Skip to main content

Spatial Data Integration

  • Reference work entry
  • First Online:

Synonyms

Geospatial data integration; Spatiotemporal Data Integration

Definitions

Spatial data integration is a process in which different geospatial datasets, which may or may not have different spatial coverages, are made compatible with one another (Flowerdew 1991). The goal of spatial data integration is to facilitate the analysis, reasoning, querying, or visualization of the integrated spatial data. Figure 1 illustrates the integration of three layers or themes: major streets, hospitals, and police districts of the City of Chicago (Chi 2017).

Spatial Data Integration, Fig. 1
figure 1921 figure 1921

Spatial data integration (Chi 2017)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • (2017) Open data portal of the city of Chicago. https://data.cityofchicago.org/. Accessed: 30 Nov 2017

  • Balasubramani BS, Belingheri O, Boria ES, Cruz IF, Derrible S, Siciliano MD (2017) GUIDES–geospatial Urban infrastructure data engineering solutions. In: ACM SIGSPATIAL international conference on advances in geographic information systems

    Google Scholar 

  • Batini C, Scannapieco M (2016) Data and information quality: dimensions, principles and techniques. Springer, Cham

    Book  MATH  Google Scholar 

  • Beck AR, Fu G, Cohn AG, Bennett B, Stell JG (2007) A framework for utility data integration in the UK. In: 26th urban data management symposium, Stuttgart, 10–12 Oct 2007. Taylor & Francis, pp 261–276

    Google Scholar 

  • Beck AR, Cohn AG, Sanderson M, Ramage S, Tagg C, Fu G, Bennett B, Stell JG (2008) UK utility data integration: overcoming schematic heterogeneity. In: International conference on advanced optical materials and devices. International Society for Optics and Photonics, 71431Z

    Google Scholar 

  • Bishr YA (1998) Overcoming the semantic and other barriers to GIS interoperability. Int J Geogr Inf Sci 12(4):229–314

    Article  Google Scholar 

  • Cobb MA, Chung MJ, Foley III H, Petry FE, Shaw KB, Miller HV (1998) A rule-based approach for the conflation of attributed vector data. GeoInformatica 2(1):7–35

    Article  Google Scholar 

  • Cruz IF, Sunna W (2008) Structural alignment methods with applications to Geospatial ontologies. Trans GIS: Special Issue on Semant Similarity Meas Geospat Appl 12(6):683–711

    Article  Google Scholar 

  • Cruz IF, Xiao H (2005) The role of ontologies in data integration. J Eng Intell Syst 13(4): 245–252

    Google Scholar 

  • Cruz IF, Xiao H (2008) Data integration for querying geospatial sources. Springer, Boston, pp 113–137

    Google Scholar 

  • Cruz IF, Sunna W, Makar N, Bathala S (2007) A visual tool for ontology alignment to enable geospatial interoperability. J Vis Lang Comput 18(3):230–254

    Article  Google Scholar 

  • Cruz IF, Ganesh VR, Caletti C, Reddy P (2013) GIVA: a semantic framework for geospatial and temporal data integration, visualization, and analytics. In: ACM SIGSPATIAL international symposium on advances in geographic information systems (ACM GIS). ACM, pp 544–547

    Google Scholar 

  • Dare P, Dowman I (2000) A new approach to automatic feature based registration of SAR and SPOT images. Int Arch Photogramm Remote Sens 33(B2):125–130

    Google Scholar 

  • DeMers MN (2008) Fundamentals of geographic information systems. Wiley, Hoboken

    Google Scholar 

  • Devillers R, Jeansoulin R (2006) Fundamentals of spatial data quality. ISTE Publishing Company, London/Newport Beach

    Book  MATH  Google Scholar 

  • Doytsher Y, Filin S, Ezra E (2001) Transformation of datasets in a linear-based map conflation framework. Surv Land Inf Syst 61(3):165–176

    Google Scholar 

  • Egenhofer M (1993) A model for detailed binary topological relationships. Geomatica 47(3):261–273

    Google Scholar 

  • Egenhofer MJ (2002) Toward the semantic geospatial Web. In: ACM symposium on advances in geographic information systems. ACM GIS, pp 1–4

    Google Scholar 

  • Faria D, Pesquita C, Mott I, Martins C, Couto FM, Cruz IF (2017, in press) Tackling the challenges of matching biomedical ontologies. J Biomed Semant 9:1–19

    Google Scholar 

  • Fellegi IP, Sunter AB (1969) A theory for record linkage. J Am Stat Assoc 64(328):1183–1210

    Article  MATH  Google Scholar 

  • Flowerdew R (1991) Spatial data integration. Geogr Inf Syst 1:375–387

    Google Scholar 

  • Fonseca F, Egenhofer M, Davis C, Câmara G (2002) Semantic granularity in ontology-driven geographic information systems. Ann Math Artifi Intell 36(1–2):121–151

    Article  MathSciNet  MATH  Google Scholar 

  • Goodchild M, Haining R, Wise S (1992) Integrating GIS and spatial data analysis: problems and possibilities. Int J Geogr Inf Syst 6(5):407–423

    Article  Google Scholar 

  • Gotway CA, Young LJ (2002) Combining incompatible spatial data. J Am Stat Assoc 97(458):632–648

    Article  MathSciNet  MATH  Google Scholar 

  • Hakimpour F (2003) Using ontologies to resolve semantic heterogeneity for integrating spatial database schemata. Ph.D. thesis, Universität Zürich

    Google Scholar 

  • Kelley RP (1984) Blocking considerations for record linkage under conditions of uncertainty. Technical Report CENSUS/SRD/RR-84/19, U.S. Bureau of the Census, Statistical Research Division, Washington, DC, 709133

    Google Scholar 

  • Kyzirakos K, Karpathiotakis M, Garbis G, Nikolaou C, Bereta K, Papoutsis I, Herekakis T, Michail D, Koubarakis M, Kontoes C (2014) Wildfire monitoring using satellite images, ontologies and linked geospatial data. J Web Sem 24:18–26

    Article  Google Scholar 

  • Longley P (2005) Geographic information systems and science. Wiley, Hoboken, pp 148–149

    Google Scholar 

  • Longley PA, Goodchild MF, Maguire DJ, Rhind DW (2015) Spatial data analysis, chap 13, 4th edn. Wiley, Hoboken

    Google Scholar 

  • Maffini G (1987) Raster versus vector data encoding and handling: a commentary. Photogramm Eng Remote Sens 53(10):1397–1398

    Google Scholar 

  • Melnik S, Garcia-Molina H, Rahm E (2002) Similarity flooding: a versatile graph matching algorithm and its application to schema matching. In: IEEE international conference on data engineering (ICDE), pp 117–128

    Google Scholar 

  • Mena E, Illarramendi A, Kashyap V, Sheth AP (2000) OBSERVER: an approach for query processing in global information systems based on interoperation across pre-existing ontologies. Distrib Parallel Databases 8(2):223–271

    Article  Google Scholar 

  • Mohammadi H, Binns A, Rajabifard A, Williamson IP et al (2006) Spatial data integration. In: 17th UNRCC–AP conference and 12th meeting of the PCGIAP, Bangkok, pp 18–22

    Google Scholar 

  • Psyllidis A, Bozzon A, Bocconi S, Bolivar CT (2015) A platform for Urban analytics and semantic data integration in city planning. In: International conference on computer–aided architectural design futures. Springer, pp 21–36

    Google Scholar 

  • Rote G (1991) Computing the minimum hausdorff distance between two point sets on a line under translation. Inf Process Lett 38(3):123–127

    Article  MathSciNet  MATH  Google Scholar 

  • Saalfeld A (1988) Conflation: automated map compilation. Int J Geogr Inf Syst 2(3):217–228

    Article  Google Scholar 

  • Sehgal V, Getoor L, Viechnicki PD (2006) Entity resolution in geospatial data integration. In: ACM international symposium on advances in geographic information systems. ACM GIS, pp 83–90

    Google Scholar 

  • Tran BH, Plumejeaud-Perreau C, Bouju A, Bretagnolle V (2015) A semantic mediator for handling heterogeneity of spatio-temporal environment data. In: Metadata and semantics research. Springer, Cham, pp 381–392

    Chapter  Google Scholar 

  • Walker R (1993) AGI standards committee GIS dictionary. Association for Geographic Information, London

    Google Scholar 

  • Wiegand N, Patterson D, Zhou N, Ventura S, Cruz IF (2002) Querying heterogeneous land use data: problems and potential. In: National conference for digital government research (dg.o), pp 115–121

    Google Scholar 

  • Yoon H, Shahabi C (2008) Robust time-referenced segmentation of moving object trajectories. In: IEEE international conference on data mining (ICDM). IEEE, pp 1121–1126

    Google Scholar 

  • Zhang J, Goodchild MF (2002) Uncertainty in geographical information. CRC Press, London

    Book  Google Scholar 

  • Zhang J, Atkinson P, Goodchild MF (2014) Scale in spatial information and analysis. CRC Press, Boca Raton

    Book  Google Scholar 

  • Zheng Y (2015) Trajectory data mining: an overview. ACM Trans Intell Syst Technol (TIST) 6(3):29

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Balasubramani, B.S., Cruz, I.F. (2019). Spatial Data Integration. In: Sakr, S., Zomaya, A.Y. (eds) Encyclopedia of Big Data Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-77525-8_218

Download citation

Publish with us

Policies and ethics