Skip to main content

Endophytism in Zingiberaceae: Elucidation of Beneficial Impact

  • Living reference work entry
  • First Online:

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Endophytism is a unique relationship between plant and endosymbiotic microorganism wherein the microbes colonize within plant tissues without producing any disease etiology. Various groups of endophytes isolated from different medicinal plants are extremely significant in this respect for their ability to synthesize novel bioactive compounds as well as for the modulation of productivity. Endophytes also play various crucial roles in growth, biotic and abiotic stress tolerance, and adaptation. With the implementation of “state-of-the-art” technologies in molecular biology, the specific identification of associated microorganism as well as their relationship with corresponding host plants has been explicitly deciphered in recent years. Zingiberaceae, generally recognized as ginger family, comprises of rhizomatous medicinal and aromatic plants and is characterized by the presence of plethora of bioactive compounds along with volatile oils. They are widely cultivated in tropical and subtropical regions of Asia. This chapter aims to explore the endophytic relationship between medicinally important species of Zingiberaceae and the corresponding microbes, for improved production of imminent natural products and their role in protection of host plants from pathogens as well as in stress tolerance, thus helping the plants, indirectly, to grow better.

This is a preview of subscription content, log in via an institution.

References

  1. Bary A (1866) Morphologie und Physiologie Pilze, Flechten, und myxomyceten, Hofmeister’s Handbook of Physiological Botany. Engelmann, Leipzig

    Book  Google Scholar 

  2. Galippe V (1887) Note sur la pr é sence de micro-organismes dans les tissus végétaux. C R Hebd Sci Mem Soc Biol 39:410–416

    Google Scholar 

  3. Di Vestea A (1888) De l’absence des microbes dans les tissus végétaux. Annales de l’lnstitut Pasteur 670e671

    Google Scholar 

  4. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678. https://doi.org/10.1016/j.soilbio.2009.11.024

    Article  CAS  Google Scholar 

  5. Bacon CW, White JFJ (2000) Physiological adaptations in the evolution of endophytism in the Clavicipitaceae. In: Bacon CW, White JFJ (eds) Microbial endophytes. Marcel Dekker Inc, New York, pp 237–263

    Google Scholar 

  6. Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837

    Article  CAS  Google Scholar 

  7. Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  Google Scholar 

  8. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  CAS  Google Scholar 

  9. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  10. Coombs JT, Franco CMM (2003) Isolation and identification of Actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608

    Article  CAS  Google Scholar 

  11. Wong KC, Ong KS, Lim CL (1992) Composition of the essential oil of rhizomes of Kaempferia galanga L. Flavour Fragr J 7:263–266

    Article  CAS  Google Scholar 

  12. Pandji C, Grimm C, Wray V, Witte L, Proksch P (1993) Insecticidal constituents from four species of Zingiberaceae. Phytochemistry 34:415–419

    Article  CAS  Google Scholar 

  13. Orasa P, Yenhatai N, Pittaya T, Taylor W (1994) Cyclohexane oxide derivatives and diterpenes from the genus Kaempferia. ASOMPS, VIII, Malaysia

    Google Scholar 

  14. Parwat U, Tuntiwachwuttikul P, Taylor WC, Engelhardt LM, Skelton BW, White AH (1993) Diterpenes from Kaempferia species. Phytochemistry 32:991–997

    Article  Google Scholar 

  15. Singh UP, Srivsastava BP, Singh KP, Pandey VB (1992) Antifungal activity of steroid saponins and sapogenins from Avena sativa and Costus speciosus. Nat Sao Paulo 17:71–77

    Google Scholar 

  16. Husain A (1992) Dictionary of Indian medicinal plants. Central Institute of Medicinal and Aromatic Plants, Lucknow

    Google Scholar 

  17. Warrier PK, Nambiar VPK, Ramankutty C (1993–1995) Indian medicinal plants, vol 1–5. Orient Longman Ltd. Madras

    Google Scholar 

  18. Chunekar KC (1982) Bhavaprakashanighantu of Sri Bhavamishra. Commentary, Varanasi (in Hindi)

    Google Scholar 

  19. Gurib-Fakim A (2006) Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Asp Med 27:1–93

    Article  CAS  Google Scholar 

  20. Denyer CV, Jackson P, Loakes DM, Ellis MR, Young AB (1994) Isolation of antirhinoviral sesquiterpenes from ginger (Zingiber officinale). J Nat Prod 57:658–662

    Article  CAS  Google Scholar 

  21. Xiuzhen C, Dejian Q, Hexing D (1992) Studies on the constituents of the essential oil of Zingiber officinale. Guihaia 12:129–132

    Google Scholar 

  22. Kirtikar KR, Basu BD (1987) Indian medicinal plants, vol vol I-IV. International Book Distributors, Dehradun

    Google Scholar 

  23. Sukari MA, Neoh BK, Lajis NH, Ee GCL, Rahmani M, Ahmad FH, Yusof UK (2004) Chemical constituents of Kaempferia angustifolia (Zingiberaceae). Orient J Chem 20:451–456

    CAS  Google Scholar 

  24. Yeap YSY, Kassim NK, Ng RC, Ee GCL, Saiful Yazan L, Musa KH (2017) Antioxidant properties of ginger (Kaempferia angustifolia Rosc.) and its chemical markers. Int J Food Prop 20:1158–1172

    Article  Google Scholar 

  25. Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, Oelmüller R (2005) The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. J Biol Chem 280:26241–26247

    Article  CAS  Google Scholar 

  26. Mathys J, De Cremer K, Timmermans P, Van Kerkhove S, Lievens B, Vanhaecke M, Cammue B, De Coninck B (2012) Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection. Front Plant Sci 3:108

    Article  Google Scholar 

  27. Straub D, Rothballer M, Hartmann A, Ludewig U (2013) The genome of the endophytic bacterium H. frisingense GSF30T identifies diverse strategies in the Herbaspirillum genus to interact with plants. Front Microbiol 4:168

    Article  Google Scholar 

  28. Gundel PE, Martínez-Ghersa MA, Omacini M, Cuyeu R, Pagano E, Ríos R, Ghersa CM (2012) Mutualism effectiveness and vertical transmission of symbiotic fungal endophytes in response to host genetic background. Evol Appl 5:838–849

    Article  Google Scholar 

  29. Qawasmeh A, Obied HK, Raman A, Wheatley W (2012) Influence of fungal endophyte infection on phenolic content and antioxidant activity in grasses: interaction between Lolium perenne and different strains of Neotyphodium lolii. J Agric Food Chem 60:3381–3388

    Article  CAS  Google Scholar 

  30. Boller T (1995) Chemoperception of microbial signals in plant cells. Annu Rev Plant Biol 46:189–214

    Article  CAS  Google Scholar 

  31. Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B (2006) Reactive oxygen species play a role in regulating a fungus–perennial ryegrass mutualistic interaction. Plant Cell 18:1052–1066

    Article  CAS  Google Scholar 

  32. White JF Jr, Torres MS (2010) Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiol Plant 138:440–446

    Article  CAS  Google Scholar 

  33. Singh D, Rathod V, Ninganagouda S, Herimath J, Kulkarni P (2013) Biosynthesis of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (turmeric) and its antibacterial activity against pathogenic gram negative bacteria. J Pharm Res 7:448–453

    CAS  Google Scholar 

  34. Conn VM, Walker AR, Franco CMM (2008) Endophytic Actinobacteria induce defense pathways in Arabidopsis thaliana. Mol Plant-Microbe Interact 21:208–218

    Article  CAS  Google Scholar 

  35. Nair DN, Padmavathy S (2014) Impact of endophytic microorganisms on plants, environment and humans. Sci World J 2014:e250693

    Article  Google Scholar 

  36. Xin G, Zhang G, Kang JW, Staley JT, Doty SL (2009) A diazotrophic, indole-3-acetic acid-producing endophyte from wild cottonwood. Biol Fertil Soils 45:669–674

    Article  CAS  Google Scholar 

  37. Joseph B, Mini Priya R (2011) Bioactive compounds from endophytes and their potential in pharmaceutical effect: a review. Am J Biochem Mol Biol 1:291–309

    Article  Google Scholar 

  38. Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dun field KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750

    Article  Google Scholar 

  39. Nair DN, Padmavathy S (2014) Impact of endophytic microorganisms on plants, environment and humans. Sci World J 2014:1–11

    Article  Google Scholar 

  40. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  CAS  Google Scholar 

  41. Pimentel MR, Molina G, Dionisio AP, Maróstica MR, Pastore GM (2011) Use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol Res Int 2011:1–11. https://doi.org/10.4061/2011/576286

    Article  CAS  Google Scholar 

  42. Schulz B, Boyle C, Draeger S, Rommert A-K, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  43. Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544

    Article  CAS  Google Scholar 

  44. Prado S, Buisson D, Ndoye I, Vallet M, Nay B (2013) One-step enantioselective synthesis of (4S)-isosclerone through biotransformation of juglone by an endophytic fungus. Tetrahedron Lett 54:1189–1191

    Article  CAS  Google Scholar 

  45. Müller MM, Valjakka R, Suokko A, Hantula J (2001) Diversity of endophytic fungi of single Norway spruce needles and their role as pioneer decomposers. Mol Ecol 10:1801–1810

    Article  Google Scholar 

  46. Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:505–526

    Article  Google Scholar 

  47. Fouda AH, El-Din Hassan S, Eid AM, El-Din Ewais E (2015) Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss). Ann Agric Sci 60:95–104

    Google Scholar 

  48. Rai R, Dash PK, Prasanna BM, Singh A (2007) Endophytic bacterial flora in the stem tissue of a tropical maize (Zea mays L.) genotype: isolation, identification and enumeration. World J Microbiol Biotechnol 23:853–858

    Article  Google Scholar 

  49. Hata K, Sone K (2008) Isolation of endophytes from leaves of Neolitsea sericea in broadleaf and conifer stands. Mycoscience 49:229–232

    Article  Google Scholar 

  50. Kumar A, Singh R, Yadav A, Giri DD, Singh PK, Pandey KD (2016) Isolation and characterization of bacterial endophytes of Curcuma longa L. 3 Biotech 6:60. https://doi.org/10.1007/s13205-016-0393-y

    Article  PubMed  PubMed Central  Google Scholar 

  51. Septiana E, Sukarno N, Simanjuntak P (2017) Endophytic fungi associated with turmeric (Curcuma longa L.) can inhibit histamine-forming bacteria in fish. HAYATI J Biosci 24:46–52. https://doi.org/10.1016/j.hjb.2017.05.004

    Article  Google Scholar 

  52. Ginting RCB, Sukarno N, Widyastuti U, Darusman LK, Kanaya S (2013) Diversity of endophytic fungi from red ginger (Zingiber officinale Rosc.) plant and their inhibitory effect to Fusarium oxysporum plant pathogenic fungi. HAYATI J Biosci 20:127–137. https://doi.org/10.4308/hjb.20.3.127

    Article  Google Scholar 

  53. Anisha C, Radhakrishnan EK (2017) Metabolite analysis of endophytic fungi from cultivars of Zingiber officinale Rosc. identifies myriad of bioactive compounds including tyrosol. 3 Biotech 7:1–10. https://doi.org/10.1007/s13205-017-0768-8

    Article  Google Scholar 

  54. Taechowisan T, Lu C, Shen Y, Lumyong S (2005) Secondary metabolites from endophytic Streptomyces aureofaciens CMUAc130 and their antifungal activity. Microbiology 151:1691–1695

    Article  CAS  Google Scholar 

  55. Taechowisan T, Wanbanjob A, Tuntiwachwuttikul P, Taylor WC (2006) Identification of Streptomyces sp. Tc022, an endophyte in Alpinia galanga, and the isolation of actinomycin D. Ann Microbiol 56:113–117

    Article  CAS  Google Scholar 

  56. Taechowisan T, Chuaychot N, Chanaphat S, Wanbanjob A, Shen Y (2008) Biological activity of chemical constituents isolated from Streptomyces sp. Tc052, and endophyte in Alpinia galanga. Int J Pharm 4:95–101

    Article  CAS  Google Scholar 

  57. Thongchai T, Srisakul C, Wanwikar R, Waya SP (2012) Antifungal activity of 3- methylcarbazoles from Streptomyces sp. LJK109; an endophyte in Alpinia galanga. J Appl Pharm Sci 02:124–128

    Google Scholar 

  58. Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225

    Article  CAS  Google Scholar 

  59. Kumar A, Singh M, Singh PP, Singh SK, Singh PK, Pandey KD (2016) Isolation of plant growth promoting rhizobacteria and their impact on growth and curcumin content in Curcuma longa L. Biocatal Agric Biotechnol 8:1–7

    Article  Google Scholar 

  60. Vinayarani G, Prakash HS (2018) Growth promoting rhizospheric and endophytic bacteria from Curcuma longa L. as biocontrol agents against rhizome rot and leaf blight diseases. Plant Pathol J 34:218

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Aswathy AJ, Jasim B, Jyothis M, Radhakrishnan EK (2013) Identification of two strains of Paenibacillus sp. as indole 3 acetic acid-producing rhizome-associated endophytic bacteria from Curcuma longa. 3 Biotech 3:219–224

    Article  Google Scholar 

  62. Jasim B, Joseph AA, John CJ, Mathew J, Radhakrishnan EK (2014) Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3 Biotech 4:197–204

    Article  CAS  Google Scholar 

  63. Chen T, Chen Z, Ma GH, Du BH, Shen B, Ding YQ, Xu K (2014) Diversity and potential application of endophytic bacteria in ginger. Genet Mol Res 13:4918–4931

    Article  CAS  Google Scholar 

  64. Zhang Y, Kang X, Liu H, Liu Y, Li Y, Yu X, Chen Q (2018) Endophytes isolated from ginger rhizome exhibit growth promoting potential for Zea mays. Arch Agron Soil Sci 64:1302–1314

    Article  CAS  Google Scholar 

  65. Anisha C, Mathew J, Radhakrishnan EK (2013) Plant growth promoting properties of endophytic Klebsiella sp. isolated from Curcuma longa. Int J Biol Pharm Allied Sci 2:593–601

    Google Scholar 

  66. Aguado-Santacruz GA, Moreno-Gomez B, Jimenez-Francisco B, Garcia-Moya E, Preciado-Ortiz RE (2012) Impact of the microbial siderophores and phytosiderophores on the iron assimilation by plants: a synthesis. Rev Fitotec Mex 35:9–21

    Google Scholar 

  67. Bellenger JP, Wichard T, Kustka AB, Kraepiel AML (2008) Uptake of molybdenum and vanadium by a nitrogen-fixing soil bacterium using siderophores. Nat Geosci 1:243

    Article  CAS  Google Scholar 

  68. Braud A, Jézéquel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr-and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286

    Article  Google Scholar 

  69. Berg G, Hallmann J (2006) Control of plant pathogenic fungi with bacterial endophytes. In: Microbial root endophytes. Springer, Berlin/Heidelberg, pp 53–69

    Chapter  Google Scholar 

  70. Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. CRC Crit Rev Plant Sci 19:1–30. https://doi.org/10.1080/07352680091139169

    Article  Google Scholar 

  71. Van Loon LC, Bakker PAHM, van der Heijdt WHW, Wendehenne D, Pugin A (2008) Early responses of tobacco suspension cells to rhizobacterial elicitors of induced systemic resistance. Mol Plant-Microbe Interact 21:1609–1621

    Article  Google Scholar 

  72. Vinayarani G, Prakash HS (2018) Fungal endophytes of turmeric (Curcuma longa L.) and their biocontrol potential against pathogens Pythium aphanidermatum and Rhizoctonia solani. World J Microbiol Biotechnol 34:1–17. https://doi.org/10.1007/s11274-018-2431-x

    Article  CAS  Google Scholar 

  73. Pandey A, Trivedi P, Kumar B, Palni LMS (2006) Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (BO) isolated from a Sub-Alpine location in Himalaya. Curr Microbiol 53:102–107

    Article  CAS  Google Scholar 

  74. Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152

    Article  CAS  Google Scholar 

  75. Bussaban B, Lumyong S, Lumyong P, McKenzie EH, Hyde KD (2001) Endophytic fungi from Amomum siamense. Can J Microbiol 47:943–948. https://doi.org/10.1139/w01-098

    Article  CAS  PubMed  Google Scholar 

  76. Blaha D, Prigent-Combaret C, Mirza MS, Moënne-Loccoz Y (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56:455–470

    Article  CAS  Google Scholar 

  77. Alizadeh O, Sharafzadeh S, Firoozabadi AH (2012) The effect of plant growth promoting rhizobacteria in saline condition. Asian J Plant Sci 11:1–8

    Article  Google Scholar 

  78. Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  79. Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Meta-bolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37. https://doi.org/10.1016/j.copbio.2013.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502. https://doi.org/10.1128/MMBR.67.4.491-502.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Verma VC, Kharwar RN, Strobel GA (2009) Chemical and functional diversity of natural products from plant associated endophytic fungi. Nat Prod Commun 4:1511–1532

    CAS  PubMed  Google Scholar 

  82. Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686. https://doi.org/10.1017/S095375620500273X

    Article  PubMed  Google Scholar 

  83. Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771. https://doi.org/10.1039/b609472b

    Article  CAS  PubMed  Google Scholar 

  84. Hastuti US, Asna PMA, Rahmawati D (2018) Histologic observation, identification, and secondary metabolites analysis of endophytic fungi isolated from a medicinal plant, Hedychium accuminatum Roscoe. AIP Conf Proc 2002:0200701-8. https://doi.org/10.1063/1.5050166

    Article  CAS  Google Scholar 

  85. Taechowisan T, Chaisaeng S, Phutdhawong WS (2017) Antibacterial, antioxidant and anticancer activities of biphenyls from Streptomyces sp. BO-07: an endophyte in Boesenbergia rotunda (L.) Mansf A. Food Agric Immunol 28:1330–1346. https://doi.org/10.1080/09540105.2017.1339669

    Article  CAS  Google Scholar 

  86. Taechowisan T, Chanaphat S, Ruensamran W, Phutdhawong WS (2014) Antibacterial activity of new flavonoids from Streptomyces sp. BT01; an endophyte in Boesenbergia rotunda (L.) Mansf. J Appl Pharm Sci 4:8–13. https://doi.org/10.7324/JAPS.2014.40402

    Article  CAS  Google Scholar 

  87. Alshaibani MM, Jalil J, Sidik NM, Edrada-Ebel R, Zin NM (2016) Isolation and characterization of cyclo-(tryptophanyl-prolyl) and chloramphenicol from Streptomyces sp. SUK 25 with antimethicillin-resistant Staphylococcus aureus activity. Drug Des Devel Ther 10:1817–1827. https://doi.org/10.2147/DDDT.S101212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Taechowisan T, Chanaphat S, Ruensamran W, Phutdhawong WS (2012) Antifungal activity of 3-methylcarbazoles from Streptomyces sp. LJK109; an endophyte in Alpinia galangal. J Appl Pharm Sci 2:124

    Google Scholar 

  89. Sabu R, Soumya KR, Radhakrishnan EK (2017) Endophytic Nocardiopsis sp. from Zingiber officinale with both antiphytopathogenic mechanisms and antibiofilm activity against clinical isolates. 3 Biotech 7:115

    Article  Google Scholar 

  90. Gupta A, Mahajan S, Sharma R (2015) Evaluation of antimicrobial activity of Curcuma longa rhizome extract against Staphylococcus aureus. Biotech Rep 6:51–55

    Article  Google Scholar 

  91. Nandini MLN, Rasool SN, Ruth CH, Gopal K (2018) Antagonistic activity of endophytic microorganisms against rhizome rot disease of turmeric. J Pharmacogn Phytochem 7:3736–3741

    Google Scholar 

  92. Shubin L, Juan H, RenChao Z, ShiRu X, YuanXiao J (2014) Fungal endophytes of Alpinia officinarum rhizomes: insights on diversity and variation across growth years, growth sites, and the inner active chemical concentration. PLoS One 9:1–21. https://doi.org/10.1371/journal.pone.0115289

    Article  CAS  Google Scholar 

  93. Uzma F, Konappa NM, Chowdappa S (2016) Diversity and extracellular enzyme activities of fungal endophytes isolated from medicinal plants of Western Ghats, Karnataka. Egypt J Basic Appl Sci 3:335–342. https://doi.org/10.1016/j.ejbas.2016.08.007

    Article  Google Scholar 

  94. Deshmukh AG, Patil VB, Kale SK, Dudhare MS (2018) Isolation, characterization and identification of endophytes from Curcuma longa. Int J Curr Microbiol App Sci 6:1040–1050

    Google Scholar 

  95. Sulistiyani TR, Lisdiyanti P (2016) Diversity of endophytic bacteria associated with (Curcuma heyneana) and their potency for nitrogen fixation. Widyariset 2:106–117. https://doi.org/10.14203/widyariset.2.2.2016.106–117

    Article  Google Scholar 

  96. Praptiwi KDP, fathoni A, wulansari D, ilyas M, agusta A (2016) Evaluation of antibacterial and antioxidant activity of extracts of endophytic fungi isolated from Indonesian Zingiberaceous plants. Nusant Biosci 8:306–311. https://doi.org/10.13057/nusbiosci/n080228

    Article  Google Scholar 

  97. Hammerschmidt L, Ola A, Mueller WE, Lin W, Mándi A, Kurtán T et al (2015) Two new metabolites from the endophytic fungus Xylaria sp. isolated from the medicinal plant Curcuma xanthorrhiza. Tetrahedron Lett 56:1193–1197. https://doi.org/10.1016/j.tetlet.2014.12.120

    Article  CAS  Google Scholar 

  98. Niemhom N, Chutrakul C, Suriyachadkun C, Thawai C (2017) Nonomuraea stahlianthi sp. nov., an endophytic Actinomycete isolated from the stem of Stahlianthus campanulatus. Int J Syst Evol Microbiol 67:2879–2884. https://doi.org/10.1099/ijsem.0.002045

    Article  CAS  PubMed  Google Scholar 

  99. Nongkhlaw FM, Joshi SR (2015) Investigation on the bioactivity of culturable endophytic and epiphytic bacteria associated with ethnomedicinal plants. J Infect Dev Ctries 9:954–961

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Swami Kamalasthananda, Principal, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata (India), for the facilities provided during the present study and acknowledge DST-FIST program for infrastructural facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajit Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chakraborty, A., Kundu, S., Mukherjee, S., Ghosh, B. (2019). Endophytism in Zingiberaceae: Elucidation of Beneficial Impact. In: Jha, S. (eds) Endophytes and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-76900-4_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76900-4_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76900-4

  • Online ISBN: 978-3-319-76900-4

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics