Skip to main content

Adsorption Mechanism of Cellulose Hydrogel by Computational Simulation

  • Reference work entry
  • First Online:
  • 4367 Accesses

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

Abstract

In this chapter, different adsorption mechanisms of cellulose hydrogel will be investigated. For this aim, computational simulation will be used. On an atomistic scale, cellulose hydrogel has different hydrogen bond properties. The OH groups can only act as hydrogen bond acceptors, but due to the negative charge density, there are still more water molecules assembled around adsorbents. Besides intermolecular hydrogen bonding, it has some hydrophobic properties. It means that some hydrophobic materials can be adsorbed on the surface of cellulose hydrogel at specific conditions. Most force fields for this simulation are empirical and consist of a summation of bonded forces associated with chemical bonds, bond angles, and bond dihedrals and nonbonded forces associated with van der Waals forces and electrostatic charge. Empirical potentials represent quantum mechanical effects in a limited way through ad hoc functional approximations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Marhöfer RJ, Reiling S, Brickmann J (1996) Computer simulations of crystal structures and elastic properties of cellulose. Ber Bunsenges Phys Chem 100(8):1350–1354

    Article  Google Scholar 

  2. Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr Res 341(1):138–152

    Article  CAS  Google Scholar 

  3. O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4(3):173–207

    Article  Google Scholar 

  4. Rizwan S, Dong Y-D, Boyd B, Rades T, Hook S (2007) Characterisation of bicontinuous cubic liquid crystalline systems of phytantriol and water using cryo field emission scanning electron microscopy (cryo FESEM). Micron 38(5):478–485

    Article  CAS  Google Scholar 

  5. Wang Q, Johnson JK (1999) Computer simulations of hydrogen adsorption on graphite nanofibers. J Phys Chem B 103(2):277–281

    Article  CAS  Google Scholar 

  6. Dislich H (1983) Glassy and crystalline systems from gels: chemical basis and technical application. J Non-Cryst Solids 57(3):371–388

    Article  CAS  Google Scholar 

  7. Wang J, Somasundaran P (2005) Adsorption and conformation of carboxymethyl cellulose at solid–liquid interfaces using spectroscopic, AFM and allied techniques. J Colloid Interface Sci 291(1):75–83

    Article  CAS  Google Scholar 

  8. Mohanambe L, Vasudevan S (2005) Structure of a cyclodextrin functionalized anionic clay: XRD analysis, spectroscopy, and computer simulations. Langmuir 21(23):10735–10742

    Article  CAS  Google Scholar 

  9. Van der Klis J, Van Voorst A, Van Cruyningen C (1993) Effect of a soluble polysaccharide (carboxy methyl cellulose) on the physico-chemical conditions in the gastrointestinal tract of broilers. Br Poult Sci 34(5):971–983

    Article  Google Scholar 

  10. Wellham E, Elber L, Yan D (1992) The role of carboxy methyl cellulose in the flotation of a nickel sulphide transition ore. Miner Eng 5(3):381–395

    Article  CAS  Google Scholar 

  11. Biswal D, Singh R (2004) Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr Polym 57(4):379–387

    Article  CAS  Google Scholar 

  12. Paavilainen S, Róg T, Vattulainen I (2011) Analysis of twisting of cellulose nanofibrils in atomistic molecular dynamics simulations. J Phys Chem B 115(14):3747–3755

    Article  CAS  Google Scholar 

  13. Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227

    Article  CAS  Google Scholar 

  14. Korhonen JT, Kettunen M, Ras RH, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3(6):1813–1816

    Article  CAS  Google Scholar 

  15. Simon D, Kadiri Y, Picard G (2008) Nano cellulose crystallites: optical, photonic and electro-magnetic properties. In: NSTI NANOTECH 2008, technical proceedings, vol 1, pp 840–843

    Google Scholar 

  16. Shew C-Y, Yethiraj A (1999) Computer simulations and integral equation theory for the structure of salt-free rigid rod polyelectrolyte solutions: explicit incorporation of counterions. J Chem Phys 110(23):11599–11607

    Article  CAS  Google Scholar 

  17. Oosawa F (1971) Polyelectrolytes. Marcel Dekker, New York

    Google Scholar 

  18. Christos GA, Carnie SL (1990) Computer simulations of polyelectrolyte chains in salt solution. J Chem Phys 92(12):7661–7677

    Article  CAS  Google Scholar 

  19. Shiratori SS, Rubner MF (2000) pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules 33(11):4213–4219

    Article  CAS  Google Scholar 

  20. Wallin T, Linse P (1996) Monte Carlo simulations of polyelectrolytes at charged micelles. 1. Effects of chain flexibility. Langmuir 12(2):305–314

    Article  CAS  Google Scholar 

  21. Bergenstråhle M, Wohlert J, Larsson PT, Mazeau K, Berglund LA (2008) Dynamics of cellulose-water interfaces: NMR spin-lattice relaxation times calculated from atomistic computer simulations. J Phys Chem B 112(9):2590–2595

    Article  Google Scholar 

  22. Liu H, Sale KL, Holmes BM, Simmons BA, Singh S (2010) Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. J Phys Chem B 114(12):4293–4301

    Article  CAS  Google Scholar 

  23. Kremer F, Huwe A, Schönhals A, Rózanski S (2012) Molecular dynamics in confining space. UK: Springer

    Google Scholar 

  24. Ermakov SV, Jacobson SC, Ramsey JM (2000) Computer simulations of electrokinetic injection techniques in microfluidic devices. Anal Chem 72(15):3512–3517

    Article  CAS  Google Scholar 

  25. Zhigilei LV, Leveugle E, Garrison BJ, Yingling YG, Zeifman MI (2003) Computer simulations of laser ablation of molecular substrates. Chem Rev 103(2):321–348

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Jebali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jebali, A. (2019). Adsorption Mechanism of Cellulose Hydrogel by Computational Simulation. In: Mondal, M. (eds) Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-77830-3_14

Download citation

Publish with us

Policies and ethics