Skip to main content

Endophytes as Pollutant-Degrading Agents: Current Trends and Perspectives

  • Living reference work entry
  • First Online:

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Bioremediation is based on biological systems, bacteria, fungi, and plants. They are effective systems to treat a polluted site because they are able to modify the chemical structure of the contaminant into less hazardous end products. Investigations regarding the theme have immensely accelerated during the last years, what originated a great number of articles involving the terms “phytoremediation” and “bioremediation.” Initially the term phytoremediation was defined as being the use of plants for the degradation of polluting hazardous chemicals. However, the discovery that healthy plants could be containing endosymbiotic groups of microorganisms, often bacteria or fungi, led to the notion that these microorganisms could be, partly at least, responsible for the degradation of the pollutants. This review focuses on this proposed partnership in the bioremediation process, taking into account investigations conducted during the last 5 years.

This is a preview of subscription content, log in via an institution.

References

  1. Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192

    Article  CAS  PubMed  Google Scholar 

  2. Feng F, Ge J, Li Y, Cheng J, Zhong J, Yu X (2017) Isolation, colonization, and chlorpyrifos degradation mediation of the endophytic bacterium Sphingomonas strain HJY in Chinese chives (Allium tuberosum). Agric Food Chem 65:1131–1138

    Article  CAS  Google Scholar 

  3. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals – concepts and applications. Chemosphere 91:869–881

    Article  CAS  PubMed  Google Scholar 

  4. Afzal M, Khan QM, Sessitsch A (2014) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117:232–242

    Article  CAS  PubMed  Google Scholar 

  5. Zhu X, Ni X, Liu J, Gao Y (2014) Application of endophytic bacteria to reduce persistent organic pollutants contamination in plants. Clean (Weinh) 42:306–310

    CAS  Google Scholar 

  6. Yadav A, Yadav K (2017) Exploring the potential of endophytes in agriculture: a minireview. Adv Plants Agric Res 6:00221

    Google Scholar 

  7. Corrêa RCG, Rhoden SA, Mota TR, Azevedo JL et al (2014) Endophytic fungi: expanding the arsenal of industrial enzyme producers. J Ind Microbiol Biotechnol 41:1467–1478

    Article  CAS  PubMed  Google Scholar 

  8. Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254

    Article  CAS  PubMed  Google Scholar 

  9. Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Deng Z, Cao L (2017) Fungal endophytes and their interactions with plants in phytoremediation: a review. Chemosphere 168:1100–1106

    Article  CAS  PubMed  Google Scholar 

  11. Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manag 174:14–25

    Article  CAS  Google Scholar 

  12. Gkorezis P, Daghio M, Franzetti A, Van Hamme JD, Sille W, Vangronsveld J (2016) The interaction between plants and bacteria in the remediation of petroleum hydrocarbons: an environmental perspective. Front Microbiol 7:1836

    Article  PubMed Central  PubMed  Google Scholar 

  13. Li HY, Wei DQ, Shen M, Zhou ZP (2012) Endophytes and their role in phytoremediation. Fungal Divers 54:11–18

    Article  Google Scholar 

  14. Stępniewska Z, Kuźniar A (2013) Endophytic microorganisms – promising applications in bioremediation of greenhouse gases. Appl Microbiol Biotechnol 97:9589–9596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Gonzalez F, Tkaczuk C, Dinu MM, Fiedler Ż, Vidal S, Zchori-Fein E, Messelink GJ (2016) New opportunities for the integration of microorganisms into biological pest control systems in greenhouse crops. J Pest Sci 89:295–311

    Article  Google Scholar 

  16. Feng F, Li Y, Ge J et al (2017) Degradation of chlorpyrifos by an endophytic bacterium of the Sphingomonas genus (strain HJY) isolated from Chinese chives (Allium tuberosum). J Environ Sci Health B 52:736–744

    Article  CAS  PubMed  Google Scholar 

  17. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  CAS  PubMed  Google Scholar 

  18. Sudha V, Govindaraj R, Baskar K, Al-Dhabi NA, Duraipandiyan V (2016) Biological properties of endophytic fungi. Braz Arch Biol Technol 59:e16150436

    Article  CAS  Google Scholar 

  19. Naik BS (2017) Fungal endophytes: nature’s tool for bioremediation of toxic pollutants. Curr Sci 113:537–539

    Article  Google Scholar 

  20. Khan Z, Roman D, Kintz T, delas Alas M, Yap R, Doty S (2014) Degradation, phytoprotection and phytoremediation of phenanthrene by endophyte Pseudomonas putida PD1. Environ Sci Technol Lett 48:12221–12228

    Article  CAS  Google Scholar 

  21. Sun K, Liu J, Gao Y, Jin L, Gu Y, Wang W (2014) Isolation, plant colonization potential, and phenanthrene degradation performance of the endophytic bacterium Pseudomonas sp. Ph6-gfp. Sci Rep 4:5462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Gałązka A, Gałązka R (2015) Phytoremediation of polycyclic aromatic hydrocarbons in soils artificially polluted using plant-associated-endophytic bacteria and Dactylis glomerata as the bioremediation plant. Pol J Microbiol 64:239–250

    Article  Google Scholar 

  23. Zhang X, Chen L, Liu X, Wang C, Chen X, Xu G, Deng K (2014) Synergic degradation of diesel by Scirpus triqueter and its endophytic bacteria. Environ Sci Pollut Res Int 21:8198–8205

    Article  CAS  PubMed  Google Scholar 

  24. Pawlik M, Cania B, Thijs S, Vangronsveld J, Piotrowska-Seget Z (2017) Hydrocarbon degradation potential and plant growth-promoting activity of culturable endophytic bacteria of Lotus corniculatus and Oenothera biennis from a long-term polluted site. Environ Sci Pollut Res Int 24:19640–19652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Ho Y-N, Hsieh J-L, Huang C-C (2013) Construction of a plant–microbe phytoremediation system: combination of vetiver grass with a functional endophytic bacterium, Achromobacter xylosoxidans F3B, for aromatic pollutants removal. Bioresour Technol 145:43–47

    Article  CAS  PubMed  Google Scholar 

  26. Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250:477–483

    Article  CAS  PubMed  Google Scholar 

  27. He H, Ye Z, Yang D, Yan J et al (2013) Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 90:1960–1965

    Article  CAS  PubMed  Google Scholar 

  28. Zhang X, Lin L, Zhu Z, Yang X, Wang Y, An Q (2013) Colonization and modulation of host growth and metal uptake by endophytic bacteria of Sedum alfredii. Int J Phytoremediation 15:51–64

    Article  CAS  PubMed  Google Scholar 

  29. Chen L, Luo S, Li X, Wan Y, Chen J, Liu C (2014) Interaction of Cd-hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol Biochem 68:300–308

    Article  CAS  Google Scholar 

  30. Dharni S, Srivastava AK, Samad A, Patra DD (2014) Impact of plant growth promoting Pseudomonas monteilii PsF84 and Pseudomonas plecoglossicida PsF610 on metal uptake and production of secondary metabolite (monoterpenes) by rose-scented geranium (Pelargonium graveolens cv. bourbon) grown on tannery sludge amended soil. Chemosphere 117:433–439

    Article  CAS  PubMed  Google Scholar 

  31. Shehzadi M, Afzal M, Khan MU, Islam E, Mobin A, Anwar S, Khan QM (2014) Enhanced degradation of textile effluent in constructed wetland system using Typha domingensis and textile effluent-degrading endophytic bacteria. Water Res 58:152–159

    Article  CAS  PubMed  Google Scholar 

  32. Babu AG, Shea PJ, Sudhakar D, Jung IB, Oh BT (2015) Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal (loid)-contaminated mining site soil. J Environ Manag 151:160–166

    Article  CAS  Google Scholar 

  33. Ma Y, Oliveira RS, Nai F, Rajkumar M, Luo Y, Rocha I, Freitas H (2015) The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ Manag 156:62–69

    Article  CAS  Google Scholar 

  34. Shehzadi M, Fatima K, Imran A, Mirza MS, Khan QM, Afzal M (2016) Ecology of bacterial endophytes associated with wetland plants growing in textile effluent for pollutant-degradation and plant growth-promotion potentials. Plant Biosyst 150:1261–1270

    Article  Google Scholar 

  35. Syranidou E, Christofilopoulos S, Gkavrou G, Thijs S, Weyens N, Vangronsveld J, Kalogerakis N (2016) Exploitation of endophytic bacteria to enhance the phytoremediation potential of the wetland helophyte Juncus acutus. Front Microbiol 7:1016

    Article  PubMed Central  PubMed  Google Scholar 

  36. Srivastava S, Singh M, Paul AK (2016) Arsenic bioremediation and bioactive potential of endophytic bacterium Bacillus pumilus isolated from Pteris vittata L. Int J Adv Biotechnol Res 7:77–92

    CAS  Google Scholar 

  37. Xu JY, Han YH, Chen Y, Zhu LJ, Ma LQ (2016) Arsenic transformation and plant growth promotion characteristics of As-resistant endophytic bacteria from As-hyperaccumulator Pteris vittata. Chemosphere 144:1233–1240

    Article  CAS  PubMed  Google Scholar 

  38. Mesa V, Navazas A, González-Gil R, González A et al (2017) Use of endophytic and rhizosphere bacteria to improve phytoremediation of arsenic-contaminated industrial soils by autochthonous Betula celtiberica. Appl Environ Microbiol 83:e03411–e03416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Ashraf S, Afzal M, Naveed M, Shahid M, Ahmad Zahir Z (2018) Endophytic bacteria enhance remediation of tannery effluent in constructed wetlands vegetated with Leptochloa fusca. Int J Phytoremediation 20:121–128

    Article  CAS  PubMed  Google Scholar 

  40. Wu H, Zhang J, Ngo HH, Guo W, Hu Z et al (2015) A review on the sustainability of constructed wetlands for wastewater treatment: design and operation. Bioresour Technol 175:594–601

    Article  CAS  PubMed  Google Scholar 

  41. Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40

    Article  CAS  Google Scholar 

  42. Shi X, Liu Q, Ma J et al (2015) An acid-stable bacterial laccase identified from the endophyte Pantoea ananatis Sd-1 genome exhibiting lignin degradation and dye decolorization abilities. Biotechnol Lett 37:2279–2288

    Article  CAS  PubMed  Google Scholar 

  43. Govarthanan M, Mythili R, Selvankumar T, Kamala-Kannan S, Rajasekar A, Chang YC (2016) Bioremediation of heavy metals using an endophytic bacterium Paenibacillus sp. RM isolated from the roots of Tridax procumbens. 3 Biotech 6:242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Zhang X, Liu X, Wang Q, Chen X, Li H, Wei J, Xu G (2014) Diesel degradation potential of endophytic bacteria isolated from Scirpus triqueter. Int Biodeterior Biodegrad 87:99–105

    Article  CAS  Google Scholar 

  45. Tiwari S, Sarangi BK, Thul ST (2016) Identification of arsenic resistant endophytic bacteria from Pteris vittata roots and characterization for arsenic remediation application. J Environ Manag 180:359–365

    Article  CAS  Google Scholar 

  46. Zhu X, Ni X, Waigi MG, Liu J, Sun K, Gao Y (2016) Biodegradation of mixed PAHs by PAH-degrading endophytic bacteria. Int J Environ Res Public Health 13:805

    Article  PubMed Central  CAS  Google Scholar 

  47. Chen Y, Ren CG, Yang B, Peng Y, Dai CC (2013) Priming effects of the endophytic fungus Phomopsis liquidambari on soil mineral N transformations. Microb Ecol 65:161–170

    Article  CAS  PubMed  Google Scholar 

  48. Chen Y, Xie XG, Ren CG, Dai CC (2013) Degradation of N-heterocyclic indole by a novel endophytic fungus Phomopsis liquidambari. Bioresour Technol 129:568–574

    Article  CAS  PubMed  Google Scholar 

  49. Xie XG, Dai CC (2015) Degradation of a model pollutant ferulic acid by the endophytic fungus Phomopsis liquidambari. Bioresour Technol 179:35–42

    Article  CAS  PubMed  Google Scholar 

  50. Xie XG, Dai CC (2015) Biodegradation of a model allelochemical cinnamic acid by a novel endophytic fungus Phomopsis liquidambari. Int Biodeterior Biodegrad 104:498–507

    Article  CAS  Google Scholar 

  51. Sheik S, Chandrashekar KR, Swaroop K, Somashekarappa HM (2015) Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi. Int Biodeterior Biodegrad 105:21–29

    Article  CAS  Google Scholar 

  52. Wang HW, Zhang W, Su CL, Zhu H, Dai CC (2015) Biodegradation of the phytoestrogen luteolin by the endophytic fungus Phomopsis liquidambari. Biodegradation 26:197–210

    Article  CAS  PubMed  Google Scholar 

  53. Li X, Li W, Chu L, White JF Jr, Xiong Z, Li H (2016) Diversity and heavy metal tolerance of endophytic fungi from Dysphania ambrosioides, a hyperaccumulator from Pb–Zn contaminated soils. Arthropod Plant Interact 11:186–192

    Article  CAS  Google Scholar 

  54. Xie XG, Huang CY, Fu WQ, Dai CC (2016) Potential of endophytic fungus Phomopsis liquidambari for transformation and degradation of recalcitrant pollutant sinapic acid. Fungal Biol 120:402–413

    Article  CAS  PubMed  Google Scholar 

  55. Wang Y, Li H, Feng G, Du L, Zeng D (2017) Biodegradation of diuron by an endophytic fungus Neurospora intermedia DP8-1 isolated from sugarcane and its potential for remediating diuron-contaminated soils. PLoS One 12:e0182556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Tian H, Ma YJ, Li WY, Wang JW (2018) Efficient degradation of triclosan by an endophytic fungus Penicillium oxalicum B4. Environ Sci Pollut Res Int 25:8963–8989

    Article  CAS  PubMed  Google Scholar 

  57. Tong J, Miaowen C, Juhui J, Jinxian L, Baofeng C (2017) Endophytic fungi and soil microbial community characteristics over different years of phytoremediation in a copper tailings dam of Shanxi, China. Sci Total Environ 574:881–888

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Proc. 404898/2016-5) for funding this study. R.C.G. Corrêa thanks CNPq for financing her postdoctoral research at State University of Maringá (Process number 167378/2017-1). R.M. Peralta (Project number 307944/2015-8) and A. Bracht (Project number 304090/2016-6) are CNPq research grant recipients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosane Marina Peralta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Corrêa, R.C., Iark, D., de Sousa Idelfonso, A., Uber, T.M., Bracht, A., Peralta, R.M. (2018). Endophytes as Pollutant-Degrading Agents: Current Trends and Perspectives. In: Jha, S. (eds) Endophytes and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-76900-4_24-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76900-4_24-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76900-4

  • Online ISBN: 978-3-319-76900-4

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics