Skip to main content

Cellulose-Based Hydrogels for Agricultures

  • Reference work entry
  • First Online:
Cellulose-Based Superabsorbent Hydrogels

Abstract

The cellulose-based hydrogel characteristics such as biodegradability and biocompatibility mark its suitability toward agriculture application. In agriculture, the hydrogels are specifically used as water reservoirs, phyto-pharmaceuticals (protected cultivations, soilless cultivations, and open-field cultivations), pesticide release, and nutrient release to the soil. The hydrogels are impregnated by fertilizer components (e.g., soluble phosphate, potassium ions, nitrogen compounds), and those chemicals which are trapped in a polymer network cannot be immediately washed out by water but gradually released into the soil and then absorbed by plants. The hydrogels are classified as two classes, i.e., soluble and insoluble hydrogels. The soluble variety is used to reduce irrigation erosion in fields. The insoluble variety is used in gardens, nurseries, and landscapes to reduce frequency of watering. They are produced either in the form of powder or of a bulky material with a well-defined shape and a strong memory of its shape after swelling. The material can be charged with small molecules, such as nutrients, to be released under a controlled kinetic. The main advantage is controlled release of water, longtime maintaining soil humidity, increase of soil porosity, and therefore better oxygenation of plant roots. The agricultural hydrogel behavior depends on various factors such as temperature, relative humidity, soil type, stress, etc. The performance of the gels is evaluated through different techniques like moisture retention, nutrition release rate, biodegradation rate, relative humidity, and temperature maintained in the soil. Several studies reveal that the amount of moisture retained in the soil is dependent on the concentration of the cellulose-based superabsorbent matrices. Those SAPs/hydrogels were used in specific agriculture application such as nutrient release, conservation of land, and drought stress reduction due to several advantages. The advantage of cellulose-based hydrogels include eco-friendliness, high water holding capacity, low cost, and biodegradability. Moreover, their application helps reduce irrigation water consumption, causes lower death rate of plants, improves fertilizer retention in soil, and increases plant growth rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ekebafe LO, Ogbeifun DE, Okieimen FE (2011) Polymer applications in agriculture. Biokemistri 23(2):81–89

    Google Scholar 

  2. Narjary B, Aggarwal P, Kumar S, Meena MD (2013) Significance of hydrogel. Indian Fmg 62(10):15–17

    Google Scholar 

  3. Talaat HA, Sorour MH, Aboulnour AG, Shaalan HF, Ahmed EM, Awad AM, Ahmed MA (2008) Development of a multi-component fertilizing hydrogel with relevant techno-economic indicators. Am Eurasian J Agric Environ Sci 3(5):764–770

    Google Scholar 

  4. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine from molecular principles to bionanotechnology. Adv Mater 8(11):1345–1360

    Article  CAS  Google Scholar 

  5. Peppas NA, Khare AR (1993) Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv Drug Deliv Rev 11(1–2):1–35

    Article  CAS  Google Scholar 

  6. Shiotani A, Mori T, Niidome T, Niidome Y, Katayama Y (2007) Stable incorporation of gold nanorods into N-isopropylacrylamide hydrogels and their rapid shrinkage induced by near-infrared laser irradiation. Lang Des 23(7):4012–4018

    Article  CAS  Google Scholar 

  7. Kudaibergenov S, Jaeger W, Laschewsky A (2006) Polymeric betaines: synthesis, characterization, and application. In: Supramolecular polymers polymeric betains oligomers. Springer, Berlin/Heidelberg, pp 157–224

    Chapter  Google Scholar 

  8. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53(3):321–339

    Article  CAS  PubMed  Google Scholar 

  9. Mujumdar SK, Siegel RA (2008) Introduction of pH-sensitivity into mechanically strong nanoclay composite hydrogels based on N-isopropylacrylamide. J Polym Sci Part A 46: 6630–6640. https://doi.org/10.1002/pola.22973

    Article  CAS  Google Scholar 

  10. Somerville C, Briscoe J (2001) Genetic engineering and water. Science 292:2217–2217. https://doi.org/10.1126/science.292.5525.2217

    Article  CAS  PubMed  Google Scholar 

  11. Wery J, Silim SN, Knights EJ, Malhotra RS, Cousin R (1994) Screening techniques and sources and tolerance to extremes of moisture and air temperature in cool season food legumes. Euphytica 73:73–83

    Article  Google Scholar 

  12. Khodadadi Dehkordi D (2016) The effects of superabsorbent polymers on soils and plants. Pertanika J Trop Agric Sci 39(3):267–298

    Google Scholar 

  13. Vundavalli R, Vundavalli S, Nakka M, Rao DS (2015) Biodegradable nano-hydrogels in agricultural farming-alternative source for water resources. Procedia Mater Sci 10:548–554

    Article  CAS  Google Scholar 

  14. Guilherme MR, Moia TA, Reis AV, Paulino AT, Rubira AF, Mattoso LHC (2009) Synthesis and water absorption transport mechanism of a pH-sensitive polymer network structured on vinyl-functionalized pectin. Bio Macromol 10(1):190–196

    CAS  Google Scholar 

  15. Guilherme MR, Reis AV, Takahashi SH, Rubira AF, Feitosa JPA, Muniz EC (2005) Synthesis of a novel superabsorbent hydrogel by copolymerization of acrylamide and cashew gum modified with glycidyl methacrylate. Carbohydr Polym 61(4):464–471

    Article  CAS  Google Scholar 

  16. Reis AV, Guilherme MR, Cavalcanti OA, Rubira AF, Muniz EC (2006) Synthesis and characterization of pH-responsive hydrogels based on chemically modified Arabic gum polysaccharide. Polymer 47(6):2023–2029

    Article  CAS  Google Scholar 

  17. Guilherme MR, Oliveira RS, Mauricio MR, Cellet TSP, Pereira GM, Kunita MH (2012) Albumin release from a brain-resembling superabsorbent magnetic hydrogel based on starch. Soft Matter 8(24):6629–6637

    Article  CAS  Google Scholar 

  18. Basuki KT, Swantomo D, Sigit D, Sanyoto NT (2015) Characterization of chitosan-acrylamide hydrogels as soil conditioner. Adv Mater Res 1112:414–417

    Article  Google Scholar 

  19. Szcześniak M, Grimling B, Meler J, Pluta J (2014) Application of chitosan in the formulation of methyl cellulose-based hydrogels. Prog Chem Appl Chitin Deriv 19:139–144

    Google Scholar 

  20. Johnson MS, Veltkamp CJ (1985) Structure and functioning of water-storage agriculture polyacrylamides. J Sci Food Agric 36:789–793

    Article  CAS  Google Scholar 

  21. Wu L, Liu M, Liang R (2008) Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention. Bioresour Technol 99(3): 547–554

    Article  CAS  PubMed  Google Scholar 

  22. Liu M, Liang R, Zhan F, Liu Z, Niu A (2007) Preparation of superabsorbent slow release nitrogen fertilizer by inverse suspension polymerization. Polym Int 56(6):729–737

    Article  CAS  Google Scholar 

  23. Kalhapure A, Kumar R, Singh VP, Pandey DS (2016) Hydrogels: a boon for increasing agricultural productivity in water-stressed environment. Curr Sci 111(11):1773–1779

    Article  CAS  Google Scholar 

  24. Wang C, Chen C (2005) Physical properties of the crosslinked cellulose catalyzed with nanotitanium dioxide under UV irradiation and electronic field. Appl Catal A 293:171–179

    Article  CAS  Google Scholar 

  25. Demitri C, Del Sole R, Scalera F, Sannino A, Vasapollo G, Maffezzoli A, Ambrosio L, Nicolais L (2008) Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J Appl Polym Sci 110(4):2453–2460

    Article  CAS  Google Scholar 

  26. Rodriguez R, Alvarez-Lorenzo C, Concheiro A (2003) Cationic cellulose hydrogels: kinetics of the cross-linking process and characterization as pH-/ionsensitive drug delivery systems. J Control Release 86:253–265

    Article  CAS  PubMed  Google Scholar 

  27. Sannino A, Madaghiele M, Conversano F, Mele G, Maffezzoli A, Netti PA, Ambrosio L, Nicolais L (2004) Cellulose derivative- hyaluronic acid-based microporous hydrogels cross-linked through divinyl sulfone (DVS) to modulate equilibrium sorption capacity and network stability. Biomacromolecules 5:92–96

    Article  CAS  PubMed  Google Scholar 

  28. Sannino A, Pappadà S, Madaghiele M, Maffezzoli A, Ambrosio L, Nicolais L (2005) Crosslinking of cellulose derivatives and hyaluronic acid with water-soluble carbodiimide. Polymer 46:11206–11212

    Article  CAS  Google Scholar 

  29. Adel AM, Abou-Youssef H, El-Gendy AA, Nada AM (2010) Carboxymethylated cellulose hydrogel; sorption behavior and characterization. Nat Sci 8(8):244–256

    Google Scholar 

  30. Raafat AI, Eid M, El-Arnaouty MB (2012) Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications. Nucl Instrum Methods Phys Res Sect B 283:71–76

    Article  CAS  Google Scholar 

  31. Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Mater 2:353–373

    Article  CAS  Google Scholar 

  32. Raucci MG, Alvarez-Perez MA, Demitri C, Sannino A, Ambrosio L (2012) Proliferation and osteoblastic differentiation of hMSCS on cellulose-based hydrogels. J Appl Biomater Funct Mater 10:302–307

    CAS  PubMed  Google Scholar 

  33. Onofrei MD, Filimon A (2016) Cellulose-based hydrogels: designing concepts, properties, and perspectives for biomedical and environmental applications. In: Mendez-Vilas A, Solano A (eds) Polymer science: research advances, practical applications and educational aspects. Formatex Research Center, Spain, pp 108–120

    Google Scholar 

  34. Xiao M, Hu J, Zhang L (2014) Synthesis and swelling behaviour of biodegradable cellulose-based hydrogels. Adv Mater Res 1033–1034:352–356

    Article  Google Scholar 

  35. Ibrahim SM, El Salmawi KM, Zahran AH (2007) Synthesis of crosslinked superabsorbent carboxymethyl cellulose/acrylamide hydrogels through electron-beam irradiation. J Appl Polym Sci 104:2003–2008

    Article  CAS  Google Scholar 

  36. Li J, Li Y, Dong H (2008) Controlled release of herbicide acetochlor from clay/carboxymethylcellulose gel formulations. J Agric Food Chem 56(4):1336–1342

    Article  CAS  PubMed  Google Scholar 

  37. Dolbow J, Fried E, Ji H (2005) A numerical strategy for investigating the kinetic response of stimulus-responsive hydrogels. Comput Methods Appl Mech Eng 194(42–44):4447–4480

    Article  Google Scholar 

  38. Seki Y, Yurdakock K (2008) Synthesis of pH dependent chitosan- EPI hydrogel films and their application for in vitro release cellulose of promethazine hydrochloride. J Appl Polym Sci 109(1):683–690

    Article  CAS  Google Scholar 

  39. Montesanoa FF, Parentea A, Santamariab P, Sanninoc A, Serio F (2015) Biodegradable superabsorbent hydrogel increases water retention properties of growing media and plant growth. Agric Agric Sci Procedia 4:451–458

    Google Scholar 

  40. Saini K (2017) Preparation method, properties and crosslinking of hydrogel: a review. Pharmatutor 5(1):27–36

    CAS  Google Scholar 

  41. Kulkarni AR, Soppimath KS, Aminabhavi TM, Dave AM, Mehta MH (2000) Glutaraldehyde cross linked sodium alginate beads containing liquid pesticide for soil application. J Control Release 63(1–2):97–105

    Article  CAS  PubMed  Google Scholar 

  42. Aouada FA, De Moura MR, Henrique L, Mattaso C (2011) Biodegradable hydrogel as delivery vehicle for the controlled release of pesticide, Chapter 6. In: Stoytecheva M (ed) Pesticides-formulations, effects, fate. Intech, Rijeka. www.intechopen.com

    Google Scholar 

  43. Singh B, Sharma DK, Kumar R, Gupta A (2009) Controlled release of the fungicide thiram from starch–alginate–clay based formulation. Appl Clay Sci 45(1):76–82

    Article  CAS  Google Scholar 

  44. Roy A, Bajpai J, Bajpai AK (2009) Dynamics of controlled release of chlorpyrifos from swelling and eroding biopolymeric microspheres of calcium alginate and starch. Carbohydr Polym 76(2):222–231

    Article  CAS  Google Scholar 

  45. Guilherme MR, Aouada FA, Fajardo AR, Martins AF, Paulino AT, Davi MF, Rubira AF, Muniz EC (2015) Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: a review. Eur Polym J 72:365–385

    Article  CAS  Google Scholar 

  46. Baldrian P, Valaskova V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiolo Rev 32(3):501–521

    Article  CAS  Google Scholar 

  47. Fekete T, Borsa J, Takács E, Wojnárovits L (2017) Synthesis of carboxymethyl cellulose/starch superabsorbent hydrogels by gamma-irradiation. Chem Cent J 11(1):46. https://doi.org/10.1186/s13065-017-0273-5

    Article  PubMed  PubMed Central  Google Scholar 

  48. Guo J, Liu M-H, Gong H-X (2013) Preparing a novel superabsorbent based on carboxymethyl biocomposite: an optimization study via response surface methodology. Bioresources 8: 6510–6522

    Google Scholar 

  49. Nnadi F, Brave C (2011) Environmentally friendly superabsorbent polymers for water conservation in agricultural lands. J Soil Sci Env Manage 2(7):206–211

    Google Scholar 

  50. Chen P, Zhang W, Luo W, Fang Y (2004) Synthesis of superabsorbent polymers by irradiation and their applications in agriculture. J Appl Polym Sci 93(4):1748–1755

    Article  CAS  Google Scholar 

  51. Akhter JMK, Malik KA, Mardan A, Ahmad M, Iqbal MM (2004) Effects of hydrogel amendment on water storage of sandy loam and loam soils and seedling growth of barley, wheat and chickpea. Plant Soil Envir 50(10):463–469

    Article  Google Scholar 

  52. Leciejewski P (2009) The effect of hydrogel additives on the water retention curve of sandy soil from forest nursery in Julinek. J Water Land Dev 13:239–247

    Google Scholar 

  53. Parvathy PC, Jyothi AN (2014) Rheological and thermal properties of saponified cassava starch-g-poly(acrylamide) superabsorbent polymers varying in grafting parameters and absorbency. J Appl Polym Sci 131(11):40368–40379

    Article  CAS  Google Scholar 

  54. Abd El-Mohdy HL, Hegazy EA, El-Nesr EM, El-Wahab MA (2011) Control release of some pesticides from starch/(ethylene glycol-co-methacrylic acid) copolymers prepared by γ-irradiation. J Appl Polym Sci 122(3):1500–1509

    Article  CAS  Google Scholar 

  55. Siepmann J, Siegel R, Rathbone M (2012) Fundamentals and applications of controlled release drug delivery. In: Advances in delivery science and technology. Springer, New York, pp 75–106. https://doi.org/10.1007/978-1-4614-0881-9

    Chapter  Google Scholar 

  56. Sempeho SI, Kim HT, Mubofu E, Hilonga A (2014) Meticulous overview on the controlled release fertilizers. Adv Chem, Article ID: 363071. https://doi.org/10.1155/2014/363071

  57. Black CA (1965) Methods of soil analysis. Part I, vol 1572. American Society of Agronomy, Madison, p 57

    Google Scholar 

  58. Gilbert C, Peter S, Wilson N, Edward M, Francis M, Sylvester K (2014) Effects of hydrogels on soil moisture and growth of leucaena pallida in semi-arid zone of kongelai, West Pokot County. Open J Atm Clim Change 1(2):2374–3794

    Google Scholar 

  59. Rehman A, Ahmad R, Safdar M (2011) Effect of hydrogel on the performance of aerobic rice sown under different techniques. Plant Soil Environ 57(7):321–325

    Article  CAS  Google Scholar 

  60. Durovic N, Pivic R, Pocuca V (2012) Effects of the application of a hydrogel in different soils. Agric Forestry 53((07) (1–4)):25–34

    Google Scholar 

  61. Yáñez-Chávez LG, Pedroza-Sandoval A, Sánchez-Cohen I, Samaniego-Gaxiola JA (2014) Assessment of the impact of compost and hydrogel as soil moisture retainers on the growth and development of forage maize (Zea mays L.). J Agric Environ Sci 3(4):93–106

    Google Scholar 

  62. Reynolds SG (1970) The gravimetric method of soil moisture determination Part III an examination of factors influencing soil moisture variability. J Hydrol 11(3):288–300

    Article  Google Scholar 

  63. Teodorescu M, Lungu A, Stanescu PO, Neamt C (2009) Preparation and properties of novel slow-release NPK agrochemical formulations based on poly(acrylic acid) hydrogels and liquid fertilizers. Ind Eng Chem Res 48(14):6527–6534

    Article  CAS  Google Scholar 

  64. Ni B, Liu M, Lü S, Xie L, Wang Y (2011) Environmentally friendly slow-release nitrogen fertilizer. J Agric Food Chem 59(18):10169–10175

    Article  CAS  PubMed  Google Scholar 

  65. Al-Zahrani SM (1999) Controlled-release of fertilizers: modelling and simulation. Int J Eng Sci 37(10):1299–1307

    Article  Google Scholar 

  66. Abed MA, Haddad AM, Hassen AJ, Sultan S (2006) Preparation and evaluation of new hydrogels as new fertilizer delivery system. Basrah J Sci (C) 24(1):103–114

    Google Scholar 

  67. Liang R, Liu M, Wu L (2007) Controlled release NPK compound fertilizer with the function of water retention. React Funct Polym 67(9):769–779

    Article  CAS  Google Scholar 

  68. Chatzoudis GK, Valkanas GN (1995) Lettuce plant growth with the use of soil conditioner and slow release fertilizer. Commun Soil Sci Plant Anal 26:2569–2576

    Article  CAS  Google Scholar 

  69. Tellis JC, Strulson CA, Myers MM, Kneas KA (2010) Relative humidity sensors based on an environment-sensitive fluorophore in hydrogel films. Anal Chem 83(3):928–932

    Article  CAS  PubMed  Google Scholar 

  70. Cataldo A, Monti G, De Benedetto E, Cannazza G, Tarricone L (2009) A non-invasive resonance-based method for moisture content evaluation through micro strip antennas. IEEE Trans Instrum Meas 58(5):1420–1426

    Article  Google Scholar 

  71. Demitri C, Scalera F, Madaghiele M, Sannino A, Maffezzoli A (2013) Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. Int J Polym Sci 3013:1–6, Article ID. 435073-435079. https://doi.org/10.1155/2013/435073

    Article  CAS  Google Scholar 

  72. Villar MV, Gómez-Espina R, Lloret A (2010) Experimental investigation into temperature effect on hydro-mechanical behaviours of bentonite. J Rock Mech Geotech Eng 2(1):71–78

    Google Scholar 

  73. Peng Z, Chen F (2010) Synthesis and properties of temperature-sensitive hydrogel based on hydroxyethyl cellulose. Int J Polym Mater 59(6):450–461

    Article  CAS  Google Scholar 

  74. Saeed AM (2013) Temperature effect on swelling properties of commercial polyacrylic acid hydrogel beads. Int J Adv Biol Biom Res 1(12):1614–1627

    CAS  Google Scholar 

  75. Wach RA, Mitomo H, Yoshii F, Kume T (2001) 13 radiation processing of biodegradable polymer hydrogel from cellulose derivatives. In: The international symposium on radiation technology in emerging industrial applications. JAERI conference, China, vol 5, pp 89–100

    Google Scholar 

  76. Tomsic B, Simoncic B, Orel B, Vilcnik A, Spreizer H (2007) Biodegradability of cellulose fabric modified by imidazolidinone. Carbohydr Polym 69(3):478–488

    Article  CAS  Google Scholar 

  77. Sannino A, Madaghiele M, Demitri C, Scalera F, Esposito A, Esposito V, Maffezzoli A (2010) Development and characterization of cellulose-based hydrogels for use as dietary bulking agents. J Appl Polym Sci 115:1438–1444

    Article  CAS  Google Scholar 

  78. Orozco RS, Cruz BT, Blancas TT, Núñez FU (2017) Valorization of superabsorbent polymers from used disposable diapers as soil moisture conditioner. Int J Res 5(4):105–117

    Google Scholar 

  79. Mehr MJZ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iranian Polym J 17(6):451–477

    Google Scholar 

  80. Bortolin A, Serafim AR, Aouada FA, Mattoso LHC, Ribeiro C (2016) Macro- and micronutrient simultaneous slow release from highly swellable nanocomposite hydrogels. J Agric Food Chem 64(6):3133–3140

    Article  CAS  PubMed  Google Scholar 

  81. Milani P, França D, Balieiro AG, Faez R (2017) Polymers and its applications in agriculture. Polímeros 27(3):256–266

    Article  Google Scholar 

  82. Kołodyńska D, Skiba A, Górecka B, Hubicki Z (2016) Hydrogels from fundaments to application. In: Majee SB (ed) Emerging concepts in analysis and applications of hydrogels. InTech, United Kingdom, ISBN 978-953-51-2510-5, Print ISBN 978-953-51-2509-9. https://doi.org/10.5772/63466

  83. Shaviv A, Mikkelsen RL (1993) Controlled-release fertilizers to increase efficiency of nutrient use and minimize environmental degradation – a review. Nutr Cycling Agro Ecos 35:1–12

    CAS  Google Scholar 

  84. Noppakundilograt S, Pheatcharat N, Kiatkamjornwong S (2015) Multilayer-coated NPK compound fertilizer hydrogel with controlled nutrient release and water absorbency. J Appl Polym Sci 132(2). https://doi.org/10.1002/app.41249

  85. Guilherme MR, Reis AV, Paulino AT, Moia TA, Mattoso LHC, Tambourgi EB (2010) Pectin-based polymer hydrogel as a carrier for release of agricultural nutrients and removal of heavy metals from wastewater. J Appl Polym Sci 117:3146–3154

    CAS  Google Scholar 

  86. Vallejo VR, Smanis A, Chirino E, Fuentes D, Valdecantos A, Vilagrosa A (2012) Perspectives in dryland restoration: approaches for climate change adaptation. New For 43:561–579. https://doi.org/10.1007/s11056-012-9325-9

    Article  Google Scholar 

  87. Huettermann A, Orikiriza LJ, Agaba H (2009) Application of superabsorbent polymers for improving the ecological chemistry of degraded or polluted lands. Clean Soil Air Water 37(7):517–526

    Article  CAS  Google Scholar 

  88. Al-Humaid AI, Moftah AE (2007) Effects of hydrophilic polymer on the survival of buttonwood seedlings grown under drought stress. J Plant Nut 30(1):53–66

    Article  CAS  Google Scholar 

  89. Cannazza G, Cataldo A, De Benedetto E, Demitri C, Madaghiele M, Sannino A (2014) Experimental assessment of the use of a novel superabsorbent polymer (SAP) for the optimization of water consumption in agricultural irrigation process. Water 6(7):2056–2069

    Article  Google Scholar 

  90. Barbucci R, Magnani A, Consumi M (2000) Swelling behaviour of carboxymethylcellulose hydrogels in relation to cross-linking, pH, and charge density. Macromolecules 33:7475–7480

    Article  CAS  Google Scholar 

  91. Arbona V, Iglesias DJ, Jacas J, Millo EP, Talon M, Cadenas AG (2005) Hydrogel substrate amendment alleviates drought effects on young citrus plants. Plant Soil 270:73–82. https://doi.org/10.1007/s11104-004-1160-0

    Article  CAS  Google Scholar 

  92. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SM (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29(1):185–212

    Article  Google Scholar 

  93. Tudela D, Primo-Millo E (1992) 1-aminocyclopropane-1-carboxylicic acid transported from roots to shoots promotes leaf abscission in cleopatra mandarin (Citrus reshni Hort. Ex Tan.) seedlings rehydrated after water stress. Plant Physiol 100:131–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Brakke M, Allen LH (1995) Gas-exchange of citrus seedlings at different temperatures, vapour-pressure deficits, and soil-water contents. J Am Soc Hortic Sci 120:497–504

    Google Scholar 

  95. Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. International journal of agriculture & biology. Int J Agric Biol 11(1):100–105

    Google Scholar 

  96. Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384

    Article  CAS  PubMed  Google Scholar 

  97. Satriani A, Catalano M, Scalcione E (2018) The role of superabsorbent hydrogel in bean crop cultivation under deficit irrigation conditions: a case-study in southern Italy. Agric Water Manag 195:114–119

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nalini Ranganathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ranganathan, N., Joseph Bensingh, R., Abdul Kader, M., Nayak, S.K. (2019). Cellulose-Based Hydrogels for Agricultures. In: Mondal, M. (eds) Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-77830-3_34

Download citation

Publish with us

Policies and ethics