Skip to main content

Graph Visualization

  • Reference work entry
  • First Online:

Synonyms

Graph drawing; Graph layout; Network visualization

Definitions

Graph visualization is an area of mathematics and computer science, at the intersection of geometric graph theory and information visualization. It is concerned with visual representation of graphs that reveals structures and anomalies that may be present in the data and helps the user to understand and reason about the graphs.

Overview

Graph visualization is concerned with visual representations of graph or network data. Effective graph visualization reveals structures that may be present in the graphs and helps the users to understand and analyze the underlying data.

A graph consists of nodes and edges. It is a mathematical structure describing relations among a set of entities, where a node represents an entity, and an edge exists between two nodes if the two corresponding entities are related.

A graph can be described by writing down the nodes and the edges. For example, this is a social network of people and...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akoglu L, McGlohon M, Faloutsos C (2010) Oddball: Spotting anomalies in weighted graphs. In: Proceedings of the 14th Pacific-Asia conference on advances in knowledge discovery and data mining (PAKDD 2010)

    Chapter  Google Scholar 

  • Archambault D, Purchase HC (2016) Can animation support the visualisation of dynamic graphs? Inf Sci 330(C):495–509

    Article  Google Scholar 

  • Brandes U, Kpf B (2002) Fast and simple horizontal coordinate assignment. In: Mutzel P, Jnger M, Leipert S (eds) Graph drawing (GD’01). LNCS, vol 2265. Springer, Berlin/Heidelberg, pp 31–44

    Chapter  Google Scholar 

  • Brandes U, Pich C (2007) Eigensolver methods for progressive multidimensional scaling of large data. In: Proceeding of the 14th international symposium graph drawing (GD’06). LNCS, vol 4372, pp 42–53

    Google Scholar 

  • Chimani M, Hungerlnder P, Jnger M, Mutzel P (2011) An SDP approach to multi-level crossing minimization. In: Algorithm engineering and experiments (ALENEX’11), pp 116–126

    Chapter  Google Scholar 

  • Davis TA, Hu Y (2011) University of Florida sparse matrix collection. ACM Trans Math Softw 38:1–18

    MathSciNet  MATH  Google Scholar 

  • Di Battista G, Eades P, Tamassia R, Tollis IG (1999) Algorithms for the visualization of graphs. Prentice-Hall, Upper Saddle River

    MATH  Google Scholar 

  • Duncan CA, Goodrich MT (2013) Planar orthogonal and polyline drawing algorithms, chap 7. In: Tamassia R (ed) Handbook of graph drawing and visualization. CRC Press, Hoboken, pp 223–246

    Google Scholar 

  • Eades P (1984) A heuristic for graph drawing. Congressus Numerantium 42:149–160

    MathSciNet  Google Scholar 

  • Eades P, Wormald NC (1994) Edge crossings in drawings of bipartite graphs. Algorithmica 11:379–403

    Article  MathSciNet  MATH  Google Scholar 

  • Eades P, Lin X, Smyth WF (1993) A fast and effective heuristic for the feedback arc set problem. Inf Process Lett 47(6):319–323

    Article  MathSciNet  MATH  Google Scholar 

  • Frishman Y, Tal A (2007) Online dynamic graph drawing. In: Proceeding of eurographics/IEEE VGTC symposium on visualization (EuroVis), pp 75–82

    Google Scholar 

  • Fruchterman TMJ, Reingold EM (1991) Graph drawing by force directed placement. Softw Prac Exp 21:1129–1164

    Article  Google Scholar 

  • Gansner ER, Koutsofios E, North SC, Vo KP (1993) A technique for drawing directed graphs. IEEE Trans Softw Eng 19(3):214–230

    Article  Google Scholar 

  • Gansner ER, Koren Y, North SC (2004) Graph drawing by stress majorization. In: Proceeding of the 12th international symposium on graph drawing (GD’04). LNCS. vol 3383. Springer, pp 239–250

    Google Scholar 

  • Gansner ER, Hu Y, North SC (2013) A maxent-stress model for graph layout. IEEE Trans Vis Comput Graph 19(6):927–940

    Article  Google Scholar 

  • Hachul S, Jünger M (2004) Drawing large graphs with a potential field based multilevel algorithm. In: Proceeding of the 12th international symposium graph drawing (GD’04). LNCS, vol 3383. Springer, pp 285–295

    Google Scholar 

  • Healy P, Nikolov NS (2014) Hierarchical drawing algorithms. In: Tamassia R (ed) Handbook of graph drawing and visualization, chap 13. CRC Press, Boca Raton, pp 409–454

    Google Scholar 

  • Henry N, Fekete JD, McGuffin MJ (2007) Nodetrix: a hybrid visualization of social networks. IEEE Trans Vis Comput Graph 13:1302–1309

    Article  Google Scholar 

  • Hu Y (2005) Efficient and high quality force-directed graph drawing. Math J 10:37–71

    Google Scholar 

  • Ingram S, Munzner T, Olano M (2009) Glimmer: multilevel MDS on the GPU. IEEE Trans Vis Comput Graph 15:249–261

    Article  Google Scholar 

  • Jünger M, Mutzel P (1997) 2-layer straightline crossing minimization: performance of exact and heuristic algorithms. J Graph Algorithms Appl 1(1):1–25

    Article  MathSciNet  MATH  Google Scholar 

  • Kamada T, Kawai S (1989) An algorithm for drawing general undirected graphs. Inform Process Lett 31: 7–15

    Article  MathSciNet  MATH  Google Scholar 

  • Karp RM (1972) Reducibility among combinatorial problems. In: Miller RE, Thatcher JW, Bohlinger JD (eds) Complexity of computer computations, pp 85–103.

    Chapter  Google Scholar 

  • Kerren A, Purchase H, Ward MO (eds) (2014) Multivariate network visualization: Dagstuhl seminar # 13201, Dagstuhl Castle, 12–17 May 2013. Revised discussions, Lecture notes in computer science, vol 8380, Springer, Cham

    Google Scholar 

  • Kruskal JB (1964) Multidimensioal scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29:1–27

    Article  MathSciNet  MATH  Google Scholar 

  • Kruskal JB, Seery JB (1980) Designing network diagrams. In: Proceedings of the first general conference on social graphics, U.S. Department of the Census, Washington, DC, pp 22–50, Bell laboratories technical report no. 49

    Google Scholar 

  • van Ham F, Wattenberg M (2008) Centrality based visualization of small world graphs. Comput Graph Forum 27(3):975–982

    Article  Google Scholar 

  • von Landesberger T, Kuijper A, Schreck T, Kohlhammer J, van Wijk JJ, Fekete JD, Fellner DW (2011) Visual analysis of large graphs: state-of-the-art and future research challenges. Comput Graph Forum 30(6): 1719–1749

    Article  Google Scholar 

  • Leskovec J, Lang K, Dasgupta A, Mahoney M (2009) Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math 6:29–123

    Article  MathSciNet  MATH  Google Scholar 

  • Moscovich T, Chevalier F, Henry N, Pietriga E, Fekete J (2009) Topology-aware navigation in large networks. In: CHI ’09: Proceedings of the 27th international conference on human factors in computing systems. ACM, New York, pp 2319–2328

    Google Scholar 

  • Ortmann M, Klimenta M, Brandes U (2016) A sparse stress model. In: Graph drawing and network visualization – 24th international symposium, GD 2016, Athens, revised selected papers, pp 18–32

    Google Scholar 

  • Purchase HC (1997) Which aesthetic has the greatest effect on human understanding? In: Proceeding of the 5th international symposium graph drawing (GD’97). LNCS. Springer, pp 248–261

    Google Scholar 

  • Quigley A (2001) Large scale relational information visualization, clustering, and abstraction. PhD thesis, Department of Computer Science and Software Engineering, University of Newcastle

    Google Scholar 

  • Rusu A (2013) Tree drawing algorithms. In: Tamassia R (ed) Handbook of graph drawing and visualization chap 5. CRC Press, Boca Raton, pp 155–192

    Google Scholar 

  • Sugiyama K, Tagawa S, Toda M (1981) Methods for visual understanding of hierarchical systems. IEEE Trans Syst Man Cybern SMC-11(2):109–125

    Article  MathSciNet  Google Scholar 

  • Tamassia R (2013) Handbook of graph drawing and visualization. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Tunkelang D (1999) A numerical optimization approach to general graph drawing. PhD thesis, Carnegie Mellon University

    Google Scholar 

  • Vismara L (2013) Planar straight-line drawing algorithms. In: Tamassia R (ed) Handbook of graph drawing and visualization chap 6. CRC Press, Boca Raton, pp 193–222

    Google Scholar 

  • Walshaw C (2003) A multilevel algorithm for force-directed graph drawing. J Graph Algorithms Appl 7:253–285

    Article  MathSciNet  MATH  Google Scholar 

  • Wattenberg M (2006) Visual exploration of multivariate graphs. In: Proceedings of the SIGCHI conference on human factors in computing systems (CHI’06). ACM, New York, pp 811–819

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Nöllenburg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hu, Y., Nöllenburg, M. (2019). Graph Visualization. In: Sakr, S., Zomaya, A.Y. (eds) Encyclopedia of Big Data Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-77525-8_324

Download citation

Publish with us

Policies and ethics