Skip to main content

Energy Implications of Big Data

  • Reference work entry
  • First Online:
Encyclopedia of Big Data Technologies
  • 29 Accesses

Synonyms

Energy wall; Energy-efficient data storage and processing; Green big data

Definitions

Data storage, communication, and processing consume energy, and big data requires a correspondingly big energy budget, necessitating more attention and effort to ensure energy efficiency.

Overview

Until fairly recently, developments in the field of computer architecture (Parhami 2005) were focused around computation running time and hardware complexity and how the two can be traded off against each other in various designs. With the advent of mobile devices and terascale, petascale, and, soon, exascale computing, energy consumption emerged as a major design factor that overshadowed the older concerns to some extent. Key driving forces for research into energy efficiency were battery life in compact mobile devices with smallish batteries, energy costs for operators of supercomputer centers, and the difficulties of heat dissipation in both mobile devices and mainframe/data-center...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abts D, Marty MR, Wells PM, Klausler P, Liu H (2010) Energy proportional datacenter networks. ACM SIGARCH Comput Archit News 38(3):338–347

    Article  Google Scholar 

  • Assuncao MD, Calheiros RN, Bianchi S, Netto MAS, Buyya R (2015) Big data computing and clouds: trends and future directions. J Parallel Distrib Comput 79:3–15

    Article  Google Scholar 

  • Barroso LA, Holzle U (2007) The case for energy-proportional computing. IEEE Comput 40(12):33–37

    Article  Google Scholar 

  • Barroso LA, Clidara J, Holzle U (2013) The data center as a computer: an introduction to the design of warehouse-scale machines. Synth Lect Comput Archit 8(3):1–154

    Article  Google Scholar 

  • Benini L, De Micheli G (2002) Networks on chips: a new SoC paradigm. IEEE Comput 35(1):70–78

    Article  Google Scholar 

  • Benini L, De Micheli G, Macii E (2001) Designing low-power circuits: practical recipes. IEEE Circuits Syst Mag 1(1):6–25

    Article  Google Scholar 

  • Bennett CH (2003) Notes on Landauer’s principle, reversible computation and Maxwell’s Demon. Stud Hist Philos Mod Phys 34(3):501–510

    Article  MathSciNet  MATH  Google Scholar 

  • Bolla R, Bruschi R, Davoli F, Cucchietti F (2011) Energy efficiency in the future internet: a survey of existing approaches and trends in energy-aware fixed network infrastructures. IEEE Commun Surv Tutorials 13(2):223–244

    Article  Google Scholar 

  • Brock DC, Moore GE (eds) (2006) Understanding Moore’s law: four decades of innovation. Chemical Heritage Foundation, London

    Google Scholar 

  • Denning PJ, Lewis YG (2017) Exponential laws of computing growth. Commun ACM 60(1):54–65

    Article  Google Scholar 

  • Devadas S, Keutzer K, White J (1992) Estimation of power dissipation in CMOS combinational circuits using boolean function manipulation. IEEE Trans Comput Aided Des Integr Circuits Syst 11(3):373–383

    Article  Google Scholar 

  • Dhiman G, Rosing TS (2006) Dynamic power management using machine learning. In: Proceedings of IEEE/ACM international conference on computer-aided design, pp 747–754

    Google Scholar 

  • Dreslinski RG, Wieckowski M, Blaauw D, Sylvester D, Mudge T (2010) Near-threshold computing: reclaiming Moore’s law through energy efficient integrated circuits. Proc IEEE 98(2):253–266

    Article  Google Scholar 

  • Eisenberg A (2010) Bye-Bye batteries: radio waves as a low-power source. New York Times, July 18, p BU3. http://www.nytimes.com/2010/07/18/business/18novel.html

  • Feller E, Ramakrishnan L, Morin C (2015) Performance and energy efficiency of big data applications in cloud environments: a Hadoop case study. J Parallel Distrib Comput 79:80–89

    Article  Google Scholar 

  • Gautschi M (2017) Design of energy-efficient processing elements for near-threshold parallel computing, doctoral thesis, ETH Zurich

    Google Scholar 

  • Gepner P, Kowalik MF (2006) Multi-core processors: new way to achieve high system performance. In: Proceedings of IEEE international symposium on parallel computing in electrical engineering, pp 9–13

    Google Scholar 

  • Hammadi A, Mhamdi L (2014) A survey on architectures and energy efficiency in data center networks. Comput Commun 40:1–21

    Article  Google Scholar 

  • Hardavellas N, Ferdman M, Falsafi B, Ailamaki A (2011) Toward dark silicon in servers. IEEE Micro 31(4):6–15

    Article  Google Scholar 

  • Hashem IAT, Yaqoob I, Anuar NB, Mokhtar S, Gani A, Ullah Khan S (2015) The rise of ‘Big Data’ on cloud computing: review and open research issues. Inf Syst 47:98–115

    Article  Google Scholar 

  • Heinzelman WR, Chandrakasan A, Balakrishnan H (2000) Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of 33rd Hawaii international conference on information sciences, IEEE, pp 10

    Google Scholar 

  • Holzle U (2010) Brawny cores still beat wimpy cores, most of the time. IEEE Micro 30(4):23–24

    Google Scholar 

  • Holzle U (2017) Advances in energy efficiency through cloud and ML, energy leadership lecture, University of California, Santa Barbara

    Google Scholar 

  • Hubner M, Silano C (eds) (2016) Near threshold computing: technology, methods, and applications. Springer, Cham

    Google Scholar 

  • Jaberipur G, Parhami B, Abedi D (2018) Adapting computer arithmetic structures to sustainable supercomputing in low-power, majority-logic nanotechnologies. IEEE Trans Sustain Comput. https://doi.org/10.1109/TSUSC.2018.2811181

    Article  Google Scholar 

  • Kaul H, Anders M, Hsu S, Agarwal A, Krishnamurthy R, Borkar S (2012) Near-threshold voltage (NTV) design – opportunities and challenges In: Proceedings of 49th ACM/EDAC/IEEE design automation conference, pp 1149–1154

    Google Scholar 

  • Kaushik RT, Nahrstedt K (2012) T*: a data-centric cooling energy costs reduction approach for big data analytics cloud. In: Proceedings of international conference on high performance computing, networking, storage and analysis, pp 1–11

    Google Scholar 

  • Koomey JG, Berard S, Sanchez M, Wong H (2011) Implications of historical trends in the electrical efficiency of computing. IEEE Ann Hist Comput 33(3):46–54

    Article  MathSciNet  Google Scholar 

  • Krishnamachari L, Estrin D, Wicker S (2002) The impact of data aggregation in wireless sensor networks. In: Proceedings of 22nd international conference on distributed computing systems, pp 575–578

    Google Scholar 

  • Landauer R (1961) Irreversibility and heat generation in the computing process. IBM J Res Dev 5(3):183–191

    Article  MathSciNet  MATH  Google Scholar 

  • Mack CA (2011) Fifty years of Moore’s law. IEEE Trans Semicond Manuf 24(2):202–207

    Article  Google Scholar 

  • McMenamin A (2013) The end of Dennard scaling, on-line document. http://cartesianproduct.wordpress.com/2013/04/15/the-end-of-dennard-scaling/. Accessed 20 Feb 2018

  • Mudge T, Holzle U (2010) Challenges and opportunities for extremely energy-efficient processors. IEEE Micro 30(4):20–24

    Article  Google Scholar 

  • Musoll E, Lang T, Cortadella J (1998) Working-zone encoding for reducing the energy in microprocessor address buses. IEEE Trans VLSI Syst 6(4):568–572

    Article  Google Scholar 

  • Nakai M, Akui S, Seno K, Meguro T, Seki T, Kondo T, Hashiguchi A, Kawahara H, Kumano K, Shimura M (2005) Dynamic voltage and frequency management for a low-power embedded microprocessor. IEEE J Solid State Circuits 40(1):28–35

    Article  Google Scholar 

  • Pande PP, Grecu C, Jones M, Ivanov A, Saleh R (2005) Performance evaluation and design trade-offs for network-on-chip interconnect architectures. IEEE Trans Comput 54(8):1025–1040

    Article  Google Scholar 

  • Parhami B (1999) Chapter 7, sorting networks. In: Introduction to parallel processing: algorithms and architectures. Plenum Press, Plenum, New York, pp 129–147

    Google Scholar 

  • Parhami B (2005) Computer architecture: from microprocessors to supercomputers. Oxford University Press, New York

    Google Scholar 

  • Pinheiro E, Bianchini R (2014) Energy conservation techniques for disk array-based servers. In: Proceedings of ACM international conference on supercomputing, pp 369–379

    Google Scholar 

  • Schroeder B, Gibson GA (2007) Understanding disk failures rates: what does an MTTF of 1,000,000 hours mean to you? ACM Trans Storage 3(3):Article 8

    Article  Google Scholar 

  • Vogelsang T (2010) Understanding the energy consumption of dynamic random access memories. In: Proceedings of 43rd IEEE/ACM international symposium on microarchitecture, pp 363–374

    Google Scholar 

  • Wu L, Barker RJ, Kim MA, Ross KA (2013) Navigating big data with high-throughput, energy-efficient data partitioning. ACM SIGARCH Comput Archit News 41(3):249–260

    Article  Google Scholar 

  • Wu Q, Pedram M, Wu X (2000) Clock-gating and its application to low power design of sequential circuits. IEEE Trans Circuits Syst I 47(3):415–420

    Article  Google Scholar 

  • Xie Y (2011) Modeling, architecture, and applications for emerging memory technologies. IEEE Des Test Comput 28(1):44–51

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrooz Parhami .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Parhami, B. (2019). Energy Implications of Big Data. In: Sakr, S., Zomaya, A.Y. (eds) Encyclopedia of Big Data Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-77525-8_171

Download citation

Publish with us

Policies and ethics