Skip to main content

Cellulose-Based Absorbents for Oil Contaminant Removal

  • Reference work entry
  • First Online:

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

Abstract

With the rapidly increasing exploitation, transportation, and utilization of fossil oils, oil spillage accidents occur frequently worldwide. Oil pollution can lead to a serious loss of valuable resources on coastal and marine ecosystems during a long period. Besides, industrial waste oil may have a broad impact on city ecological environments and human health. It is thus urgently required to solve oil pollution efficiently. Generally, current strategies are classified into three groups: (1) burning the oil spill in situ, (2) dispersing the oil in water by adding dispersants to facilitate nature degradation, and (3) extracting the oil from the water. The last method seems the “greenest” because both the absorbent and the oil can be recycled. Among the absorbents, cellulose-based absorbents are the first choices due to their environmental friendliness of renewability and biodegradability, good mechanical properties, low density, high porosity, high absorption capacity, and cost-effectiveness. In this chapter, we intend to demonstrate the following aspects of cellulose-based absorbents, including (1) raw materials: properties and pretreatments, (2) fabrication of the various absorbents, (3) characterization of the structure and properties, (4) cellulose-related absorbents and other applications, and (5) discussions and future scope. This work aims to draw a full outline of the cellulose absorbents to date and to promote the understanding and developing of these materials in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sabir S (2015) Approach of cost-effective adsorbents for oil removal from oily water. Crit Rev Environ Sci Tech 45:1916–1945

    CAS  Google Scholar 

  2. Dalton T, Jin D (2010) Extent and frequency of vessel oil spills in US marine protected areas. Mar Pollut Bull 60:1939–1945

    CAS  PubMed  Google Scholar 

  3. Peterson CH, Rice SD, Short JW, Esler D, Bodkin JL, Ballachey BE, Irons DB (2003) Long-term ecosystem response to the Exxon Valdez oil spill. Science 302:2082–2086

    CAS  PubMed  Google Scholar 

  4. Syed S, Alhazzaa MI, Asif M (2011) Treatment of oily water using hydrophobic nano-silica. Chem Eng J 167:99–103

    CAS  Google Scholar 

  5. Santander M, Rodrigues RT, Rubio J (2011) Modified jet flotation in oil (petroleum) emulsion/water separations. Colloid Surf A 375:237–244

    CAS  Google Scholar 

  6. Cambiella A, Ortea E, Rios G, Benito JM, Pazos C, Coca J (2006) Treatment of oil-in-water emulsions: performance of a sawdust bed filter. J Hazard Mater 131:195–199

    CAS  PubMed  Google Scholar 

  7. Angelova D, Uzunov I, Uzunova S, Gigova A, Minchev L (2011) Kinetics of oil and oil products adsorption by carbonized rice husks. Chem Eng J 172:306–311

    CAS  Google Scholar 

  8. Bayat A, Aghamiri SF, Moheb A, Vakili-Nezhaad GR (2005) Oil spill cleanup from sea water by sorbent materials. Chem Eng Technol 28:1525–1528

    CAS  Google Scholar 

  9. Dong X, Chen J, Ma Y, Wang J, Chan-Park MB, Liu X, Wang L, Huang W, Chen P (2012) Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water. Chem Commun 48:10660–10662

    CAS  Google Scholar 

  10. Bi H, Xie X, Yin K, Zhou Y, Wan S, He L, Xu F, Banhart F, Sun L, Ruoff RS (2012) Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv Funct Mater 22:4421–4425

    CAS  Google Scholar 

  11. Yang Y, Tong Z, Ngai T, Wang C (2014) Nitrogen-rich and fire-resistant carbon aerogels for the removal of oil contaminants from water. ACS Appl Mater Interfaces 6:6351–6360

    CAS  PubMed  Google Scholar 

  12. Wu ZY, Li C, Liang HW, Chen JF, Yu SH (2013) Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew Chem Int Ed 52:2925–2929

    CAS  Google Scholar 

  13. Gui X, Li H, Wang K, Wei J, Jia Y, Li Z, Fan L, Cao A, Zhu H, Wu D (2011) Recyclable carbon nanotube sponges for oil absorption. Acta Mater 59:4798–4804

    CAS  Google Scholar 

  14. Liu H, Geng B, Chen Y, Wang H (2017) Review on the aerogel-type oil sorbents derived from Nanocellulose. ACS Sustain Chem Eng 5:49–66

    CAS  Google Scholar 

  15. Liao CY, Chiou JY, Lin JJ (2015) Temperature-dependent oil absorption of poly(oxypropylene)amine-intercalated clays for environmental remediation. RSC Adv 5:100702–100708

    CAS  Google Scholar 

  16. Carmody O, Frost R, Xi Y, Kokot S (2007) Adsorption of hydrocarbons on organo-clays – implications for oil spill remediation. J Colloid Interface Sci 305:17–24

    CAS  PubMed  Google Scholar 

  17. Zadaka-Amir D, Bleiman N, Mishael YG (2013) Sepiolite as an effective natural porous adsorbent for surface oil-spill. Microporous Mesoporous Mater 169:153–159

    CAS  Google Scholar 

  18. Karakasi OK, Moutsatsou A (2010) Surface modification of high calcium fly ash for its application in oil spill clean up. Fuel 89:3966–3970

    CAS  Google Scholar 

  19. Teas C, Kalligeros S, Zanikos F, Stournas S, Lois E, Anastopoulos G (2001) Investigation of the effectiveness of absorbent materials in oil spills clean up. Desalination 140:259–264

    CAS  Google Scholar 

  20. Annunciado TR, Sydenstricker TH, Amico SC (2005) Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Mar Pollut Bull 50:1340–1346

    CAS  PubMed  Google Scholar 

  21. Deschamps G, Caruel H, Borredon ME, Bonnin C, Vignoles C (2003) Oil removal from water by selective sorption on hydrophobic cotton fibers. 1. Study of sorption properties and comparison with other cotton fiber-based sorbents. Environ Sci Technol 37:1013–1015

    CAS  PubMed  Google Scholar 

  22. Sun XF, Sun RC, Sun JX (2002) Acetylation of rice straw with or without catalysts and its characterization as a natural sorbent in oil spill cleanup. J Agric Food Chem 50:6428–6433

    CAS  PubMed  Google Scholar 

  23. Yu S, Tan H, Wang J, Liu X, Zhou K (2015) High porosity Supermacroporous polystyrene materials with excellent oil-water separation and gas permeability properties. ACS Appl Mater Interfaces 7:6745–6753

    CAS  PubMed  Google Scholar 

  24. Lin J, Tian F, Shang Y, Wang F, Ding B, Yu J, Guo Z (2013) Co-axial electrospun polystyrene/polyurethane fibres for oil collection from water surface. Nanoscale 5:2745–2755

    CAS  PubMed  Google Scholar 

  25. Wu D, Wu W, Yu Z, Zhang C, Zhu H (2014) Facile preparation and characterization of modified polyurethane sponge for oil absorption. Ind Eng Chem Res 53:20139–20144

    CAS  Google Scholar 

  26. Zhu Q, Chu Y, Wang Z, Chen N, Lin L, Liu F, Pan Q (2013) Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material. J Mater Chem A 1:5386–5393

    CAS  Google Scholar 

  27. Hayase G, Kanamori K, Fukuchi M, Kaji H, Nakanishi K (2013) Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water. Angew Chem Int Ed 52:1986–1989

    CAS  Google Scholar 

  28. Choi SJ, Kwon TH, Im H, Moon DI, Baek DJ, Seol ML, Duarte JP, Choi YK (2011) A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS Appl Mater Interfaces 3:4552–4556

    CAS  PubMed  Google Scholar 

  29. Ruan C, Ai K, Li X, Lu L (2014) A Superhydrophobic sponge with excellent absorbency and flame Retardancy. Angew Chem Int Ed 53:5556–5560

    CAS  Google Scholar 

  30. Gao Y, Zhou YS, Xiong W, Wang M, Fan L, Rabiee-Golgir H, Jiang L, Hou W, Huang X, Jiang L, Silvain JF, Lu YF (2014) Highly efficient and recyclable carbon soot sponge for oil cleanup. ACS Appl Mater Interfaces 6:5924–5929

    CAS  PubMed  Google Scholar 

  31. Wei QF, Mather RR, Fotheringham AF, Yang RD (2003) Evaluation of nonwoven polypropylene oil sorbents in marine oil-spill recovery. Mar Pollut Bull 46:780–783

    CAS  PubMed  Google Scholar 

  32. Karakutuk I, Okay O (2010) Macroporous rubber gels as reusable sorbents for the removal of oil from surface waters. React Funct Polym 70:585–595

    CAS  Google Scholar 

  33. Liang HW, Guan QF, Chen LF, Zhu Z, Zhang WJ, Yu SH (2012) Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew Chem Int Ed 51:5101–5105

    CAS  Google Scholar 

  34. Wu T, Chen M, Zhang L, Xu X, Liu Y, Yan J, Wang W, Gao J (2013) Three-dimensional graphene-based aerogels prepared by a self-assembly process and its excellent catalytic and absorbing performance. J Mater Chem A 1:7612–7621

    CAS  Google Scholar 

  35. Duc Dung N, Tai NH, Lee SB, Kuo WS (2012) Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy Environ Sci 5:7908–7912

    Google Scholar 

  36. Zhao Y, Hu C, Hu Y, Cheng H, Shi G, Qu L (2012) A versatile, ultralight, nitrogen-doped graphene framework. Angew Chem Int Ed 51:11371–11375

    CAS  Google Scholar 

  37. Wang Y, Yadav S, Heinlein T, Konjik V, Breitzke H, Buntkowsky G, Schneider JJ, Zhang K (2014) Ultra-light nanocomposite aerogels of bacterial cellulose and reduced graphene oxide for specific absorption and separation of organic liquids. RSC Adv 4:21553–21558

    CAS  Google Scholar 

  38. Gui X, Wei J, Wang K, Cao A, Zhu H, Jia Y, Shu Q, Wu D (2010) Carbon nanotube sponges. Adv Mater 22:617

    CAS  PubMed  Google Scholar 

  39. Zheng Q, Cai Z, Gong S (2014) Green synthesis of polyvinyl alcohol (PVA)-cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. J Mater Chem A 2:3110–3118

    CAS  Google Scholar 

  40. Korhonen JT, Kettunen M, Ras RH, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3:1813–1816

    CAS  PubMed  Google Scholar 

  41. Sai H, Fu R, Xing L, Xiang J, Li Z, Li F, Zhang T (2015) Surface modification of bacterial cellulose Aerogels' web-like skeleton for oil/water separation. ACS Appl Mater Interfaces 7:7373–7381

    CAS  PubMed  Google Scholar 

  42. Zhang Z, Sebe G, Rentsch D, Zimmermann T, Tingaut P (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668

    CAS  Google Scholar 

  43. Jiang F, Hsieh YL (2014) Amphiphilic superabsorbent cellulose nanofibril aerogels. J Mater Chem A 2:6337–6342

    CAS  Google Scholar 

  44. Xiao S, Gao R, Lu Y, Li J, Sun Q (2015) Fabrication and characterization of nanofibrillated cellulose and its aerogels from natural pine needles. Carbohydr Polym 119:202–209

    CAS  PubMed  Google Scholar 

  45. Wang S, Peng X, Zhong L, Tan J, Jing S, Cao X, Chen W, Liu C, Sun R (2015) An ultralight, elastic, cost-effective, and highly recyclable superabsorbent from microfibrillated cellulose fibers for oil spillage cleanup. J Mater Chem A 3:8772–8781

    CAS  Google Scholar 

  46. Duan B, Gao H, He M, Zhang L (2014) Hydrophobic modification on surface of chitin sponges for highly effective separation of oil. ACS Appl Mater Interfaces 6:19933–19942

    CAS  PubMed  Google Scholar 

  47. Toyoda M, Aizawa J, Inagaki M (1998) Sorption and recovery of heavy oil by using exfoliated graphite. Desalination 115:199–201

    CAS  Google Scholar 

  48. Mikhalchan A, Fan Z, Tran TQ, Liu P, Tan VB, Tay TE, Duong HM (2016) Continuous and scalable fabrication and multifunctional properties of carbon nanotube aerogels from the floating catalyst method. Carbon 102:409–418

    CAS  Google Scholar 

  49. Singh V, Jinka S, Hake K, Parameswaran S, Kendall RJ, Ramkumar S (2014) Novel natural sorbent for oil spill cleanup. Ind Eng Chem Res 53:11954–11961

    CAS  Google Scholar 

  50. Wang J, Zheng Y, Wang A (2012) Effect of kapok fiber treated with various solvents on oil absorbency. Ind Crop Prod 40:178–184

    CAS  Google Scholar 

  51. Ali N, El-Harbawi M, Jabal AA, Yin CY (2012) Characteristics and oil sorption effectiveness of kapok fibre, sugarcane bagasse and rice husks: oil removal suitability matrix. Environ Technol 33:481–486

    CAS  PubMed  Google Scholar 

  52. Ibrahim S, Ang HM, Wang S (2009) Removal of emulsified food and mineral oils from wastewater using surfactant modified barley straw. Bioresour Technol 100:5744–5749

    CAS  PubMed  Google Scholar 

  53. Khan E, Virojnagud W, Ratpukdi T (2004) Use of biomass sorbents for oil removal from gas station runoff. Chemosphere 57:681–689

    CAS  PubMed  Google Scholar 

  54. Lim TT, Huang X (2006) In situ oil/water separation using hydrophobic-oleophilic fibrous wall: a lab-scale feasibility study for groundwater cleanup. J Hazard Mater 137:820–826

    CAS  PubMed  Google Scholar 

  55. Tansel B, Sevimoglu O (2006) Coalescence and size distribution characteristics of oil droplets attached on flocs after coagulation. Water Air Soil Pollut 169:293–302

    CAS  Google Scholar 

  56. Pasila A (2004) A biological oil adsorption filter. Mar Pollut Bull 49:1006–1012

    CAS  PubMed  Google Scholar 

  57. Rengasamy RS, Das D, Karan CP (2011) Study of oil sorption behavior of filled and structured fiber assemblies made from polypropylene, kapok and milkweed fibers. J Hazard Mater 186:526–532

    CAS  PubMed  Google Scholar 

  58. Wahi R, Chuah LA, Choong TS, Ngaini Z, Nourouzi MM (2013) Oil removal from aqueous state by natural fibrous sorbent: an overview. Sep Purif Technol 113:51–63

    CAS  Google Scholar 

  59. Nakagaito AN, Kondo H, Takagi H (2013) Cellulose nanofiber aerogel production and applications. J Reinf Plast Compos 32:1547–1552

    Google Scholar 

  60. Innerlohinger J, Weber HK, Kraft G (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244:126–135

    CAS  Google Scholar 

  61. Cai J, Kimura S, Wada M, Kuga S, Zhang L (2008) Cellulose aerogels from aqueous alkali hydroxide-urea solution. Chem Sus Chem 1:149–154

    CAS  Google Scholar 

  62. Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose-NaOH aqueous solutions. Biomacromolecules 9:269–277

    CAS  PubMed  Google Scholar 

  63. Pinnow M, Fink HP, Fanter C, Kinize J (2008) Characterization of highly porous materials from cellulose carbamate. Macromol Symp 262:129–139

    CAS  Google Scholar 

  64. Osullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207

    CAS  Google Scholar 

  65. Samir M, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    CAS  Google Scholar 

  66. Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249

    CAS  Google Scholar 

  67. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    CAS  PubMed  Google Scholar 

  68. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    CAS  PubMed  Google Scholar 

  69. Postek MT, Vladar A, Dagata J, Farkas N, Ming B, Wagner R, Raman A, Moon RJ, Sabo R, Wegner TH, Beecher J (2011) Development of the metrology and imaging of cellulose nanocrystals. Meas Sci Technol 22:024005

    Google Scholar 

  70. Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    CAS  Google Scholar 

  71. Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    CAS  Google Scholar 

  72. Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227

    CAS  Google Scholar 

  73. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    CAS  PubMed  Google Scholar 

  74. Hudson SM, Cuculo JA (1980) The solubility of cellulose in liquid ammonia-salt solutions. J Polym Sci Part A 18:3469–3481

    CAS  Google Scholar 

  75. Hattori K, Cuculo JA, Hudson SM (2002) New solvents for cellulose: hydrazine/thiocyanate salt system. J Polym Sci Part A 40:601–611

    CAS  Google Scholar 

  76. Dawsey TR, McCormick CL (1990) The lithium chloride/dimethylacetamide solvent for cellulose – a literature-review. J Macromol Sci Rev Macromol Chem Phys C30:405–440

    CAS  Google Scholar 

  77. McCormick CL, Shen TC (1981) A new cellulose solvent for preparing derivatives under homogeneous conditions. Abstr Pap Am Chem Soc 182:63

    Google Scholar 

  78. Chanzy H, Paillet M, Peguy A (1986) Spinning of exploded wood from amine oxide solutions. Polym Comm 27:171–172

    CAS  Google Scholar 

  79. Jin H, Nishiyama Y, Wada M, Kuga S (2004) Nanofibrillar cellulose aerogels. Colloid Surf A 240:63–67

    CAS  Google Scholar 

  80. Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    CAS  PubMed  Google Scholar 

  81. Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278

    CAS  PubMed  Google Scholar 

  82. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491

    CAS  PubMed  Google Scholar 

  83. Paakko M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindstrom T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499

    CAS  Google Scholar 

  84. Korhonen JT, Hiekkataipale P, Malm J, Karppinen M, Ikkala O, Ras RH (2011) Inorganic hollow nanotube aerogels by atomic layer deposition onto native Nanocellulose templates. ACS Nano 5:1967–1974

    CAS  PubMed  Google Scholar 

  85. Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11:1696–1700

    CAS  PubMed  Google Scholar 

  86. Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983

    CAS  Google Scholar 

  87. Heath L, Thielemans W (2010) Cellulose nanowhisker aerogels. Green Chem 12:1448–1453

    CAS  Google Scholar 

  88. Stamm AJ, Tarkow H (1950) Penetration of cellulose fibers. J Phys Colloid Chem 54:745–753

    CAS  PubMed  Google Scholar 

  89. Tan CB, Fung BM, Newman JK, Vu C (2001) Organic aerogels with very high impact strength. Adv Mater 13:644–646

    CAS  Google Scholar 

  90. Fischer F, Rigacci A, Pirard R, Berthon-Fabry S, Achard P (2006) Cellulose-based aerogels. Polymer 47:7636–7645

    CAS  Google Scholar 

  91. Granstrom M, Paakko MK, Jin H, Kolehmainen E, Kilpelainen I, Ikkala O (2011) Highly water repellent aerogels based on cellulose stearoyl esters. Polym Chem 2:1789–1796

    CAS  Google Scholar 

  92. Cai J, Liu S, Feng J, Kimura S, Wada M, Kuga S, Zhang L (2012) Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew Chem Int Ed 51:2076–2079

    CAS  Google Scholar 

  93. Zhang J, Cao Y, Feng J, Wu P (2012) Graphene-oxide-sheet-induced gelation of cellulose and promoted mechanical properties of composite aerogels. J Phys Chem C 116:8063–8068

    CAS  Google Scholar 

  94. Sescousse R, Gavillon R, Budtova T (2011) Aerocellulose from cellulose-ionic liquid solutions: preparation, properties and comparison with cellulose-NaOH and cellulose-NMMO routes. Carbohydr Polym 83:1766–1774

    CAS  Google Scholar 

  95. Aaltonen O, Jauhiainen O (2009) The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydr Polym 75:125–129

    CAS  Google Scholar 

  96. Hoepfner S, Ratke L, Milow B (2008) Synthesis and characterisation of nanofibrillar cellulose aerogels. Cellulose 15:121–129

    CAS  Google Scholar 

  97. Duchemin BJ, Staiger MP, Tucker N, Newman RH (2010) Aerocellulose based on all-cellulose composites. J Appl Polym Sci 115:216–221

    CAS  Google Scholar 

  98. Nguyen ST, Feng J, Ng SK, Wong JP, Tan VB, Duong HM (2014) Advanced thermal insulation and absorption properties of recycled cellulose aerogels. Colloid Surf A 445:128–134

    CAS  Google Scholar 

  99. Wan C, Lu Y, Cao J, Sun Q, Li J (2015) Preparation, characterization and oil adsorption properties of cellulose aerogels from four kinds of plant materials via a NaOH/PEG aqueous solution. Fibers Polym 16:302–307

    CAS  Google Scholar 

  100. Nguyen ST, Feng J, Le NT, Le AT, Nguyen H, Tan VB, Duong HM (2013) Cellulose aerogel from paper waste for crude oil spill cleaning. Ind Eng Chem Res 52:18386–18391

    CAS  Google Scholar 

  101. Feng J, Nguyen ST, Fan Z, Duong HM (2015) Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chem Eng J 270:168–175

    CAS  Google Scholar 

  102. Meng Y, Young TM, Liu P, Contescu CI, Huang B, Wang S (2015) Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material. Cellulose 22:435–447

    CAS  Google Scholar 

  103. Kobayashi Y, Saito T, Isogai A (2014) Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators. Angew Chem Int Ed 53:10394–10397

    CAS  Google Scholar 

  104. Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71:1593–1599

    CAS  Google Scholar 

  105. Russler A, Wieland M, Bacher M, Henniges U, Miethe P, Liebner F, Potthast A, Rosenau T (2012) AKD-modification of bacterial cellulose aerogels in supercritical CO2. Cellulose 19:1337–1349

    CAS  Google Scholar 

  106. Fumagalli M, Ouhab D, Boisseau SM, Heux L (2013) Versatile gas-phase reactions for surface to bulk esterification of cellulose microfibrils aerogels. Biomacromolecules 14:3246–3255

    CAS  PubMed  Google Scholar 

  107. Inoue T, Osatake H (1988) A new drying method of biological specimens for scanning electron-microscopy – the tert-butyl alcohol freeze-drying method. Arch Histol Cytol 51:53–59

    CAS  PubMed  Google Scholar 

  108. Ishida O, Kim DY, Kuga S, Nishiyama Y, Brown RM (2004) Microfibrillar carbon from native cellulose. Cellulose 11:475–480

    CAS  Google Scholar 

  109. Nemoto J, Saito T, Isogai A (2015) Simple freeze-drying procedure for producing Nanocellulose aerogel-containing, high-performance air filters. ACS Appl Mater Interfaces 7:19809–19815

    CAS  PubMed  Google Scholar 

  110. Xue CH, Jia ST, Zhang J, Ma JZ (2010) Large-area fabrication of superhydrophobic surfaces for practical applications: an overview. Sci Technol Adv Mater 11(3):033002., 15 p. https://doi.org/10.1088/1468-6996/11/3/03300002

    Article  PubMed  PubMed Central  Google Scholar 

  111. Cervin NT, Aulin C, Larsson PT, Wagberg L (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19:401–410

    CAS  Google Scholar 

  112. Lindman B, Karlstrom G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81

    CAS  Google Scholar 

  113. Rein DM, Khalfin R, Cohen Y (2012) Cellulose as a novel amphiphilic coating for oil-in-water and water-in-oil dispersions. J Colloid Interface Sci 386:456–463

    CAS  PubMed  Google Scholar 

  114. Wang J, Zheng Y, Wang A (2013) Coated kapok fiber for removal of spilled oil. Mar Pollut Bull 69:91–96

    CAS  PubMed  Google Scholar 

  115. Choi HM, Cloud RM (1992) Natural sorbents in oil-spill cleanup. Environ Sci Technol 26:772–776

    CAS  Google Scholar 

  116. Wang J, Zhao D, Shang K, Wang YT, Ye DD, Kang AH, Liao W, Wang YZ (2016) Ultrasoft gelatin aerogels for oil contaminant removal. J Mater Chem A 4:9381–9389

    CAS  Google Scholar 

  117. Sharma P, Saikia BK, Das MR (2014) Removal of methyl green dye molecule from aqueous system using reduced graphene oxide as an efficient adsorbent: kinetics, isotherm and thermodynamic parameters. Colloid Surf A 457:125–133

    CAS  Google Scholar 

  118. Vargas AM, Cazetta AL, Kunita MH, Silva TL, Almeida VC (2011) Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): study of adsorption isotherms and kinetic models. Chem Eng J 168:722–730

    CAS  Google Scholar 

  119. Chen Y, Zhang D (2014) Adsorption kinetics, isotherm and thermodynamics studies of flavones from Vaccinium Bracteatum Thunb leaves on NKA-2 resin. Chem Eng J 254:579–585

    CAS  Google Scholar 

  120. Bastani D, Safekordi AA, Alihosseini A, Taghikhani V (2006) Study of oil sorption by expanded perlite at 298.15 K. Sep Purif Technol 52:295–300

    CAS  Google Scholar 

  121. Sokker HH, El-Sawy NM, Hassan MA, El-Anadouli BE (2011) Adsorption of crude oil from aqueous solution by hydrogel of chitosan based polyacrylamide prepared by radiation induced graft polymerization. J Hazard Mater 190:359–365

    CAS  PubMed  Google Scholar 

  122. Wu D, Fu R (2008) Requirements of organic gels for a successful ambient pressure drying preparation of carbon aerogels. J Porous Mater 15:29–34

    Google Scholar 

  123. Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24:3221–3227

    CAS  Google Scholar 

  124. Wu DC, Fu RW, Zhang ST, Dresselhaus MS, Dresselhaus G (2004) Preparation of low-density carbon aerogels by ambient pressure drying. Carbon 42:2033–2039

    CAS  Google Scholar 

  125. Fu RW, Zheng B, Liu J, Dresselhaus MS, Dresselhaus G, Satcher JH, Baumann TE (2003) The fabrication and characterization of carbon aerogels by gelation and supercritical drying in isopropanol. Adv Funct Mater 13:558–562

    CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial support from the National Natural Science Foundation of China (Grants 51603130); the Key Science Project of Department of Education, Sichuan Province (No. 16ZA0004); and the International Clean Energy Talent 2017 of China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Liao, W., Wang, YZ. (2019). Cellulose-Based Absorbents for Oil Contaminant Removal. In: Mondal, M. (eds) Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-77830-3_31

Download citation

Publish with us

Policies and ethics