Skip to main content

Co-evolution of Secondary Metabolites During Biological Competition for Survival and Advantage: An Overview

  • Living reference work entry
  • First Online:
Book cover Co-Evolution of Secondary Metabolites

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Plants produce secondary metabolites which are involved in several biological processes and interactions with other organisms from microbes to insects to higher plants. These processes are variously termed as plant-plant interaction, allelopathy, herbivory, parasitism and mutualism, and induction of plant protection by other microorganisms. Plants are under selection pressure to protect themselves from herbivores/parasites, whereas herbivores/parasites struggle for their survival from plant defense to obtain food and reproduction site. Plants develop defense mechanism from herbivores over a period of 400 million years. Therefore, both develop various strategies to adapt and adjust with changing environment. In this introductory chapter, a brief review of co-evolution of secondary metabolites not only to complete the biological process but also to compete with each other for survival is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ramawat KG, Merillon JM (2007) Biotechnology: secondary metabolites- plants and microbes. Science Publishers Inc., Enfield, pp 1–565

    Book  Google Scholar 

  2. Arora J, Goyal S, Ramawat KG (2010) Biodiversity, biology and conservation of medicinal plants of Thar Desert. In: Ramawat KG (ed) Desert plants. Springer, Berlin/Heidelberg, pp 3–36

    Chapter  Google Scholar 

  3. Arora J, Goyal S, Ramawat KG (2011) Co-evolution of pathogens, mechanism involved in pathogenesis and biocontrol of plant diseases: an overview. In: Merillon JM, Ramawat KG (eds) Plant defence: biological control, Progress in biological control, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1933-0_1

    Chapter  Google Scholar 

  4. Goyal S, Lambert C, Cluzet S, Merillon JM, Ramawat KG (2011) Secondary metabolites and plant defence. In: Merillon JM, Ramawat KG (eds) Plant defence: biological control, Progress in biological control, vol 12. Springer, Dordrecht

    Google Scholar 

  5. Hadacek F (2002) Secondary metabolites as plant traits: current assessment and future perspectives. Crit Rev Plant Sci 21(4):273–322

    Article  CAS  Google Scholar 

  6. Ramawat KG, Mathur M (2007) Factors affecting the production of secondary metabolites. In: Ramawat KG, Merillon JM (eds) Biotechnology: secondary metabolites. Taylor and Francis, Boca Raton

    Google Scholar 

  7. Suissa J, Barton K (2018) Intraspecific and interspecific variation in prickly poppy resistance to non-native generalist caterpillars. Bot Soc Mexico 95(2). http://www.botanicalsciences.com.mx/index.php/botanicalSciences/article/view/1798

    Article  Google Scholar 

  8. Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in co-evolution. Evolution 18:586–608. https://doi.org/10.2307/2406212

    Article  Google Scholar 

  9. Price PW (2002) Species interactions and the evolution of biodiversity. In: Herrera CM, Pellmyr O (eds) Plant-animal interactions: an evolutionary approach. Blackwell Scientific Publications, Oxford, pp 3–25

    Google Scholar 

  10. Kariñho-Betancourt E (2018) Plant-herbivore interactions and secondary metabolites of plants: ecological and evolutionary perspectives. Bot Sci 96. https://doi.org/10.17129/botsci.1860

    Article  Google Scholar 

  11. Bais HP, Weir TL, Perry LG, Gilroy S (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Ann Rev Plant Biol 57:233–266

    Article  CAS  Google Scholar 

  12. Rashid MH, Chung YR (2017) Induction of systemic resistance against insect herbivores in plants by beneficial soil microbes. Front Plant Sci 8:1816. https://doi.org/10.3389/fpls.2017.01816

    Article  PubMed  PubMed Central  Google Scholar 

  13. Richardson LL, Adler LS, Leonard AS et al (2015) Secondary metabolites in floral nectar reduce parasite infections in bumblebees. Proc R Soc B 282:20142471. https://doi.org/10.1098/rspb.2014.2471

    Article  PubMed  Google Scholar 

  14. Martinez M, Santamaria ME, Diaz-Mendoza M et al (2016) Phytocystatins: defense proteins against phytophagous insects and Acari. Int J Mol Sci 17:1747. https://doi.org/10.3390/ijms17101747

    Article  CAS  PubMed Central  Google Scholar 

  15. Rasmann S, Hiltpold I, Ali J (2012) The role of root-produced volatile secondary metabolites in mediating soil interactions. In: Giuseppe M (ed) Advances in selected plant physiology aspects. InTech. isbn:978-953-51-0557-2. Available from: http://www.intechopen.com/books/advances-in-selected-plant-physiology-aspects/the-role-of-root-producedvolatile-secondary-metabolites-in-mediating-soil-interactions

    Google Scholar 

  16. Bolnick DI, Amarasekare P, Araújo MS et al (2011) Why intraspecific trait variation matters in community ecology. Trends Ecol Evol 26:183–192

    Article  Google Scholar 

  17. Hughes AR, Inouye BD, Johnson MT, Underwood N, Vellend M (2008) Ecological consequences of genetic diversity. Ecol Lett 11:609–623

    Article  Google Scholar 

  18. Speed MP, Fenton A, Jones MG et al (2015) Co-evolution can explain defensive secondary metabolite diversity in plants. New Phytol 208:1251–1263. https://doi.org/10.1111/nph.13560

    Article  PubMed  Google Scholar 

  19. Karasov TL, Horton MW, Bergelson J (2014) Genomic variability as a driver of plant–pathogen co-evolution? Curr Opin Plant Biol 18:24–30. https://doi.org/10.1016/j.pbi.2013.12.003

    Article  PubMed  PubMed Central  Google Scholar 

  20. Clark JS (2010) Individuals and the variation needed for high species diversity in forest trees. Science 327:1129–1132

    Article  CAS  Google Scholar 

  21. Bustos-Segura C, Poelman EH, Reichelt EL et al (2017) Intraspecific chemical diversity among neighbouring plants correlates positively with plant size and herbivore load but negatively with herbivore damage. Ecol Lett 20:87–97

    Article  Google Scholar 

  22. Gols R, van Dam NM, Reichelt M, Gershenzon J et al (2018) Seasonal and herbivore-induced dynamics of foliar glucosinolates in wild cabbage (Brassica oleracea). Chemoecology 28(3):77–89

    Article  CAS  Google Scholar 

  23. Waters ER (2003) Molecular adaptation and the origin of land plants. Mol Phylogenet Evol 29:456–463

    Article  CAS  Google Scholar 

  24. Graham LE (1993) Origin of land plants. Wiley, New York

    Google Scholar 

  25. Sztein AE, Cohen JD, Slovin JP, Cooke TJ (1995) Auxin metabolism in representative land plants. Am J Bot 82:1514–1521

    Article  CAS  Google Scholar 

  26. Kroken SB, Graham LE, Cook ME (1996) Occurrence and evolutionary significance of resistant cell walls in charophytes and bryophytes. Am J Bot 83:1241–1254

    Article  Google Scholar 

  27. Lewis LA, McCourt RM (2004) Green algae and origin of land plants. Am J Bot 91(10):1535–1556

    Article  Google Scholar 

  28. Qiu YL, Lee J (2001) Transition to a land flora: a molecular phylogenetic perspective. J Phycol 36:799–802

    Article  Google Scholar 

  29. Pichersky E, Lewinsohn E (2011) Convergent evolution in plant specialized metabolism. Ann Rev Plant Biol 62:549–566

    Article  CAS  Google Scholar 

  30. Lange BM (2015) The evolution of plant secretory structures and emergence of terpenoid chemical diversity. Ann Rev Plant Biol 66:139–159

    Article  CAS  Google Scholar 

  31. Taylor TN, Osborne JM (1996) The importance of fungi in shaping the paleoecosystem. Rev Palaeobot Palynol 90:249–262

    Article  Google Scholar 

  32. Asina F, Brzonova I, Voeller K, Kozliak E et al (2016) Biodegradation of lignin by fungi, bacteria and laccases. Bioresour Technol 220:414–424

    Article  CAS  Google Scholar 

  33. Singh HP, Batish DR, Kohli RK (1999) Autotoxicity: concept, organisms and ecological significance. Crit Rev Plant Sci 18(6):757–772. https://doi.org/10.1080/07352689991309478

    Article  CAS  Google Scholar 

  34. Zhou X, Zhang J, Pan D et al (2018) P-Coumaric can alter the composition of cucumber rhizosphere microbial communities and induce negative plant-microbial interactions. Biol Fertil Soils 54:363. https://doi.org/10.1007/s00374-018-1265-x

    Article  CAS  Google Scholar 

  35. Bever JD, Platt TG, Morton ER (2012) Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Ann Rev Microbiol 66(1):265–283. https://doi.org/10.1146/annurev-micro-092611-150107

    Article  CAS  Google Scholar 

  36. Simpson BB, Neff JL (1983) Evolution and diversity of floral rewards. In: JonesCE, Little RJ (ed) Handbook of experimental pollination biology. Van Nostrand Reinhold Co, New York

    Google Scholar 

  37. Richardson LL, Adler LS, Leonard AS et al (2015) Secondary metabolites in floral nectar reduce parasite infections in bumblebees. Proc R Soc B 282:20142471. https://doi.org/10.1098/rspb.2014.2471

    Article  PubMed  Google Scholar 

  38. Stevenson PC, Nicolson SW, Wright GA (2017) Plant secondary metabolites in nectar: impacts on pollinators and ecological functions. Funct Ecol 31:65–75

    Article  Google Scholar 

  39. Frolich C, HartmannT OD (2006) Tissue distribution and biosynthesis of 1,2-saturated pyrrolizidine alkaloids in Phalaenopsis hybrids (Orchidaceae). Phytochemistry 67:1493–1502

    Article  Google Scholar 

  40. Manson JS, Rasmann S, Halitschke R, ThomsonJD, Agrawal AA (2012) Cardenolides in nectar may be more than a consequence of allocation to other plant parts: a phylogenetic study of Asclepias. Funct Ecol 26:1100–1110

    Article  Google Scholar 

  41. Irwin RE, Cook D, Richardson LL, Gardner DL (2014) Secondary compounds in floral rewards of toxic rangeland plants: impacts on pollinators. J Agric Food Chem 62:7335–7344

    Article  CAS  Google Scholar 

  42. Cook D, Manson JS, Gardner DR, Welch KD, Irwin RE (2013) Norditerpene alkaloid concentrations in tissues and floral rewards of larkspurs and impacts on pollinators. Biochem Syst Ecol 48:123–131

    Article  CAS  Google Scholar 

  43. Wright GA, Baker DD, Palmer MJ, Stabler D, Mustard JA, Power EF, Borland AM, Stevenson PC (2013) Caffeine in floral nectar enhances a pollinator’s memory of reward. Science 339:1202–1204. https://doi.org/10.1126/science.1228806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jørgensen K, Stranden M, Sandoz J-C, Menzel R, Mustaparta H (2007) Effects of two bitter substances on olfactory conditioning in the moth Heliothis virescens. J Exp Biol 210:2563–2573

    Article  Google Scholar 

  45. Aurores-Weber A, de Brito Sanchez MG, Giurfa M, Dyer AG (2010) Aversive reinforcement improves visual discrimination learning in free-flying honeybees. PLoS One 5:e15370

    Article  Google Scholar 

  46. Wright GA, Mustard JA, Simcock NK, Ross-Taylor AAR, McNicholas LD, Popescu A et al (2010) Parallel reinforcement pathways for conditioned food aversions in the honeybee. Curr Biol 20:2234–2240

    Article  CAS  Google Scholar 

  47. Ayestaran A, Giurfa M, de Brito Sanchez MG (2010) Toxic but drank: gustatory aversive compounds induce post-ingestional malaise in harnessed honeybees. PLoS One 5:e15000

    Article  Google Scholar 

  48. Wright GA, Baker D, Palmer MJ, Stabler D, Mustard JD, Power E et al (2013) Caffeine in floral nectar enhances a pollinator’s memory of reward. Science 339:1202–1204

    Article  CAS  Google Scholar 

  49. Schaeffer RN, Irwin RE (2014) Yeasts in nectar enhance male fitness in a montane perennial herb. Ecology 95:1792–1798

    Article  Google Scholar 

  50. Manson J, Otterstatter M, Thomson J (2010) Consumption of a nectar alkaloid reduces pathogen load in bumble bees. Oecologia 162:81–89. https://doi.org/10.1007/s00442-009-1431-9

    Article  PubMed  Google Scholar 

  51. Glaum P, Kessler A (2017) Functional reduction in pollination through herbivore-induced pollinator limitation and its potential in mutualist communities. Nat Commun 8:2031. https://doi.org/10.1038/s41467-017-02072-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Adler LS, Wink M, Distl M, Lentz AJ (2006) Leaf herbivory and nutrients increase nectar alkaloids. Ecol Lett 9:960–967

    Article  Google Scholar 

  53. Ohnmeiss TE, Baldwin IT (2000) Optimal defense theory predicts the ontogeny of an induced nicotine defense. Ecol Soc Am 81:1765–1783

    Google Scholar 

  54. Campbell SA (2015) Ecological mechanisms for the co-evolution of mating systems and defence. New Phytol 205:1047–1053

    Article  Google Scholar 

  55. Bouwnester HJ, Matusova R, Zhongkui S et al (2003) Secondary metabolite signalling in host–parasitic plant interactions. Curr Opin Plant Biol 6:358–364

    Article  Google Scholar 

  56. Oracz K, Bailly C, Gniazdowska A, Come D, Corbineau F, Bogatek R (2007) Induction of oxidative stress by sunflower phytotoxins in germinating mustard seeds. J Chem Ecol 33:251–264

    Article  CAS  Google Scholar 

  57. Blum U (2011) Plant–plant allelopathic interactions. In: Blum U (ed) Plant-plant Allelopathic interactions. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0683-5_1

    Chapter  Google Scholar 

  58. Weir TL, Park SW, Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7:472–479

    Article  CAS  Google Scholar 

  59. Bertin C, Yang XH, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    Article  CAS  Google Scholar 

  60. Chaves N, Sosa T, Valares C, Alias JC (2015) Routes of incorporation of phytotoxic compounds of Cistus ladanifer L into soil. Allelopathy J 36:25–36

    Google Scholar 

  61. Raimundo JR, Frazão DF, Domingues JL (2018) Neglected Mediterranean plant species are valuable resources: the example of Cistus ladanifer. Planta 248:1351–1364

    Article  CAS  Google Scholar 

  62. Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2002) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301(5638):1377–1380. https://doi.org/10.1126/science.1083245

    Article  CAS  Google Scholar 

  63. Ren X, Yan Z-Q, He X-F, Li XZ, Qin B (2017) Allelopathic effect of β-cembrenediol and its mode of action: induced oxidative stress in lettuce seedlings. Emirates J Food Agric 29:441–449

    Article  Google Scholar 

  64. Yadav V, Singh NB, Singh H, Singh A, Hussain I (2016) Allelopathic invasion of alien plant species in India and their management strategies: a review. Trop Plant Res 3(1):87–101

    Google Scholar 

  65. Getachew S, Demissew S, Woldemariam T (2012) Allelopathic effects of the invasive Prosopis juliflora (Sw.) DC. On selected native plant species in middle awash, southern Afar rift of Ethiopia. Manag Biol Invasions 3(2):105–114

    Article  Google Scholar 

  66. Montesinos-Navarro A, Estrada A, Font X, Matias MG, Meireles C et al (2018) Community structure informs species geographic distributions. PLoS One 13(7):e0200556

    Article  Google Scholar 

  67. Fraire-velasquez S, Balderas-Hernandez VE (2013) Abiotic stress in plants and metabolic responses. In: Vahdati K, Leslie C (eds) Abiotic Stress - Plant Responses and Applications in Agriculture. https://doi.org/10.5772/54859

    Google Scholar 

  68. Ye Y, Ding Y, Jiang Q, Wang F, Sun J, Zhu C (2017) The role of receptor-like protein kinases (RLKs) in abiotic stress response in plants. Plant Cell Rep 36(2):235–242. https://doi.org/10.1007/s00299-016-2084-x. Epub 2016 Dec 8

    Article  CAS  PubMed  Google Scholar 

  69. Thompson JN (2006) Mutualistic webs of species. Science 312:372–373

    Article  CAS  Google Scholar 

  70. Strong DR, Lawton JH, Southwood TRE (1984) Insects on plants: community patterns and mechanisms. Harvard University Press, Cambridge

    Google Scholar 

  71. Llorente-Bousquets J, Ocegueda S (2008) Estado del conocimiento de la biota. In: Contreras S, Chiang F, Papavero N (eds) Capital Natural de México, Conocimiento Actual de la Biodiversidad, vol I. Conabio, Mexico, pp 283–322

    Google Scholar 

  72. Mithoefer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Ann Rev Plant Biol 63:431–450

    Article  CAS  Google Scholar 

  73. Missbach C, Dweck HKM, Vogel H et al (2014) Evolution of insect olfactory receptors. eLife 3:e02115. https://doi.org/10.7554/eLife.02115

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wybouw N, Dermauw M, Tirry L et al (2014) A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning. eLife 3:e02365. https://doi.org/10.7554/eLife.02365

    Article  PubMed  PubMed Central  Google Scholar 

  75. Simon JC, Elencon ED, Guy E et al (2015) Genomics of adaptation to host-plants in herbivorous insects. Brief Funct Genomics 14(6):413–423. https://doi.org/10.1093/bfgp/elv015

    Article  CAS  PubMed  Google Scholar 

  76. Baracchi D, Marples A, Jenkins AJ, Leitch AR, Chittka L (2017) Nicotine in floral nectar pharmacologically influences bumblebee learning of floral features. Sci Rep 7:1951

    Article  CAS  Google Scholar 

  77. Manson JS, Otterstatter MC, Thomson JD (2010) Consumption of a nectar alkaloid reduces pathogen load in bumble bees. Oecologia 162:81–89

    Article  Google Scholar 

  78. Simone-Finstrom MD, Spivak M (2012) Increased resin collection after parasite challenge: a case of self-medication in honey bees? PLoS One 7:1–7. https://doi.org/10.1371/journal.pone.0034601

    Article  CAS  Google Scholar 

  79. Goggin FL, Lorence A, Topp CN (2015) Applying high-throughput phenotyping to plant–insect interactions: picturing more resistant crops. Curr Opin Insect Sci 9:69–76. https://doi.org/10.1016/j.cois.2015.03.002

    Article  Google Scholar 

  80. Tamiru A, Khan ZR, Bruce TJA (2015) New directions for improving crop resistance to insects by breeding for egg induced defence. Curr Opin Insect Sci 9:51–55. https://doi.org/10.1016/j.cois.2015.02.011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaily Goyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ramawat, K.G., Goyal, S. (2019). Co-evolution of Secondary Metabolites During Biological Competition for Survival and Advantage: An Overview. In: Merillon, JM., Ramawat, K. (eds) Co-Evolution of Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-76887-8_45-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76887-8_45-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76887-8

  • Online ISBN: 978-3-319-76887-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics