Skip to main content

Enzyme-Responsive Hydrogels

  • Reference work entry
  • First Online:
Cellulose-Based Superabsorbent Hydrogels

Abstract

In an enzymatically responsive system, a suitable enzyme is used as a stimulus for a control release or delivery at a specifically targeted site where that enzyme is designed in such a way that can work at certain controlled conditions (such as temperature, pH). Enzyme-responsive hydrogels prepared from cellulose along with other materials have suitable macromolecular networks and can work in controlled environment. Specifically designed enzymatic stimuli-responsive system, one of the highly explored techniques, popularly explored to add a triggerable agent (such as a polymer or a lipid) that can encapsulate the active component in a protective manner. Usually, this active agent is responsive to degradation or swelling when it reaches at the target site. An enzymatic stimulus-responsive system is highly attractive field of research due to its many potential applications (e.g., in controlled release, drug delivery, and other areas of life and material sciences). This chapter gives a brief overview on the design and uses of enzyme-responsive hydrogels based on cellulose and other polymers for their various applications in different fields including in controlled drug delivery and other areas of biomedical and material sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffman AS (2004) Applications of “Smart Polymers” as biomaterials, 2nd edn. Elsevier Academic Press, London

    Google Scholar 

  2. Kopecek J (2003) Smart and genetically engineered biomaterials and drug delivery systems. Eur J Pharm Sci 20:1–16

    CAS  PubMed  Google Scholar 

  3. Mano JF (2008) Stimuli-responsive polymeric systems for biomedical applications. Adv Eng Mater 10:515–527

    CAS  Google Scholar 

  4. Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670

    CAS  PubMed  Google Scholar 

  5. Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35:278–301

    CAS  Google Scholar 

  6. Ghadiali JE, Stevens MM (2008) Enzyme-responsive nanoparticle systems. Adv Mater 20:4359–4363

    CAS  Google Scholar 

  7. Williams RJ, Mart RJ, Ulijn RV (2010) Exploiting biocatalysis in peptide self-assembly. Biopolymers 94:107–117

    CAS  PubMed  Google Scholar 

  8. Zelzer M, Ulijn RV (2010) Next-generation peptide nanomaterials: molecular networks, interfaces and supramolecular functionality. Chem Soc Rev 39:3351–3357

    CAS  PubMed  Google Scholar 

  9. Ulijn RV (2006) Enzyme-responsive materials: a new class of smart biomaterials. J Mater Chem 16:2217–2225

    CAS  Google Scholar 

  10. Ghadiali JE, Cohen BE, Stevens MM (2010) Protein kinase-actuated resonance energy transfer in quantum dot−peptide conjugates. ACS Nano 4:4915–4919

    CAS  PubMed  Google Scholar 

  11. Privman M, Tam TK, Pita M, Katz E (2008) Network analysis of biochemical logic for noise reduction and stability: a system of three coupled enzymatic and gates. J Am Chem Soc 131:1314–1321

    Google Scholar 

  12. Bonomi R, Cazzolaro A, Sansone A, Scrimin P, Prins LJ (2011) Detection of enzyme activity through catalytic signal amplification with functionalized gold nanoparticles. Angew Chem Int Ed 50:2307–2312

    CAS  Google Scholar 

  13. Zhao WR, Zhang HT, He QJ, Li YS, Gu JL, Li L, Li H, Shi JL (2011) A glucose-responsive controlled release of insulin system based on enzyme multilayers-coated meso porous silica particles. Chem Commun 47:9459–9461

    CAS  Google Scholar 

  14. Gordijo CR, Shuhendler AJ, Wu XY (2010) Glucose-responsive bioinorganic nanohybrid membrane for self-regulated insulin release. Adv Funct Mater 20:1404–1412

    CAS  Google Scholar 

  15. Hahn ME, Gianneschi NC (2011) Enzyme-directed assembly and manipulation of organic nanomaterials. Chem Commun 47:11814–11821

    CAS  Google Scholar 

  16. Welser K, Adsley R, Moore BM, Chan WC, Aylott JW (2011) Protease sensing with nanoparticle based platforms. Analyst 136(1):29–41

    CAS  PubMed  Google Scholar 

  17. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003

    CAS  PubMed  Google Scholar 

  18. Cheng R, Meng F, Deng C, Klok HA, Zhong Z (2013) Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34:3647–3657

    CAS  PubMed  Google Scholar 

  19. Place ES, Evans ND, Stevens MM (2009) Complexity in biomaterials for tissue engineering. Nat Mater 8:457–470

    CAS  PubMed  Google Scholar 

  20. Tibbitt MW, Rodell CB, Burdick JA, Anseth KS (2015) Progress in material design for biomedical applications. Proc Natl Acad Sci 112:14444–14451

    CAS  PubMed  Google Scholar 

  21. Howes PD, Chandrawati R, Stevens MM (2014) Colloidal nanoparticles as advanced biological sensors. Science 346:1247390–1247390

    PubMed  Google Scholar 

  22. Su J, Chen F, Cryns VL, Messersmith PB (2011) Catechol polymers for pH-responsive, targeted drug delivery to cancer cells. J Am Chem Soc 133:11850–11853

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Park I-K, Singha K, Arote RB, Choi Y-J, Kim WJ, Cho C-S (2010) pH-responsive polymers as gene carriers. Macromol Rapid Commun 31:1122–1133

    CAS  PubMed  Google Scholar 

  24. Jochum FD, Theato P (2013) Temperature- and light-responsive smart polymer materials. Chem Soc Rev 42:7468–7483

    CAS  PubMed  Google Scholar 

  25. Ercole F, Davis TP, Evans RA (2010) Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym Chem 1:37–54

    CAS  Google Scholar 

  26. Chandrawati R, Städler B, Postma A, Connal LA, Chong SF, Zelikin AN, Caruso F (2009) Cholesterol-mediated anchoring of enzyme-loaded liposomes within disulfide-stabilized polymer carrier capsules. Biomaterials 30:5988–5998

    CAS  PubMed  Google Scholar 

  27. Phillips DJ, Gibson MI (2012) Degradable thermoresponsive polymers which display redox-responsive LCST behaviour. Chem Commun 48:1054–1056

    CAS  Google Scholar 

  28. Chen W, Du J (2013) Ultrasound and pH dually responsive polymer vesicles for anticancer drug delivery. Sci Rep 3:2162–2162

    PubMed  PubMed Central  Google Scholar 

  29. Roy R, Yang J, Moses MA (2009) Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J Clin Oncol 27:5287–5297

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Park J, Yun HS, Lee KH, Lee KT, Lee JK, Lee S-Y (2015) Discovery and validation of biomarkers that distinguish mucinous and nonmucinous pancreatic cysts. Cancer Res 75:3227–3235

    CAS  PubMed  Google Scholar 

  31. Khademhosseini A, Langer R (2007) Microengineered hydrogels for tissue engineering. Biomaterials 28:5087–5092

    CAS  PubMed  Google Scholar 

  32. Ulijn RV, Bibi N, Jayawarna V, Thornton PD, Todd SJ, Mart RJ, Smith AM, Gough JE (2007) Bioresponsive hydrogels. Mater Today 10:40–48

    CAS  Google Scholar 

  33. Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103:655–663

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Singh SP, Schwartz MP, Tokuda EY, Luo Y, Rogers RE, Fujita M, Ahn NG, Anseth KS (2015) A synthetic modular approach for modeling the role of the 3D microenvironment in tumor progression. Sci Rep 5:17814–17814

    CAS  PubMed  PubMed Central  Google Scholar 

  35. McCall JD, Anseth KS (2012) Thiol–ene photopolymerizations provide a facile method to encapsulate proteins and maintain their bioactivity. Biomacromolecules 13:2410–2417. 45

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Phelps EA, Enemchukwu NO, Fiore VF, Sy JC, Murthy N, Sulchek TA, Barker TH, García AJ (2012) Maleimide cross-linked bioactive PEG hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in situ delivery. Adv Mater 24:64–70

    CAS  PubMed  Google Scholar 

  37. Khetan S, Guvendiren M, Legant WR, Cohen DM, Chen CS, Burdick JA (2013) Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat Mater 12:458–465

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Vandenbroucke RE, Libert C (2014) Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discov 13:904–927

    CAS  PubMed  Google Scholar 

  39. Chwalek K, Tsurkan MV, Freudenberg U, Werner C (2014) Glycosaminoglycan-based hydrogels to modulate heterocellular communication in in vitro angiogenesis models. Sci Rep 4:4414–4414

    PubMed  PubMed Central  Google Scholar 

  40. Turk BE, Huang LL, Piro ET, Cantley LC (2001) Determination of protease cleavage site motifs using mixture-based oriented peptide libraries. Nat Biotechnol 19:661–667

    CAS  PubMed  Google Scholar 

  41. Hsu C-W, Olabisi RM, Olmsted-Davis EA, Davis AR, West JL (2011) Cathepsin K-sensitive poly(ethylene glycol) hydrogels for degradation in response to bone resorption. J Biomed Mater Res A 98:53–62

    PubMed  Google Scholar 

  42. Brubaker CE, Messersmith PB (2011) Enzymatically degradable mussel-inspired adhesive hydrogel. Biomacromolecules 12:4326–4334

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Vandamme TF, Lenourry A, Charrueau C, Chaumeil JC (2002) The use of polysaccharides to target drugs to the colon. Carbohydr Polym 48:219–231

    CAS  Google Scholar 

  44. Chourasia MK, Jain SK (2004) Polysaccharides for colon targeted drug delivery. Drug 11:129–148

    CAS  Google Scholar 

  45. Yao X, Liu Y, Gao J, Yang L, Mao D, Stefanitsch C, Li Y, Zhang J, Ou L, Kong D, Zhao Q, Li Z (2015) Nitric oxide releasing hydrogel enhances the therapeutic efficacy of mesenchymal stem cells for myocardial infarction. Biomaterials 60:130–140

    CAS  PubMed  Google Scholar 

  46. Martino MM, Briquez PS, Ranga A, Lutolf MP, Hubbell JA (2013) Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc Natl Acad Sci 110:4563–4568

    CAS  PubMed  Google Scholar 

  47. Thornton PD, Billah SMR, Cameron NR (2013) Enzyme-degradable self-assembled hydrogels from polyalanine-modified poly(ethylene glycol) star polymers. Macromol Rapid Commun 34:257–262

    CAS  PubMed  Google Scholar 

  48. Zelzer M, Todd SJ, Hirst AR, McDonald TO, Ulijn RV (2013) Enzyme responsive materials: design strategies and future developments. Biomater Sci 1:11–39

    CAS  Google Scholar 

  49. Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185(4706):117–118

    Google Scholar 

  50. Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210:908–910

    CAS  PubMed  Google Scholar 

  51. Yannas IV, Lee E, Orgill DP, Skrabut EM, Murphy GF (1989) Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc Natl Aca Sci USA 86:933–937

    CAS  Google Scholar 

  52. Ratner B, Hoffman AS, Schoen F, Lemons JE (2004) Biomaterials science: introduction to materials in medicine, vol 2004, 2nd edn. Elsevier Academic Press, San Diego, pp 162–164

    Google Scholar 

  53. Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, Stupp SI (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355

    CAS  PubMed  Google Scholar 

  54. Banwell EF, Abelardo ES, Adams DJ, Birchall MA, Corrigan A, Donald MA, Kirkland M, Serpell LC, Butler MF, Woolfson DN (2009) Rational design and application of responsive alpha-helical peptide hydrogels. Nat Mater 8:596–600

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kiyonaka S, Sada K, Yoshimura I, Shinkai S, Kato N, Hamachi I (2004) Semi-wet peptide/protein array using supramolecular hydrogel. Nat Mater 3(1):58–64

    CAS  PubMed  Google Scholar 

  56. Lutolf M, Hubbell J (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55

    CAS  PubMed  Google Scholar 

  57. Engler AJ, Sen S, Sweeney HL, Discher HL (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    CAS  Google Scholar 

  58. Ehrbar M, Rizzi SC, Schoenmakers RG, Miguel BS, Hubbell JA, Weber FE, Lutolf MP (2007) Biomolecular hydrogels formed and degraded via site-specific enzymatic reactions. Biomacromolecules 8:3000–3007

    CAS  PubMed  Google Scholar 

  59. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2004) Biomaterials science: introduction to materials in medicine, 2nd edn. Elsevier Academic Press, San Diego

    Google Scholar 

  60. Koutsopoulos S, Unsworth LD, Nagai Y, Zhang S (2009) Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold. Proc Natl Acad Sci U S A 106:4623–4628

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen L, Morris K, Laybourn A, Elias D, Hicks MR, Rodger A, Serpell L, Adams DJ (2009) Self-assembly mechanism for a naphthalene−dipeptide leading to hydrogelation. Langmuir 26:5232–5242

    Google Scholar 

  62. Soppimath K, Aminabhavi T, Dave A, Kumbar S, Rudzinski W (2002) Stimulus-responsive “smart” hydrogels as novel drug delivery systems. Drug Dev Ind Pharm 28:957–974

    CAS  PubMed  Google Scholar 

  63. Walsh C (2001) Enabling the chemistry of life. Nature 409:226–231

    CAS  PubMed  Google Scholar 

  64. Yang ZM, Liang GL, Guo ZH, Xu B (2007) Intracellular hydrogelation of small molecules inhibits bacterial growth. Angew Chem Int Ed 46:8216–8219

    CAS  Google Scholar 

  65. West JL, Hubbell JA (1999) Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 32:241–244

    CAS  Google Scholar 

  66. Reches M, Gazit E (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300:625–627

    CAS  PubMed  Google Scholar 

  67. Ozbas B, Kretsinger J, Rajagopal K, Schneider JP, Pochan DJ (2004) Salt-triggered peptide folding and consequent self-assembly into hydrogels with tunable modulus. Macromolecules 37:7331–7337

    CAS  Google Scholar 

  68. Tang C, Smith AM, Collins RF, Ulijn RV, Saiani A (2009) FMOC-diphenylalanine self-assembly mechanism induces apparent pKa shifts. Langmuir 25:9447–9453

    CAS  PubMed  Google Scholar 

  69. Hong H, Mai Y, Zhou Y, Yan D, Chen Y (2007) Synthesis and supramolecular self-assembly of thermosensitive amphiphilic star copolymers based on a hyperbranched polyether core. J Polym Sci A 46:668–681

    Google Scholar 

  70. Yang Z, Gu H, Fu D, Gao P, Lam JK, Xu B (2004) Enzymatic formation of supramolecular hydrogels. Adv Mater 16:1440–1444

    CAS  Google Scholar 

  71. Toledano S, Williams RJ, Jayawarna V, Ulijn RV (2006) Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis. J Am Chem Soc 128:1070–1071

    CAS  PubMed  Google Scholar 

  72. Xu B (2009) Gels as functional nanomaterials for biology and medicine. Langmuir 25:8375–8377

    CAS  PubMed  Google Scholar 

  73. Yang Z, Xu K, Guo Z, Guo Z, Xu B (2007) Intracellular enzymatic formation of nanofibers results in hydrogelation and regulated cell death. Adv Mater 19:3152–3156

    CAS  Google Scholar 

  74. Hirst AR, Roy S, Arora M, Das AK, Hodson N, Murray P, Marshall S, Javid N, Sefcik J, Boekhoven J, van Esch JH, Santabarbara S, Hunt NT, Ulijn RV (2010) Biocatalytic induction of supramolecular order. Nat Chem 2:1089–1094

    CAS  PubMed  Google Scholar 

  75. Williams RJ, Smith AM, Collins R, Hodson N, Das AK, Ulijn RV (2008) Enzyme-assisted self-assembly under thermodynamic control. Nat Nanotechnol 4:19–24

    PubMed  Google Scholar 

  76. Das AK, Hirst AR, Ulijn RV (2009) Evolving nanomaterials using enzyme-driven dynamic peptide libraries (eDPL). Faraday Discuss 143:293–303

    CAS  PubMed  Google Scholar 

  77. Sadownik JW, Ulijn RV (2010) Locking an oxidation-sensitive dynamic peptide system in the gel state. Chem Commun 46:3481–3483

    CAS  Google Scholar 

  78. Ryan DM, Nilsson BL (2012) Self-assembled amino acids and dipeptides as noncovalent hydrogels for tissue engineering. Polym Chem 3:18–33

    CAS  Google Scholar 

  79. Adams DJ, Topham PD (2010) Peptide conjugate hydrogelators. Soft Matter 6:3707–3721

    CAS  Google Scholar 

  80. Yang Z, Liang G, Xu B (2008) Enzymatic hydrogelation of small molecules. Acc Chem Res 41:315–326

    CAS  PubMed  Google Scholar 

  81. Collier JH, Messersmith PB (2003) Enzymatic modification of self-assembled peptide structures with tissue transglutaminase. Bioconjug Chem 14:748–755

    CAS  PubMed  Google Scholar 

  82. Winkler S, Wilson D, Kaplan D (2000) Controlling beta-sheet assembly in genetically engineered silk by enzymatic phosphorylation/dephosphorylation. Biochemistry 39:12739–12746

    CAS  PubMed  Google Scholar 

  83. Hirst AR, Coates IA, Boucheteau TR, Miravet JF, Escuder B, Castelletto V, Hamley IW, Smith DK (2008) Low-molecular-weight gelators: elucidating the principles of gelation based on gelator solubility and a cooperative self-assembly model. J Am Chem Soc 130:9113–9121

    CAS  PubMed  Google Scholar 

  84. Adams DJ, Butler MF, Frith WJ, Kirkland M, Mullen L, Sanderson P (2009) A new method for maintaining homogeneity during liquid–hydrogel transitions using low molecular weight hydrogelators. Soft Matter 5:1856–1862

    CAS  Google Scholar 

  85. Sadownik JW, Leckie J, Ulijn RV (2011) Micelle to fibre biocatalytic supramolecular transformation of an aromatic peptide amphiphile. Chem Commun 47:728–730

    CAS  Google Scholar 

  86. Yang Z, Ho P-L, Liang G, Chow KH, Wang Q, Cao Y, Guo Z, Xu B (2007) J Am Chem Soc 129:266–267

    CAS  PubMed  Google Scholar 

  87. Roy S, Ulijn RV (2010) Advances in polymer science. In: ARA P, Heise A (eds) Enzymatic polymerisation, vol 237. Springer, Berlin, pp 127–143

    Google Scholar 

  88. Thornton K, Smith A, Merry CLR, Ulijn RV (2009) Controlling stiffness in nanostructured hydrogels produced by enzymatic dephosphorylation. Biochem Soc Trans 37:660–664

    CAS  PubMed  Google Scholar 

  89. Prabaharan M, Mano JF (2006) Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials. Macromol Biosci 6:991–1008

    CAS  PubMed  Google Scholar 

  90. Santos SD, Chandravarkar A, Mandal B, Mimna R, Murat K, Saucede L, Tella P, Tuchscherer G, Mutter M (2005) Switch-peptides: controlling self-assembly of amyloid beta-derived peptides in vitro by consecutive triggering of acyl migrations. J Am Chem Soc 127(34):11888–11889

    PubMed  Google Scholar 

  91. Yanlian Y, Ulung K, Xiumei W, Horii A, Yokoi H, Shuguang Z (2009) Designer self-assembling peptide nanomaterials. Nanotechnol Today 4:193–210

    Google Scholar 

  92. Ehrbar M, Rizzi SC, Schoenmakers RG, San Miguel B, Hubbell JA, Weber FE, Lutolf MP (2007) Biomolecular hydrogels formed and degraded via site-specific enzymatic reactions. Biomacromolecules 8:3000–3007

    CAS  PubMed  Google Scholar 

  93. Corbett PT, Leclaire J, Vial L, West KR, Wietor J-L, Sanders JKM, Otto S (2006) Dynamic combinatorial chemistry. Chem Rev 106(9):3652–3711

    CAS  PubMed  Google Scholar 

  94. Rowan SJ, Cantrill SJ, Cousins GRL, Sanders JKM, Stoddart JF (2002) Dynamic covalent chemistry. Angew Chem Int Ed 41:898–952

    Google Scholar 

  95. Vegners R, Shestakova I, Kalvinsh I, Ezzell RM, Janmey PA (1995) Use of a gel-forming dipeptide derivative as a carrier for antigen presentation. J Pept Sci 1:371–378

    CAS  PubMed  Google Scholar 

  96. Zhang Y, Gu H, Yang Z, Xu B (2003) Supramolecular hydrogels respond to ligand−receptor interaction. J Am Chem Soc 125(45):13680–13681

    CAS  PubMed  Google Scholar 

  97. Hughes M, Frederix PWJM, Raeburn J, Birchall LS, Sadownik J, Coomer FC, Lin I-H, Cussen EJ, Hunt NT, Tuttle T, Webb SJ, Adams DJ, Ulijn RV (2012) Sequence/structure relationships in aromatic dipeptide hydrogels formed under thermodynamic control by enzyme-assisted self-assembly. Soft Matter 8:5595–5602

    CAS  Google Scholar 

  98. Hughes M, Xu H, Frederix PWJM, Smith AM, Hunt NT, Tuttle T, Kinloch IA, Ulijn RV (2011) Biocatalytic self-assembly of 2D peptide-based nanostructures. Soft Matter 7(21):10032–10038

    CAS  Google Scholar 

  99. Hughes M, Birchall LS, Zuberi K, Aitkin LA, Debnath S, Javid N, Ulijn RV (2012) Differential supramolecular organisation of fmoc-dipeptides with hydrophilic terminal amino acid residues by biocatalytic self-assembly. Soft Matter 8:11565–11574

    CAS  Google Scholar 

  100. Jayawarna V, Richardson SM, Hirst AR, Hodson NW, Saiani A, Gough JE, Ulijn RV (2009) Introducing chemical functionality in FMOC-peptide gels for cell culture. Acta Biomater 5(3):934–943

    CAS  PubMed  Google Scholar 

  101. Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715

    CAS  PubMed  Google Scholar 

  102. Hughes M, Debnath S, Knapp CW, Ulijn RV (2013) Antimicrobial properties of enzymatically triggered self-assembling aromatic peptide amphiphiles. Biomater Sci 1:1138–1142

    CAS  Google Scholar 

  103. Brake JM, Daschner MK, Luk Y-Y, Abbott NL (2003) Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals. Science 302:2094–2097

    CAS  PubMed  Google Scholar 

  104. Lin IH, Birchall LS, Hodson N, Ulijn RV, Webb SJ (2013) Interfacing biodegradable molecular hydrogels with liquid crystals. Soft Matter 9:1188–1193

    CAS  Google Scholar 

  105. Gao Y, Kuang Y, Guo Z-F, Guo Z, Krauss IJ, Xu B (2009) Enzyme-instructed molecular self-assembly confers nanofibers and a supramolecular hydrogel of taxol derivative. J Am Chem Soc 131(38):13576–13577

    CAS  PubMed  Google Scholar 

  106. Williams RJ, Hall TE, Glattauer V, White J, Pasic PJ, Sorensen AB, Waddington L, McLean KM, Currie PD, Hartley PG (2011) The in vivo performance of an enzyme-assisted self-assembled peptide/protein hydrogel. Biomaterials 32:5304–5310

    CAS  PubMed  Google Scholar 

  107. Andrieu J, Kotman N, Maier M, Mailänder V, Strauss WSL, Weiss CK, Landfester K (2012) Live monitoring of cargo release from peptide-based hybrid nanocapsules induced by enzyme cleavage. Macromol Rapid Commun 33(3):248–253

    CAS  PubMed  Google Scholar 

  108. Fuchs AV, Kotman N, Andrieu J, Mailander V, Weiss CK, Landfester K (2013) Enzyme cleavable nanoparticles from peptide based triblock copolymers. Nanoscale 5(11):4829–4839

    CAS  PubMed  Google Scholar 

  109. Baier G, Cavallaro A, Vasilev K, Mailänder V, Musyanovych A, Landfester K (2013) Enzyme responsive hyaluronic acid nanocapsules containing polyhexanide and their exposure to bacteria to prevent infection. Biomacromolecules 14(4):1103–1112

    CAS  PubMed  Google Scholar 

  110. Lin C-C (2015) Recent advances in crosslinking chemistry of biomimetic poly(ethylene glycol) hydrogels. RSC Adv 5:39844–39853

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Wilkinson CD, Oreffo RO (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6:997–1003

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shah M. Reduwan Billah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Reduwan Billah, S.M., Mondal, M.I.H., Somoal, S.H., Nahid Pervez, M., Haque, M.O. (2019). Enzyme-Responsive Hydrogels. In: Mondal, M. (eds) Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-77830-3_62

Download citation

Publish with us

Policies and ethics