Volta U, Catassi C, Fasano A (2012) Spectrum of gluten-related disorders: consensus on new nomenclature and classification. BMC Med 10:13

    PubMed  PubMed Central  Google Scholar 

  101. Megiorni F, Mora B, Bonamico M, Barbato M, Montuori M, Viola F, Trabace S, Mazzilli MC (2008) HLA-DQ and susceptibility to celiac disease: evidence for gender differences and parent-of-origin effects. Am J Gastroenterol 103(4):997–1003

    PubMed  Google Scholar 

  102. Grzymisławski M, Stankowiak-Kulpa H, Włochal M (2010) Celiakia – standardy diagnostyczne i terapeutyczne 2010 roku. Forum Zaburzeń Metabolicznych 1(1):12–21

    Google Scholar 

  103. Troncone R, Ivarsson A, Szajewska H, Mearin ML (2008) Review article: future research on coeliac disease – a position report from the European multistakeholder platform on coeliac disease (CDEUSSA). Aliment Pharmacol Ther 27(11):1030–1043

    CAS  PubMed  Google Scholar 

  104. Johnson TC, Diamond B, Memeo L, Negulescu H, Hovhanissyan Z, Verkarre V, Rotterdam H, Fasano A, Caillat-Zucman S, Grosdidier E, Winchester R, Cellier C, Jabri B, Green PH (2004) Relationship of HLA-DQ8 and severity of celiac disease: comparison of New York and Parisian cohorts. Clin Gastroenterol Hepatol 2:888–894

    CAS  PubMed  Google Scholar 

  105. Akobeng AK, Ramanan AV, Buchan I, Heller RF (2006) Effect of breast feeding on risk of coeliac disease: a systematic review and meta-analysis of observational studies. Arch Dis Child 91:39–43

    CAS  PubMed  Google Scholar 

  106. Plot L, Amital H (2009) Infectious associations of coeliac disease. Autoimmun Rev 8:316–319

    CAS  PubMed  Google Scholar 

  107. Cammarota G, Cuoco L, Cianci R, Pandolfi F, Gasbarrini G (2000) Onset of coeliac disease during treatment with interferon for chronic hepatitis C. Lancet 356:1494–1545

    CAS  PubMed  Google Scholar 

  108. Vazquez H, Smecuol E, Flores D, Mazure R, Pedreira S, Niveloni S, Mauriño E, Bai JC (2001) Relation between cigarette smoking and coeliac disease: evidence from a case-control study. Am J Gastroenterol 96:798–802

    CAS  PubMed  Google Scholar 

  109. Mention JJ, Ben Ahmed M, Bègue B, Barbe U, Verkarre V, Asnafi V, Colombel JF, Cugnenc PH, Ruemmele FM, McIntyre E, Brousse N, Cellier C, Cerf-Bensussan N (2003) Interleukin 15: a key to disrupted intraepithelial lymphocyte homeostasis and lymphomagenesis in celiac disease. Gastroenterology 125(3):730–745

    CAS  PubMed  Google Scholar 

  110. Di Sabatino A, Corraza GR (2009) Coeliac disease. Lancet 373:1480–1493

    PubMed  Google Scholar 

  111. Bai JC, Fried M, Corazza GR, Schuppan D, Farthing M, Catassi C, Greco L, Cohen H, Ciacci C, Fasano A, González A, Krabshuis JH, LeMair A (2013) World Gastroenterology Organisation global guidelines on celiac disease. J Clin Gastroenterol 47:121–126

    PubMed  Google Scholar 

  112. Rajalahti T, Repo M, Kivelä L, Huhtala H, Mäki M, Kaukinen K, Lindfors K, Kurppa K (2017) Anemia in pediatric celiac disease: association with clinical and histological features and response to gluten-free diet. J Pediatr Gastroenterol Nutr 64(1):e1–e6

    CAS  PubMed  Google Scholar 

  113. Smith D, Gerdes L (2012) Meta-analysis on anxiety and depression in adult celiac disease. Acta Psychiatr Scand 125:183–193

    Google Scholar 

  114. Krupa-Kozak U (2014) Pathologic bone alterations in celiac disease: etiology, epidemiology, and treatment. Nutrition 30:16–24

    CAS  PubMed  Google Scholar 

  115. Iwańczak F, Iwańczak B (2012) Nowe wytyczne dotyczące diagnostyki i leczenia choroby trzewnej u dzieci i młodzieży. Prz Gastroenterol 7(4):85–191

    Google Scholar 

  116. Zuidmeer L, Goldhahn K, Rona RJ, Gislason D, Madsen C, Summers C, Sodergren E, Dahlstrom J, Lindner T, Sigurdardottir ST, McBride D, Keil T (2008) The prevalence of plant food allergies: a systematic review. J Allergy Clin Immunol 121(5):1210–1218

    CAS  PubMed  Google Scholar 

  117. Matricardi PM, Bockelbrink A, Beyer K, Keil T, Niggemann B, Grüber C, Wahn U, Lau S (2008) Primary versus secondary immunoglobulin E sensitization to soy and wheat in the multi-centre allergy study cohort. Clin Exp Allergy 38:493–500

    CAS  PubMed  Google Scholar 

  118. Hischenhuber C, Crevel R, Jarry B, M̈aki M, Moneret-Vautrin DA, Romano A, Troncone R, Ward R (2006) Review article: safe amounts of gluten for patients with wheat allergy or coeliac disease. Aliment Pharmacol Ther 23:559–575

    CAS  PubMed  Google Scholar 

  119. Morita E, Matsuo H, Chinuki Y, Takahashi H, Dahlstrom J, Tanaka A (2009) Food-dependent exercise-induced anaphylaxis importance of omega-5 gliadin and HMW-glutenin as causative antigens for wheat-dependent exercise-induced anaphylaxis. Allergol Int 58:493–498

    CAS  PubMed  Google Scholar 

  120. Tanabe S (2004) IgE-binding abilities of pentapeptides, QQPFP and PQQPF, in wheat gliadin. J Nutr Sci Vitaminol 50:367–370

    CAS  PubMed  Google Scholar 

  121. Sandiford CP, Tatham AS, Fido R, Welch JA, Jones MG, Tee RD, Shewry PR, Newman Taylor AJ (1997) Identification of the major water/salt insoluble wheat proteins involved in cereal hypersensitivity. Clin Exp Allergy 27:1120–1129

    CAS  PubMed  Google Scholar 

  122. Matuszewska E, Kaczmarski M (1999) Próby prowokacji pokarmowej w diagnostyce alergii/nietolerancji pokarmowej u dzieci. Alergia Astma Immunologia 4:245–249

    Google Scholar 

  123. Gibert A, Espadaler M, Angel Camela M, Sanches A, Vague C, Refecas M (2006) Consumption of gluten free products: should be the threshold value for traces amounts of gluten be at 20, 100 czy 200 p.p.m? Eur J Gastroenterol Hepatol 18:1187–1195

    CAS  PubMed  Google Scholar 

  124. Stępień M, Bogdański P (2013) Nadwrażliwość na gluten – fakty i kontrowersje. Forum Zaburzeń Metabolicznych 4(4):183–191

    Google Scholar 

  125. Massari S, Liso M, De Santis L, Mazzei F, Carlone A, Mauro S, Musca F, Bozzetti MP, Minelli M (2011) Occurrence of nonceliac gluten sensitivity in patients with allergic disease. Int Arch Allergy Immunol 155:389–394

    CAS  PubMed  Google Scholar 

  126. Mastrototaro L, Castellaneta S, Gentile A (2012) Gluten sensitivity in children: clinical, serological, genetic and histological description of the first pediatric series. Dig Liver Dis 44:254–255

    Google Scholar 

  127. Volta U, de Gorgio R (2012) New understanding of gluten sensitivity. Nat Rev Gastroenterol Hepatol 9:295–299

    CAS  PubMed  Google Scholar 

  128. Junker Y, Zeissig S, Kim SJ, Barisani D, Wieser H, Leffler DA, Zevallos V, Libermann TA, Dillon S, Freitag TL, Kelly CP, Schuppan D (2012) Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor. J Exp Med 209(13):2395–2408

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Vazquez-Roque MI, Camilleri M, Smyrk T, Murray JA, Marietta E, O’Neill J, Carlson P, Lamsam J, Janzow D, Eckert D, Burton D, Zinsmeister AR (2013) A controlled trial of gluten-free diet in patients with irritable bowel syndrome-diarrhea: effects on bowel frequency and intestinal function. Gastroenterology 144(5):903–911

    CAS  PubMed  Google Scholar 

  130. Wahnschaffe U, Schulzke JD, Zeitz M, Ullrich R (2007) Predictors of clinical response to gluten-free diet in patients diagnosed with diarrhea-predominant irritable bowel syndrome. Clin Gastroenterol Hepatol 5(7):844–850

    PubMed  Google Scholar 

  131. Herfarth HH, Martin CF, Sandler RS, Kappelman MD, Long MD (2014) Prevalence of a gluten free diet and improvement of clinical symptoms in patients with inflammatory bowel diseases. Inflamm Bowel Dis 20(7):1194–1197

    PubMed  Google Scholar 

  132. Rodrigo L, Blanco I, Bobes J, de Serres FJ (2014) Effect of one year of a gluten-free diet on the clinical evolution of irritable bowel syndrome plus fibromyalgia in patients with associated lymphocytic enteritis: a case-control study. Arthritis Res Ther 16(4):421

    PubMed  PubMed Central  Google Scholar 

  133. Rodrigo L, Blanco I, Bobes J, de Serres FJ (2013) Clinical impact of a gluten-free diet on health-related quality of life in seven fibromyalgia syndrome patients with associated celiac disease. BMC Gastroenterol 13:157

    PubMed  PubMed Central  Google Scholar 

  134. Mulloy A, Lang R, O’Reilly M, Sigafoos J, Lancioni G, Rispoli M (2010) Gluten-free and casein-free diets in the treatment of autism spectrum disorders: a systematic review. Res Autism Spectr Disord 4(3):328–339

    Google Scholar 

  135. Knivsberg AM, Reichelt KL, Høien T, Nødland M (2002) A randomised, controlled study of dietary intervention in autistic syndromes. Nutr Neurosci 5(4):251–261

    CAS  PubMed  Google Scholar 

  136. Knivsberg AM, Reichelt KL, Høien T, Nødland M (2003) Effect of a dietary intervention on autistic behavior. Focus Autism Other Dev Disabl 18(4):248–257

    Google Scholar 

  137. Elder JH, Shankar M, Shuster J, Theriaque D, Burns S, Sherrill L (2006) The gluten-free, casein-free diet in autism: results of a preliminary double blind clinical trial. J Autism Dev Disord 36(3):413–420

    PubMed  Google Scholar 

  138. Seung H, Rogalski Y, Shankar M, Elder J (2007) The gluten- and casein-free diet and autism: communication outcomes from a preliminary double-blind clinical trial. J Med Speech-Lang Pathol 15(4):337–345

    Google Scholar 

  139. Millward C, Ferriter M, Calver SJ, Connell-Jones GG (2008) Gluten- and casein-free diets for autistic spectrum disorder. Cochrane Database Syst Rev 2:CD003498

    Google Scholar 

  140. Transparency Market Research (2015) Gluten free food market – global industry analysis, size, share, growth, trends, and forecast, 2015–2021. http://www.transparencymarketresearch.com/GF-products-market.html Published Date 21.10.2015. Accessed 22 July 2016

  141. Kim HS, Patel KG, Orosz E, Kothari N, Demyen MF, Pyrsopoulos N, Ahlawat SK (2016) Time trends in the prevalence of celiac disease and gluten-free diet in the US population: results from the National Health and Nutrition Examination Surveys 2009–2014. JAMA Intern Med 176(11):1716–1717

    PubMed  Google Scholar 

  142. Digiacomo DV, Tennyson CA, Green PH, Demmer RT (2013) Prevalence of gluten-free diet adherence among individuals without celiac disease in the USA: results from the continuous National Health and Nutrition Examination Survey 2009–2010. Scand J Gastroenterol 48:921–925

    PubMed  Google Scholar 

  143. Lebwohl B, Cao Y, Zong G, Hu FB, Green PHR, Neugut AI, Rimm EB, Sampson L, Dougherty LW, Giovannucci E, Willett WC, Sun Q, Chan AT (2017) Long term gluten consumption in adults without celiac disease and risk of coronary heart disease: prospective cohort study. BMJ 357:j1892

    PubMed  PubMed Central  Google Scholar 

  144. Zuccotti G, Fabiano V, Dilillo D, Picca M, Cravidi C, Brambilla P (2012) Intakes of nutrients in Italian children with celiac disease and the role of commercially available gluten-free products. J Hum Nutr Diet 26:436–444

    PubMed  Google Scholar 

  145. Alvarez-Jubete L, Auty M, Arendt EK, Gallagher E (2010) Baking properties and microstructure of pseudocereal flours in gluten-free bread formulations. Eur Food Res Technol 230(3):437–445

    CAS  Google Scholar 

  146. Krupa-Kozak U, Wronkowska M, Soral-Śmietana M (2011) Effect of buckwheat flour on microelements and proteins contents in gluten-free bread. Czech J Food Sci 29(2):103–108

    CAS  Google Scholar 

  147. Krupa-Kozak U, Altamirano-Fortoul R, Wronkowska M, Rosell CM (2012) Breadmaking performance and technological characteristicof gluten-free bread with inulin supplemented with calcium salts. Eur Food Res Technol 235(3):545–554

    CAS  Google Scholar 

  148. Brito IL, de Souza EL, Felex SSS, Madruga MS, Yamashita F, Magnani M (2015) Nutritional and sensory characteristics of gluten-free quinoa (Chenopodium quinoa Willd)-based cookies development using an experimental mixture design. J Food Sci Technol 52(9):5866–5873

    CAS  PubMed  Google Scholar 

  149. Elli L, Rossi V, Conte D, Ronchi A, Tomba C, Passoni M, Bardella MT, Roncoroni L, Guzzi G (2015) Increased mercury levels in patients with celiac disease following a gluten-free regimen. Gastroenterol Res Pract 2015:953042

    PubMed  PubMed Central  Google Scholar 

  150. Sanfeliu C, Sebastià J, Kim SU (2001) Methylmercury neurotoxicity in cultures of human neurons, astrocytes, neuroblastoma cells. Neurotoxicology 22(3):317–327

    CAS  PubMed  Google Scholar 

  151. Lai PY, Cottingham KL, Steinmaus C, Karagas MR, Miller MD (2015) Arsenic and rice: translating research to address health care providers’ needs. J Pediatr 167:797–803

    PubMed  PubMed Central  Google Scholar 

  152. Reilly NR (2016) The gluten-free diet: recognizing fact, fiction, and fad. J Pediatr 175:206–210

    PubMed  Google Scholar 

  153. Delcour JA, Joye IJ, Pareyt B, Wilderjans E, Brijs K, Lagrain B (2011) Wheat gluten functionality as a quality determinant in cereal-based food products. Annu Rev Food Sci Technol 3:469–492

    PubMed  Google Scholar 

  154. Moore MM, Schober TJ, Dockery P, Arendt EK (2004) Textural comparisons of gluten-free and wheat-based doughs, batters, and breads. Cereal Chem 81(5):567–575

    CAS  Google Scholar 

  155. Houben A, Hochstotter A, Becker T (2012) Possibilities to increase the quality in gluten-free bread production: an overview. Eur Food Res Technol 235(2):195–208

    CAS  Google Scholar 

  156. Marco C, Rosell CM (2008) Breadmaking performance of protein enriched, gluten-free breads. Eur Food Res Technol 227(4):1205–1213

    CAS  Google Scholar 

  157. Gallagher E, Gormley TR, Arendt EK (2003) Crust and crumb characteristics of gluten free breads. J Food Eng 56:153–161

    Google Scholar 

  158. Primo-Martin C, de Pijpekamp AV, van Vliet T, de Jongh HHJ, Plijter JJ, Hamer RJ (2006) The role of the gluten network in the crispness of bread crust. J Cereal Sci 43(3):342–352

    CAS  Google Scholar 

  159. Marti A, Pagani MA (2013) What can play the role of gluten in gluten free pasta? Trends Food Sci Technol 31(1):63–71

    CAS  Google Scholar 

  160. Lazaridou A, Duta D, Papageorgiou M, Belc N, Biliaderis CG (2007) Effects of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations. J Food Eng 79:1033–1047

    CAS  Google Scholar 

  161. Hager AS, Arendt EK (2013) Influence of hydroxypropylmethylcellulose (HPMC), xanthan gum and their combination on loaf specific volume, crumb hardness and crumb grain characteristics of gluten-free breads based on rice, maize, teff and buckwheat. Food Hydrocoll 32(1):195–203

    CAS  Google Scholar 

  162. Renzetti S, Rosell CM (2016) Role of enzymes in improving the functionality of proteins in non-wheat dough systems. J Cereal Sci 67:35–45

    CAS  Google Scholar 

  163. Moroni AV, Dal Bello F, Arendt EK (2009) Sourdough in gluten-free bread-making: an ancient technology to solve a novel issue? Food Microbiol 26(7):676–684

    CAS  PubMed  Google Scholar 

  164. Padalino L, Mastromatteo M, Lecce L, Cozzolino F, Del Nobile MA (2013) Manufacture and characterization of gluten-free spaghetti enriched with vegetable flour. J Cereal Sci 57(3):333–342

    CAS  Google Scholar 

  165. Susanna S, Prabhasankar P (2013) A study on development of gluten free pasta and its biochemical and immunological validation. LWT-Food Sci Technol 50(2):613–621

    CAS  Google Scholar 

  166. Schober TJ, Messerschmidt M, Bean SR, Park SH, Arendt EK (2005) Gluten-free bread from sorghum: quality differences among hybrids. Cereal Chem 82:394–404

    CAS  Google Scholar 

  167. Gawlik-Dziki U, Dziki D, Swieca M, Seczyk L, Rozylo R, Szymanowska U (2015) Bread enriched with Chenopodium quinoa leaves powder – the procedures for assessing the fortification efficiency. LWT-Food Sci Technol 62(2):1226–1234

    CAS  Google Scholar 

  168. Ouazib M, Garzón R, Zaidi F, Rosell CM (2016) Germinated, toasted and cooked chickpea as ingredients for breadmaking. J Food Sci Technol 53(6):2664–2672

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Tsatsaragkou K, Kara T, Ritzoulis C, Mandala I, Rosell CM (2017) Improving carob flour performance for making gluten-free breads by particle size fractionation and jet milling. Food Bioprocess Technol 10:831–841

    CAS  Google Scholar 

  170. Gallagher E, Kenny S, Arendt EK (2005) Impact of dairy protein powders on biscuit quality. Eur Food Res Technol 221:237–243

    CAS  Google Scholar 

  171. Schober TJ, Bean SR, Boyle DL, Park SH (2008) Improved viscoelastic zein-starch doughs for leavened gluten-free breads: their rheology and microstructure. J Cereal Sci 48:755–767

    CAS  Google Scholar 

  172. Krupa-Kozak U, Bączek N, Rosell C (2013) Application of dairy proteins as technological and nutritional improvers of calcium-supplemented gluten-free bread. Forum Nutr 5(11):4503–4520

    Google Scholar 

  173. Ziobro R, Juszczak L, Witczak M, Korus J (2016) Non-gluten proteins as structure forming agent in gluten-free bread. J Food Sci Technol 53(1):571–580

    CAS  PubMed  Google Scholar 

  174. Praznik W, Cieslik E, Filipiak-Florkiewicz A (2002) Soluble dietary fibres in Jerusalem artichoke powders: composition and application in bread. Nahrung/Food 46(3):151–157

    CAS  PubMed  Google Scholar 

  175. Wang J, Rosell CM, de Barber CB (2002) Effect of the addition of different fibres on wheat dough performance and bread quality. Food Chem 79(2):221–226

    CAS  Google Scholar 

  176. Peressini D, Sensidoni A (2009) Effect of soluble dietary fibre addition on rheological and breadmaking properties of wheat doughs. J Cereal Sci 49:190–201

    CAS  Google Scholar 

  177. Skara N, Novotni D, Cukelj N, Smerdel B, Curi D (2013) Combined effects of inulin, pectin and guar gum on the quality and stability of partially baked frozen bread. Food Hydrocoll 30:428–436

    CAS  Google Scholar 

  178. Ronda F, Quilez J, Pando V, Roos YH (2014) Fermentation time and fiber effects on recrystallization of starch components and staling of bread from frozen part-baked bread. J Food Eng 131:116–123

    CAS  Google Scholar 

  179. Arufe S, Chiron H, Dore J, Savary-Auzeloux I, Saulnier L, Della Valle G (2017) Processing & rheological properties of wheat flour dough and bread containing high levels of soluble dietary fibres blends. Food Res Int 97:123–132

    CAS  PubMed  Google Scholar 

  180. Rößle C, Ktenioudaki A, Gallagher E (2011) Inulin and oligofructose as fat and sugar substitutes in quick breads (scones): a mixture design approach. Eur Food Res Technol 233:167

    Google Scholar 

  181. Bustos MC, Pérez GT, León AE (2011) Effect of four types of dietary fiber on the technological quality of pasta. Food Sci Technol Int 17(3):213–221

    CAS  PubMed  Google Scholar 

  182. Padalino L, Costa C, Conte A, Melilli MG, Sillitti C, Bognanni R, Raccuia SA, Del Nobile MA (2017) The quality of functional whole-meal durum wheat spaghetti as affected by inulin polymerization degree. Carbohydr Polym 173:84–90

    CAS  PubMed  Google Scholar 

  183. Volpini-Rapina LF, Sokei FR, Conti-Silva AC (2012) Sensory profile and preference mapping of orange cakes with addition of prebiotics inulin and oligofructose. LWT-Food Sci Technol 48:37–42

    CAS  Google Scholar 

  184. Celik I, Isik F, Gursoy O, Yilmaz Y (2012) Use of Jerusalem artichoke (Helianthus tuberosus) tubers as a natural source of inulin in cakes. J Food Process Preserv 37:483–488

    Google Scholar 

  185. Zbikowska A, Marciniak-Lukasiak K, Kowalska M, Onacik-Gür S (2017) Multivariate study of inulin addition on the quality of sponge cakes. Pol J Food Nutr Sci 67(3):201–210

    CAS  Google Scholar 

  186. Serial MR, Blanco Canalis MS, Carpinella M, Valentinuzzi MC, León AE, Ribotta PD, Acosta RH (2016) Influence of the incorporation of fibers in biscuit dough on proton mobility characterized by time domain NMR. Food Chem 192:950–957

    CAS  PubMed  Google Scholar 

  187. Peressini D, Foschia M, Tubaro F, Sensidoni A (2015) Impact of soluble dietary fibre on the characteristics of extruded snacks. Food Hydrocoll 43:73–81

    CAS  Google Scholar 

  188. Morris C, Morris GA (2012) The effect of inulin and fructo-oligosaccharide supplementation on the textural, rheological and sensory properties of bread and their role in weight management: a review. Food Chem 133(2):237–248

    CAS  PubMed  Google Scholar 

  189. Rodríguez-García J, Puig A, Salvador A, Hernando I (2012) Optimization of a sponge cake formulation with inulin as fat replacer: structure, physicochemical, and sensory properties. J Food Sci 77(2):C189–C197

    PubMed  Google Scholar 

  190. Aravind N, Sissons MJ, Fellows CM, Blazek J, Gilbert EP (2012) Effect of inulin soluble dietary fibre addition on technological, sensory, and structural properties of durum wheat spaghetti. Food Chem 132(2):993–1002

    CAS  Google Scholar 

  191. Korus J, Grzelak K, Achremowicz K, Sabat R (2006) Influence of prebiotic additions on the quality of gluten-free bread and on the content of inulin and fructooligosaccharides. Food Sci Technol Int 12(6):489–495

    CAS  Google Scholar 

  192. Hager AS, Liam AM, Schwab C, Gänzle MG, O’Doherty AEK (2011) Influence of the soluble fibres inulin and oat b-glucan on quality of dough and bread. Eur Food Res Technol 232:405–413

    CAS  Google Scholar 

  193. Juszczak L, Witczak T, Ziobro R, Korus J, Cieslik E, Witczak M (2012) Effect of inulin on rheological and thermal properties of gluten-free dough. Carbohydr Polym 90(1):353–360

    CAS  PubMed  Google Scholar 

  194. Rodriguez Furlan LT, Padilla AP, Campderrós ME (2015) Improvement of gluten-free bread properties by the incorporation of bovine plasma proteins and different saccharides into the matrix. Food Chem 170:257–264

    CAS  PubMed  Google Scholar 

  195. Rosell CM, Rojas JA, de Barber CB (2001) Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocoll 15:75–81

    CAS  Google Scholar 

  196. Sciarini LS, Bustos MC, Vignola MB, Paesani C, Salinas CN, Pérez GT (2017) A study on fibre addition to gluten free bread: its effects on bread quality and in vitro digestibility. J Food Sci Technol 54(1):244–252

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Maghaydah S, Abdul-Hussain S, Ajo R, Obeidat B, Tawalbeh Y (2013) Enhancing the nutritional value of gluten-free cookies with inulin. Adv J Food Sci Technol 5(7):866–870

    CAS  Google Scholar 

  198. Sharoba AM, El-Salam AM, Hafez HH (2014) Production and evaluation of gluten free biscuits as functional foods for celiac disease patients. J Agroaliment Process Technol 20(3):203–214

    Google Scholar 

  199. Gularte MA, de la Hera E, Gomez M, Rosell CM (2012) Effect of different fibers on batter and gluten-free layer cake properties. LWT-Food Sci Technol 48(2):209–214

    CAS  Google Scholar 

  200. Fardet A, Leenhardt F, Lioger D, Scalbert A, Remesy C (2006) Parameters controlling the glycaemic response to breads. Nutr Res Rev 19(1):18–25

    PubMed  Google Scholar 

  201. Alvarez MD, Cuesta FJ, Herranz B, Canet W (2017) Rheometric non-isothermal gelatinization kinetics of chickpea flour-based gluten-free muffin batters with added biopolymers. Foods 6(1):3

    PubMed  PubMed Central  Google Scholar 

  202. Brennan CS, Kuri V, Tudorica CM (2004) Inulin-enriched pasta: effects on textural properties and starch degradation. Food Chem 86(2):189–193

    CAS  Google Scholar 

  203. Mastromatteo M, Iannetti M, Civica V, Sepielli G, Del Nobile MA (2012) Effect of the inulin addition on the properties of gluten free pasta. Food Nutr Sci 3:22–27

    CAS  Google Scholar 

  204. Hoover R, Hughes T, Chung HJ, Liu Q (2010) Composition molecular structure, properties, and modification of pulse starches: a review. Food Res Int 43:399–413

    CAS  Google Scholar 

  205. Lian XJ, Guo JJ, Wang DL, Lin L, Zhu JR (2014) Effects of protein in wheat flour on retrogradation of wheat starch. J Food Sci 79:C1505–C1511

    CAS  Google Scholar 

  206. Guardeño LM, Puig A, Hernando I, Quiles A (2013) Effect of different corn starches on microstructural, physical and sensory properties of gluten-free white sauces formulated with soy protein and inulin. J Food Process Eng 36(4):535–543

    Google Scholar 

  207. Guardeño LM, Vazquez-Gutierrez JL, Hernando I, Quiles A (2013) Effect of different rice starches, inulin, and soy protein on microstructural, physical, and sensory properties of low-fat, gluten, and lactose free white sauces. Czech J Food Sci 31(6):575–580

    Google Scholar 

  208. Gonzalez-Tomas L, Bayarri S, Costell E (2009) Inulin-enriched dairy desserts: physicochemical and sensory aspects. J Dairy Sci 92(9):4188–4199

    CAS  PubMed  Google Scholar 

  209. Gonzalez-Tomas L, Bayarri S, Coll-Marques J, Costell E (2009) Flow behaviour of inulin-enriched dairy desserts: influence of inulin average chain length. Int J Food Sci Tech 44(6):1214–1222

    CAS  Google Scholar 

  210. de Morais EC (2016) Prebiotic addition in dairy products: processing and health benefits. In: Watson RR, Preevdy VR (eds) Probiotics, prebiotics, and synbiotics: bioactive foods in health promotion, 1st edn. Elsevier Int, Amsrerdam

    Google Scholar 

  211. Solowiej B, Glibowski P, Muszynski S, Wydrych J, Gawron A, Jelinski T (2015) The effect of fat replacement by inulin on the physicochemical properties and microstructure of acid casein processed cheese analogues with added whey protein polymers. Food Hydrocoll 44:1–11

    CAS  Google Scholar 

  212. Fadaei V, Poursharif K, Daneshi M, Honarvar M (2012) Chemical characteristics of low-fat wheyless cream cheese containing inulin as fat replacer. Eur J Exp Biol 2:690–694

    CAS  Google Scholar 

  213. Dave P (2012) Rheological properties of low-fat processed cheese spread made with inulin as a fat replacer. University of Wisconsin-Stout

    Google Scholar 

  214. Cardarelli HR, Saad SMI, Gibson GR, Vulevic J (2007) Functional petit-suisse cheese: measure of the prebiotic effect. Anaerobe 13:200–207

    CAS  PubMed  Google Scholar 

  215. Debon J, Prudencio ES, Petrus JCC (2010) Rheological and physico-chemical characterization of prebiotic microfiltered fermented milk. J Food Eng 99:128–135

    CAS  Google Scholar 

  216. Ziobro R, Korus J, Juszczak L, Witczak T (2013) Influence of inulin on physical characteristics and staling rate of gluten-free bread. J Food Eng 116(1):21–27

    CAS  Google Scholar 

  217. Morais EC, Cruz AG, Faria JAF, Bolini HMA (2014) Prebiotic gluten-free bread: sensory profiling and drivers of liking. LWT-Food Sci Technol 55(1):248–254

    CAS  Google Scholar 

  218. Rodriguez-Sandoval E, Franco CML, Manjarres-Pinzon K (2014) Effect of fructooligosaccharides on the physicochemical properties of sour cassava starch and baking quality of gluten-free cheese bread. Starch-Starke 66(7–8):678–684

    CAS  Google Scholar 

  219. Cruz AG, Cavalcanti RN, Guerreiro LMR, Sant’Ana AS, Nogueira LC, Oliveira CAF, Deliza R, Cunha RL, Faria JAF, Bolini HMA (2013) Developing a prebiotic yogurt: rheological, physico-chemical and microbiological aspects and adequacy of survival analysis methodology. J Food Eng 114:323–330

    CAS  Google Scholar 

  220. Capriles VD, Areas JAG (2013) Effects of prebiotic inulin-type fructans on structure, quality, sensory acceptance and glycemic response of gluten-free breads. Food Funct 4(1):104–110

    CAS  PubMed  Google Scholar 

  221. Morais EC, Morais AR, Cruz AG, Bolini HMA (2014) Development of chocolate dairy dessert with addition of prebiotics and replacement of sucrose with different high-intensity sweeteners. J Dairy Sci 97:2600–2609

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Drabińska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Drabińska, N., Rosell, C.M., Krupa-Kozak, U. (2019). Inulin-Type Fructans Application in Gluten-Free Products: Functionality and Health Benefits. In: Mérillon, JM., Ramawat, K.G. (eds) Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-78030-6_2

Download citation

Publish with us

Policies and ethics