Skip to main content

Synthesis and Properties of Hydrogels Prepared by Various Polymerization Reaction Systems

  • Reference work entry
  • First Online:

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

Abstract

Among all biomass, cellulose is the most abundant renewable polysaccharide in nature, accounting for approximately 40% of the lignocellulosic biomass. The ability of cellulose to absorb enormous amounts of water has prompted the large use of cellulose in preparation of various hydrogels. Cellulose-based hydrogels are generally synthesized by two steps, (i) solubilization of cellulose fibers or powder and (ii) physical and/or chemical cross-linking, in order to obtain a three-dimensional network of hydrophilic polymer chains. The physical synthesizing method includes ionic interaction, hydrophobic interaction, and hydrogen bond formation, whereas the chemically cross-linked hydrogel preparation involves different polymerization techniques such as chain-growth polymerization, irradiation polymerization, and step-growth polymerization. Further, another technique such as bulk polymerization is also used to form gels mainly using lactic acid as monomer. Indeed, the high density of free hydroxyl groups present in the cellulose structure permits them to undergo functionalization/chemical modification, which allows producing cellulose derivatives. The properties of cellulosic hydrogels change based on the different environmental stimuli. The external stimulus includes pH, temperature, light, electric or magnetic field, mechanical stress, etc. The responses of the hydrogel based on the exposure to different stimuli are discussed in this chapter. However, the cellulose hydrogels basically have good biocompatibility and non-toxicity combined with relevant mechanical properties. They showed highest absorption capacity, the swelling/deswelling behavior, and its rate depends on various factors such as particle size, porosity, solvent concentration, cross-linking density, etc. The swell behavior is addressed using various kinetic models such as Fickian, non-Fickian, and Flory. Further, biodegradation, mechanical, and rheological properties variation with respect to cross-linking density and other parameters (shape, pore size, reinforcement, etc.) and stimuli are considered and discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akhtar MF, Hanif M, Ranjha NM (2016) Methods of synthesis of hydrogels a review. Saudi Pharm J 24(5):554–559

    Article  PubMed  Google Scholar 

  2. Ciolacu D, Oprea AM, Anghel N, Cazacu G, Cazacu M (2012) New cellulose-lignin and their application in controlled release of polyphenols. Mater Sci Eng C 32:452–463

    Article  CAS  Google Scholar 

  3. Wu J, Liang S, Dai H, Zhang X, Yu X, Cai Y, Zhang L, Wen N, Jiang B, Xu J (2010) Structure and properties of cellulose/chitin blended hydrogel membranes fabricated via a solution pre-gelation technique. Carbohydr Polym 79:677–684

    Article  CAS  Google Scholar 

  4. Navarra MA, Dal Bosco C, Serra Moreno J, Vitucci FM, Paolone A, Panero S (2015) Synthesis and characterization of cellulose-based hydrogels to be used as gel electrolytes. Membranes 5(4):810–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shen X, Shamshina JL, Berton P, Gurau G, Rogers RD (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem 18:53–75

    Article  Google Scholar 

  6. Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26:1605–1688

    Article  CAS  Google Scholar 

  7. Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84(1):40–53

    Article  CAS  Google Scholar 

  8. Chang C, Lue A, Zhang L (2008) Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels. Macromol Chem Phys 209(12):1266–1273

    Article  CAS  Google Scholar 

  9. Hennink WE, Nostrum CF (2002) Novel cross linking methods to design hydrogels. Adv Drug Deliv Rev 54:13–36. https://doi.org/10.1016/S0169-409X(01)00240-X

    Article  CAS  PubMed  Google Scholar 

  10. Rosiak JM, Yoshii F (1999) Hydrogels and their medical applications. Nucl Inst Methods Phys Res Sect B 151:56–64

    Article  CAS  Google Scholar 

  11. Okay O (2015) Self-healing hydrogels formed via hydrophobic interactions. In: Seiffert S (ed) Supramolecular polymer networks and gels. Advances in polymer science, vol 268. Springer, Berlin, pp 101–142

    Google Scholar 

  12. Chai Q, Jiao Y, Yu X (2017) Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels 3(1):6. https://doi.org/10.3390/gels3010006

    Article  CAS  PubMed Central  Google Scholar 

  13. Saini K (2017) Preparation method, properties and crosslinking of hydrogel: a review. Pharmatutor 5(1):27–36

    CAS  Google Scholar 

  14. Martínez-Ruvalcaba A, Chornet E, Rodrigue D (2007) Viscoelastic properties of dispersed chitosan/xanthan hydrogels. Carbohydr Polym 67(4):586–595

    Article  CAS  Google Scholar 

  15. El-Sherbiny IM, Yacoub MH (2013) Hydrogel scaffolds for tissue engineering: progress and challenges. Glob Cardiol Sci Pract 2013(3):316–342. https://doi.org/10.5339/gcsp.2013.38

    Article  PubMed  PubMed Central  Google Scholar 

  16. Song H, Niu Y, Wang Z, Zhang J (2011) Liquid crystalline phase and gel− sol transitions for concentrated microcrystalline cellulose (MCC)/1-ethyl-3-methylimidazolium acetate (EMIMAc) solutions. Biomacromolecules 12(4):1087–1109

    Article  CAS  PubMed  Google Scholar 

  17. Wen Qi, Dong Yi (2016) Fundamentals of hydrogels. In: Demirci U, Khademhosseini A (eds) Gels handbook fundamentals, properties and application. World Scientific Publications, Singapore. ISBN 978-981-4656-13-9

    Google Scholar 

  18. Vasquez JM, Tumolva TP (2015) Synthesis and characterization of a self-assembling hydrogel from water-soluble cellulose derivatives and sodium hydroxide/thiourea solution. Am J Chem 5(2):60–65

    CAS  Google Scholar 

  19. Tibbitt MW, Kloxin AM, Sawicki LA, Anseth KS (2013) Mechanical properties and degradation of chain and step polymerized photodegradable hydrogels. Macromolecules 46:2785–2792

    Article  CAS  PubMed Central  Google Scholar 

  20. Lee S, Tong X, Yang F (2016) Effects of the poly (ethylene glycol) hydrogel crosslinking mechanism on protein release. Biomater Sci 4(3):405–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ifkovits JL, Burdick JA (2007) Photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng 13(10):2369–2385

    Article  CAS  PubMed  Google Scholar 

  22. Sannino A, Esposito A, Nicolais L, Del Nobile MA, Giovane A, Balestrieri C, Esposito R, Agresti M (2000) Cellulose-based hydrogels as body water retainers. J Mater Sci Mater Med 11(4):247–253

    Article  CAS  PubMed  Google Scholar 

  23. Sannino A, Madaghiele M, Conversano F, Mele G, Maffezzoli A, Netti PA, Ambrosio L, Nicolais L (2004) Cellulose derivative-hyaluronic acid-based microporous hydrogels cross-linked through divinyl sulfone (DVS) to modulate equilibrium sorption capacity and network stability. Biomacromolecules 5(1):92–96

    Article  CAS  PubMed  Google Scholar 

  24. Sannino A, Pappada S, Madaghiele M, Maffezzoli A, Ambrosio L, Nicolais L (2005) Crosslinking of cellulose derivatives and hyaluronic acid with water-soluble carbodiimide. Polym J 46(25):11206–11212

    Article  CAS  Google Scholar 

  25. Sannino A, Nicolais L (2005) Concurrent effect of microporosity and chemical structure on the equilibrium sorption properties of cellulose-based hydrogels. Polym J 46(13):4676–4685

    Article  CAS  Google Scholar 

  26. Suo A, Qian J, Yao Y, Zhang W (2005) Synthesis and properties of carboxymethyl cellulose-graft-poly(acrylic acid-co-acrylamide) as a novel cellulose-based superabsorbent. J Appl Polym Sci 103(3):1382–1388

    Article  CAS  Google Scholar 

  27. Qiu X, Hu S (2013) Smart materials based on cellulose: a review of the preparations, properties, and applications. Dent Mater 6(3):738–781

    CAS  Google Scholar 

  28. Liao Q, Shao Q, Qiu G, Lu X (2012) Methacrylic acid-triggered phase transition behavior of thermosensitive hydroxypropylcellulose. Carbohydr Polym 89:1301–1304

    Article  CAS  PubMed  Google Scholar 

  29. Chen Y, Ding D, Mao Z, He Y, Hu Y, Wu W, Jiang X (2008) Synthesis of hydroxypropylcellulose-poly(acrylic acid) particles with semi-interpenetrating polymer network structure. Biomacromolecules 9:2609–2614

    Article  CAS  PubMed  Google Scholar 

  30. Demirel GB, Caykara T, Demiray M, Guru M (2009) Effect of pore-forming agent type on swelling properties of macroporous poly(N-[3-(dimethylaminopropyl)]-methacrylamide-co-acrylamide) hydrogels. J Macromol Sci A Pure Appl Chem 46:58–64

    Article  CAS  Google Scholar 

  31. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121. https://doi.org/10.1016/j.jare.2013.07.006

    Article  CAS  PubMed  Google Scholar 

  32. Calo E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–326. https://doi.org/10.1016/j.eurpolymj.2014.11.024

    Article  CAS  Google Scholar 

  33. Sato R, Noma R, Tokuyama H (2015) Preparation of macroporous poly (N-isopropylacrylamide) hydrogels using a suspension–gelation method. Eur Polym J 66:91–97. https://doi.org/10.1016/j.eurpolymj.2015.01.051

    Article  CAS  Google Scholar 

  34. Kołodyńska D, Skiba A, Górecka B, Hubicki Z (2016) Hydrogels from fundaments to application, emerging concepts. In: Sutapa Biswas Majee (ed) Analysis and applications of hydrogels. IntechOpen, India. ISBN 978-953-51-2510-5, Print ISBN 978-953-51-2509-9

    Google Scholar 

  35. Nguyen KT, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23:4307–4314

    Article  CAS  PubMed  Google Scholar 

  36. Ebara M, Kotsuchibashi Y, Narain R, Idota N, Kim YJ, Hoffman JM, Uto K, Aoyagi T (2014) Smart biomaterials. National Institute for Materials Science. Springer Japan, Tokyo. www.springer.com/gp/book/9784431543992. Accessed 15 Jan 2018

  37. Decker C (1987) UV-curing chemistry: past, present and future. J Coatings Technol 59:97–106

    CAS  Google Scholar 

  38. Frediani M, Giachi G, Rosi L, Frediani P (2011) Ch. 9 Synthesis and processing of biodegradable and bio-based polymers by microwave irradiation. In: Chandra U (ed) Microwave heating. In Tech, United Kingdom. ISBN 978-953-307-573-0, p 382. https://doi.org/10.5772/23692

  39. Reeves R, Ribeiro A, Lombardo L, Boyer R, Leach JB (2010) Synthesis and characterization of carboxymethylcellulose-methacrylate hydrogel cell scaffolds. Polymer 2(3):252–264

    Article  CAS  Google Scholar 

  40. Mann BK, Gobin AS, Tsai AT, Schmedlen RH, West JL (2001) Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM eLetters analogs for tissue engineering. Biomaterials 22:3045–3051. https://doi.org/10.1016/S0142-9612(01)00051-5

    Article  CAS  PubMed  Google Scholar 

  41. Coates EE, Riggin CN, Fishe JP (2013) Photocrosslinked alginate with hyaluronic acid hydrogels as vehicles for mesenchymal stem cell encapsulation and chondrogenesis. J Biomed Mater Res A 101:1962–1970

    Article  CAS  PubMed  Google Scholar 

  42. Mohd Amin MCI, Ahmad N, Halib N, Ahmad I (2012) Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym 88(2):465–473

    Article  CAS  Google Scholar 

  43. Alla SG, Sen M, El-Naggar AW (2012) Swelling and mechanical properties of superabsorbent hydrogels based on Tara gum/acrylic acid synthesized by gamma radiation. Carbohydr Polym 89(2):478–485

    Article  CAS  Google Scholar 

  44. Panda A, Manohar SB, Sabharwal S, Bhardwaj YK, Majali AB (2000) Synthesis and swelling characteristics of poly (N-isopropylacrylamide) temperature sensitive hydrogels crosslinked by electron beam irradiation. Radiat Phys Chem 58(1):101–110

    Article  CAS  Google Scholar 

  45. Said HM, Alla SG, El-Naggar AW (2004) Synthesis and characterization of novel gels based on carboxymethyl cellulose/acrylic acid prepared by electron beam irradiation. React Funct Polym 61(3):397–404

    Article  CAS  Google Scholar 

  46. Kudaibergenov S, Jaeger W, Laschewsky A (2006) Polymeric betaines: synthesis, characterization, and application. In: Supramolecular polymers polymeric betains oligomers. Advances in polymer science, vol 201. Springer, Berlin/Heidelberg

    Google Scholar 

  47. Fei B, Chen C, Chen S, Peng S, Zhuang Y, An Y, Dong L (2004) Crosslinking of poly [(3-hydroxybutyrate)-co-(3-hydroxyvalerate)] using dicumyl peroxide as initiator. Polym Int 53(7):937–943

    Article  CAS  Google Scholar 

  48. Darwis D, Mitomo H, Enjoji T, Yoshii F, Makuuchi K (1998) Heat resistance of radiation crosslinked poly (ε-caprolactone). J Appl Polym Sci 68:581–588

    Article  CAS  Google Scholar 

  49. Darwis D, Nishimura K, Mitomo H, Yoshii F (1999) Improvement of processability of poly (ε-caprolactone) by radiation techniques. J Appl Polym Sci 74(7):1815–1820

    Article  CAS  Google Scholar 

  50. Liu P, Zhai M, Li J, Peng J, Wu J (2002) Radiation preparation and swelling behavior of sodium carboxymethyl cellulose hydrogels. Radiat Phys Chem 63:525–528

    Article  CAS  Google Scholar 

  51. Wach RA, Mitomo H, Yoshii F, Kume T (2001) Hydrogel of biodegradable cellulose derivatives. II. Effect of some factors on radiation-induced crosslinking of CMC. J Appl Polym Sci 81:3030–3037

    Article  CAS  Google Scholar 

  52. Stille JK (1981) Step-growth polymerization. J Chem Educ 58(11):862–866

    Article  CAS  Google Scholar 

  53. Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Dent Mater 2(2):353–373

    CAS  Google Scholar 

  54. Kharkar PM, Kiick KL, Kloxin AM (2013) Designing degradable hydrogels for orthogonal control of cell microenvironments. Chem Soc Rev 42(17):7335–7372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18(11):1345–1360

    Article  CAS  Google Scholar 

  56. Peppas NA, Khare AR (1993) Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv Drug Deliv Rev 11(1–2):1–35

    Article  CAS  Google Scholar 

  57. Shiotani A, Mori T, Niidome T, Niidome Y, Katayama Y (2007) Stable incorporation of gold nanorods into N-isopropylacrylamide hydrogels and their rapid shrinkage induced by near-infrared laser irradiation. Langmuir 23(7):4012–4018

    Article  CAS  PubMed  Google Scholar 

  58. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53(3):321–339

    Article  CAS  PubMed  Google Scholar 

  59. Mujumdar SK, Siegel RA (2008) Introduction of pH-sensitivity into mechanically strong nanoclay composite hydrogels based on N-isopropylacrylamide. J Polym Sci A Polym Chem 46:6630–6640. https://doi.org/10.1002/pola.22973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang K, Luo Y, Li Z (2007) Synthesis and characterization of a pH-and ionic strength-responsive hydrogel. Soft Mater 5(4):183–195

    Article  CAS  Google Scholar 

  61. Adel AM, Abou-Youssef H, El-Gendy AA, Nada AM (2010) Carboxymethylated cellulose hydrogel; sorption behavior and characterization. Nat Sci 8(8):244–256

    Google Scholar 

  62. Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A (2013) Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Rev 65(9):1148–1171

    Article  CAS  PubMed  Google Scholar 

  63. De SK, Aluru N, Johnson B, Crone W, Beebe DJ, Moore J (2002) Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments, and simulations. J Microelectromech Syst 11:544–555

    Article  CAS  Google Scholar 

  64. Onofrei MD, Filimon A (2016) Cellulose-based hydrogels: designing concepts, properties, and perspectives for biomedical and environmental applications. In: Mendez-Vilas A, Solano-Martin A (eds) Polymer science: research advances, practical applications and educational aspects. Formatex Research Center Publication, Spain. pp 108–120. ISBN: 978-84-942134-8-9

    Google Scholar 

  65. Jarry C, Leroux JC, Haeck J, Chaput C (2002) Irradiating or autoclaving chitosan/polyol solutions: effect on thermogelling chitosan-β-glycerophosphate systems. Chem Pharm Bull 50(10):1335–1340

    Article  CAS  Google Scholar 

  66. Schuetz YB, Gurny R, Jordan O (2008) A novel thermoresponsive hydrogel based on chitosan. Eur J Pharm Biopharm 68(1):19–25

    Article  CAS  PubMed  Google Scholar 

  67. Schild H (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  68. Gao X, Cao Y, Song X, Zhang Z, Xiao C, He C, Chen X (2013) pH-and thermo-responsive poly(N-isopropylacrylamide-co-acrylic acid derivative) copolymers and hydrogels with LCST dependent on pH and alkyl side groups. J Mater Chem B 1:5578–5587

    Article  CAS  PubMed  Google Scholar 

  69. Meléndez-Ortiz HI, Varca GH, Lugão AB, Bucio E (2015) Smart polymers and coatings obtained by ionizing radiation: synthesis and biomedical applications. J Polym Chem 5(03):17

    Google Scholar 

  70. Tomatsu I, Peng K, Kros A (2011) Photoresponsive hydrogels for biomedical applications. Adv Drug Deliv Rev 63(14):1257–1266

    Article  CAS  PubMed  Google Scholar 

  71. Bawa P, Pillay V, Choonara YE, Du Toit LC (2009) Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater 4(2):022001

    Article  CAS  PubMed  Google Scholar 

  72. Sanna R, Fortunati E, Alzari V, Nuvoli D, Terenzi A, Casula MF, Kenny JM, Mariani A (2013) Poly (N-vinylcaprolactam) nanocomposites containing nanocrystalline cellulose: a green approach to thermoresponsive hydrogels. Cellulose 20(5):2393–2402

    Article  CAS  Google Scholar 

  73. Gong JP, Nitta T, Osada Y (1994) Electrokinetic modeling of the contractile phenomena of polyelectrolyte gels. One-dimensional capillary model. J Phys Chem 98(38):9583–9587

    Article  CAS  Google Scholar 

  74. Budtova T, Suleimenov I, Frenkel S (1995) Electrokinetics of the contraction of a polyelectrolyte hydrogel under the influence of constant electric current. Polym Gels Networks 3(3):387–393

    Article  CAS  Google Scholar 

  75. Shang J, Shao Z, Chen X (2008) Electrical behavior of a natural polyelectrolyte hydrogel: chitosan/carboxymethylcellulose hydrogel. Biomaterials 9(4):1208–1213

    CAS  Google Scholar 

  76. Kim J, Wang N, Chen Y, Lee SK, Yun GY (2007) Electroactive-paper actuator made with cellulose/NaOH/urea and sodium alginate. Cellulose 14(3):217–223

    Article  CAS  Google Scholar 

  77. Wallace M, Cardoso AZ, Frith WJ, Iggo JA, Adams DJ (2014) Magnetically aligned supramolecular hydrogels. Chem Eur J 20(50):16484–16487

    Article  CAS  PubMed  Google Scholar 

  78. Zhao W, Odelius K, Edlund U, Zhao C, Albertsson AC (2015) In situ synthesis of magnetic field-responsive hemicellulose hydrogels for drug delivery. Biomacromolecules 16(8):2522–2528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chatterjee J, Haik Y, Chen CJ (2001) Modification and characterization of polystyrene-based magnetic microspheres and comparison with albumin-based magnetic microspheres. J Magn Magn Mater 225(1):21–29

    Article  CAS  Google Scholar 

  80. Popovic Z, Sjöstrand J (2001) Resolution, separation of retinal ganglion cells, and cortical magnification in humans. Vis Res 41(10):1313–1319

    Article  CAS  PubMed  Google Scholar 

  81. Liberti PA, Rao CG, Terstappen LW (2001) Optimization of ferrofluids and protocols for the enrichment of breast tumor cells in blood. J Magn Magn Mater 225(1):301–307

    Article  CAS  Google Scholar 

  82. Shinkai M, Yanase M, Suzuki M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T (1999) Intracellular hyperthermia for cancer using magnetite cationic liposomes. J Magn Magn Mater 194(1):176–184

    Article  CAS  Google Scholar 

  83. Eichler S, Ramon O, Cohen Y, Mizrahi S (2002) Swelling and contraction drove mass transfer processes during osmotic dehydration of uncharged hydrogels. Int J Food Sci Technol 37(3):245–253

    Article  CAS  Google Scholar 

  84. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gupta S, Sinha S, Sinha A (2010) Composition dependent mechanical response of transparent poly (vinyl alcohol) hydrogels. Colloids Surf B Biointerfaces 78(1):115–119

    Article  CAS  PubMed  Google Scholar 

  86. Feng D, Bai B, Wang H, Suo Y (2016) Enhanced mechanical stability and sensitive swelling performance of chitosan/yeast hybrid hydrogel beads. New J Chem 40(4):3350–3362

    Article  CAS  Google Scholar 

  87. Sannino A, Mensitieri G, Nicolais L (2004) Water and synthetic urine sorption capacity of cellulose based hydrogels under a compressive stress field. J Appl Polym Sci 91:3791–3796

    Article  CAS  Google Scholar 

  88. Siepmann J, Peppas NA (2012) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 64:163–174

    Article  Google Scholar 

  89. Vashuk EV, Vorobieva EV, Basalyga II, Krutko NP (2001) Water-absorbing properties of hydrogels based on polymeric complexes. Mater Res Innov 4(5–6):350–352

    Article  CAS  Google Scholar 

  90. Xiao M, Hu J, Zhang L (2014) Synthesis and swelling behavior of biodegradable cellulose-based hydrogels. Adv Mater Res 1033–1034:352–356

    Article  Google Scholar 

  91. Gulrez SK, Al-Assaf S, Phillips GO (2011) Hydrogels: methods of preparation, characterisation and applications. In: Carpi A (ed) Progress in molecular and environmental bioengineering – from analysis and modeling to technology applications. ISBN 978-953-307-268-5. https://doi.org/10.5772/24553

  92. Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J 19(5):375–388

    CAS  Google Scholar 

  93. Thakur A, Wanchoo RK, Singh P (2011) Structural parameters and swelling behavior of pH sensitive poly (acrylamide-co-acrylic acid) hydrogels. Chem Biochem Eng Q 25(2):181–194

    CAS  Google Scholar 

  94. Demitri C, Scalera F, Madaghiele M, Sannino A, Maffezzoli A (2013) Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. Int J Polym Sci. https://doi.org/10.1155/2013/43

  95. Gonçalves M, Figueira P, Maciel D, Rodrigues J, Qu X, Liu C, Tomás H, Li Y (2014) pH-sensitive Laponite®/doxorubicin/alginate nanohybrids with improved anticancer efficacy. Acta Biomater 10(1):300–307

    Article  CAS  PubMed  Google Scholar 

  96. Nada WM, Blumenstein O (2015) Characterization and impact of newly synthesized superabsorbent hydrogel nanocomposite on water retention characteristics of sandy soil and grass seedling growth. Int J Soil Sci 10(4):153–165

    Article  CAS  Google Scholar 

  97. Haque MO, Mondal MI (2016) Synthesis and characterization of cellulose-based eco-friendly hydrogels. J Sci Eng 44:45–53

    Google Scholar 

  98. Zhou Y, Fu S, Zhang L, Zhan H (2013) Superabsorbent nanocomposite hydrogels made of carboxylated cellulose nanofibrils and CMC-gp (AA-co-AM). Carbohydr Polym 97(2):429–435

    Article  CAS  PubMed  Google Scholar 

  99. Purbrick MD (1996). Photoinitiation photopolymerization and photocuring. Fouassier JP and Hanser Publications, Munich Vienna New York. ISBN 3-446-17069-3.

    Google Scholar 

  100. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12. https://doi.org/10.1016/S0169-409X(01)00239-3.

    Article  CAS  PubMed  Google Scholar 

  101. Fei B, Wach RA, Mitomo H, Yoshii F, Kume T (2000) Hydrogel of biodegradable cellulose derivatives. I. Radiation-induced crosslinking of CMC. J Appl Polym Sci 78(2):278–283

    Article  CAS  Google Scholar 

  102. Senna AM, Novack KM, Botaro VR (2014) Synthesis and characterization of hydrogels from cellulose acetate by esterification crosslinking with EDTA dianhydride. Carbohydr Polym 114:260–268

    Article  CAS  PubMed  Google Scholar 

  103. Leja K, Lewandowicz G (2010) Polymer biodegradation and biodegradable polymers-a review. Pol J Environ Stud 19(2):255–266

    Google Scholar 

  104. Bhattacharyya S, Guillot S, Dabboue H, Tranchant JF, Salvetat JP (2008) Carbon nanotubes as structural nanofibers for hyaluronic acid hydrogel scaffolds. Biomacromolecules 9(2):505–509

    Article  CAS  PubMed  Google Scholar 

  105. Chan AW, Whitney RA, Neufeld RJ (2009) Semisynthesis of a controlled stimuli-responsive alginate hydrogel. Biomacromolecules 10(3):609–616

    Article  CAS  PubMed  Google Scholar 

  106. Pal K, Banthia AK, Majumdar DK (2008) Effect of heat treatment of starch on the properties of the starch hydrogels. Mater Lett 62(2):215–218

    Article  CAS  Google Scholar 

  107. Roy A, Bajpai J, Bajpai AK (2009) Dynamics of controlled release of chlorpyrifos from carbohydrate polymer swelling and eroding biopolymeric microspheres of calcium alginate and starch. Carbohydr Polym 76(2):222–231

    Article  CAS  Google Scholar 

  108. Gattás-Asfura KM, Weisman E, Andreopoulos FM, Micic M, Muller B, Sirpal S, Pham SM, Leblanc RM (2005) Nitrocinnamate-functionalized gelatin: synthesis and “smart” hydrogel formation via photo-cross-linking. Biomacromolecules 6(3):1503–1509

    Article  CAS  PubMed  Google Scholar 

  109. Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46(1):92–100

    Article  CAS  Google Scholar 

  110. Moura MJ, Figueiredo MM, Gil MH (2007) Rheological study of genipin cross-linked chitosan hydrogels. Biomacromolecules 8(12):3823–3829

    Article  CAS  PubMed  Google Scholar 

  111. Qu X, Wirsen A, Albertsson AC (2000) Novel pH-sensitive chitosan hydrogels: swelling behavior and states of water. Polymer 41(12):4589–4598

    Article  CAS  Google Scholar 

  112. Liu Y, Vrana NE, Cahill PA, McGuinness GB (2009) Physically crosslinked composite hydrogels of PVA with natural macromolecules: structure, mechanical properties, and endothelial cell compatibility. J Biomed Mater Res B Appl Biomater 90(2):492–502

    Article  CAS  PubMed  Google Scholar 

  113. Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17(6):451

    CAS  Google Scholar 

  114. Anderson JM, Langone JJ (1999) Issues and perspectives on the biocompatibility and immunotoxicity evaluation of implanted controlled release systems. J Control Release 57(2):107–113

    Article  CAS  PubMed  Google Scholar 

  115. Borzacchiello A, Russo L, Malle BM, Schwach-Abdellaoui K, Ambrosio L (2015) Hyaluronic acid based hydrogels for regenerative medicine applications. Biomed Res Int 2015:Article ID 871218, 12 pages. https://doi.org/10.1155/2015/871218

    Article  CAS  Google Scholar 

  116. Duan J, Zhang X, Jiang J, Han C, Yang J, Liu L, Lan H, Huang D (2014) The synthesis of a novel cellulose physical gel. J Nanomater 2014:Article ID 312696, 7 pages. https://doi.org/10.1155/2014/312696

    Article  CAS  Google Scholar 

  117. Mao Y, Zhou J, Cai J, Zhang L (2006) Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution. J Membr Sci 279(1):246–255

    Article  CAS  Google Scholar 

  118. Webber RE, Shull KR (2004) Strain dependence of the viscoelastic properties of alginate hydrogels. Macromolecules 37(16):6153–6160

    Article  CAS  Google Scholar 

  119. Ahearne M, Yang Y, El Haj AJ, Then KY, Liu KK (2005) Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications. J R Soc Interface 2(5):455–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Maitra J, Shukla V (2014) Cross-linking in hydrogels – a review. Am J Polym Sci 4(2):25–31

    CAS  Google Scholar 

  121. Danielssona C, Ruaulta S, Simonetb M, Neuenschwanderb P, Freya P (2006) Polyesterurethane foam scaffold for smooth muscle cell tissue engineering. Bio-Mater 27:1410–1415

    Google Scholar 

  122. Bourges X, Weiss P, Coudreuse A, Daculsi G, Legeay G (2002) General properties of silated hydroxyethylcellulose for potential biomedical applications. Biopolymers 63(4):232–238

    Article  CAS  PubMed  Google Scholar 

  123. Giirdag G, Sarmad S (2013) Cellulose graft copolymers: synthesis, properties, and applications. In: Kalia S, Sabaa MW (eds) Polysaccharide based graft copolymers. Springer, Berlin/Heidelberg, pp 15–57

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nalini Ranganathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ranganathan, N., Joseph Bensingh, R., Abdul Kader, M., Nayak, S.K. (2019). Synthesis and Properties of Hydrogels Prepared by Various Polymerization Reaction Systems. In: Mondal, M. (eds) Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-77830-3_18

Download citation

Publish with us

Policies and ethics