Skip to main content

Decrypting Early Perception of Biotic Stress on Plants

  • Living reference work entry
  • First Online:
Co-Evolution of Secondary Metabolites

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Plant response to biotic stress induced by various herbivores and pathogens involves different defense mechanisms. Plant defense strategies against biotic stressors start in the plasma membrane, where the biotic stressors interact physically by mechanical damage and chemically by introducing elicitors or triggering plant-derived signaling molecules. The concept of “early” is relative and depends on the dynamics of plant cells responding to stimuli. The stimuli triggered by different biotic stressors result in different rates of plant responses, which often depend on the intensity and the rate of the stimulus. In plant responses to stimuli, the term “early” is often used to indicate the first visible or detectable plant response. Plant early biotic stress responses vary based on the type of the stressors. Based on the type of stressors, the rate of early responses is classified as (1) early responses to microbes, (2) early responses to herbivores, and (3) early response to nearby plants. This chapter discusses the variability in early plant responses to stimuli caused by biotic stressors and the importance of understanding the timing of plant responses to changing biotic stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AM:

Arbuscular mycorrhiza

BAK1:

Brassinosteroid-insensitive 1 (BRI1)-associated kinase 1

BIK1:

Botrytis-induced kinase 1

BRI1:

Brassinosteroid-insensitive 1

CCaMK:

Calcium−/calmodulin-dependent protein kinase

CDPK:

Ca2+-dependent protein kinases

CERK1:

Chitin elicitor receptor kinase 1

CSSP:

Common symbiotic signaling pathway

DAMPs:

Damage-associated molecular patterns

EF-Tu:

Elongation factor-Tu

ETI:

Effector-triggered immunity

FACs:

Fatty acid amino acid conjugates

FLS2:

Flagellin-sensitive 2

GA:

Gibberellic acid

GLV:

Green leaf volatile

HAMPs:

Herbivore-associated molecular patterns

IAA:

Indole acetic acid

LCO:

Lipochitooligosaccharidic

LRR:

Leucine-rich repeat

LysM:

Lysine motifs

MAMPs:

Microbe-associated molecular patterns

MeSA:

Methyl salicylate

MTI:

MAMP-triggered immunity

NF:

Nodulation (Nod) factors

OS:

Oral secretions

PAMPs:

Pathogen-associated molecular patterns

PGPR:

Plant growth-promoting rhizobacteria

PNG:

Peptidoglycan

PRRs:

Pattern recognition receptors

PTI:

PAMP-triggered immunity

RLKs:

Receptor-like kinases

RLPs:

Receptor-like proteins

ROS:

Reactive oxygen species

Vm:

Transmembrane potential

WIPK:

Wound-induced protein kinase

References

  1. Zebelo SA, Maffei ME (2015) Role of early signalling events in plant-insect interactions. J Exp Bot 66:435–448. https://doi.org/10.1093/jxb/eru480

    Article  CAS  PubMed  Google Scholar 

  2. Pel MJC, Pieterse CMJ (2013) Microbial recognition and evasion of host immunity. J Exp Bot 64:1237–1248. https://doi.org/10.1093/jxb/ers262

    Article  CAS  PubMed  Google Scholar 

  3. Trda L, Boutrot F, Claverie J, Brule D, Dorey S, Poinssot B (2015) Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline. Front Plant Sci 6:219. https://doi.org/10.3389/Fpls.2015.00219

    Article  PubMed  PubMed Central  Google Scholar 

  4. Newman MA, Sundelin T, Nielsen JT, Erbs G (2013) MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front Plant Sci 4:139. https://doi.org/10.3389/Fpls.2013.00139

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zipfel C (2014) Plant pattern-recognition receptors. Trends Immunol 35:345–351. https://doi.org/10.1016/j.it.2014.05.004

    Article  CAS  PubMed  Google Scholar 

  6. Sakamoto T, Deguchi M, Brustolini OJB, Santos AA, Silva FF, Fontes EPB (2012) The tomato RLK superfamily: phylogeny and functional predictions about the role of the LRRII-RLK subfamily in antiviral defense. BMC Plant Biol 12:229. https://doi.org/10.1186/1471-2229-12-229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu JY, Chen NN, Grant JN, Cheng ZM, Stewart CN, Hewezi T (2015) Soybean kinome: functional classification and gene expression patterns. J Exp Bot 66:1919–1934. https://doi.org/10.1093/jxb/eru537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu WD, Liu JL, Triplett L, Leach JE, Wang GL (2014) Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol 52:213–241. https://doi.org/10.1146/annurev-phyto-102313-045926

    Article  CAS  PubMed  Google Scholar 

  9. Cui HT, Tsuda K, Parker JE (2015) Effector-triggered immunity: from pathogen perception to robust defense. Annu Rev Plant Biol 66:487–511. https://doi.org/10.1146/annurev-arplant-050213-040012

    Article  CAS  PubMed  Google Scholar 

  10. Bricchi I, Bertea CM, Occhipinti A, Paponov IA, Maffei ME (2012) Dynamics of membrane potential variation and gene expression induced by Spodoptera littoralis, Myzus persicae, and Pseudomonas syringae in Arabidopsis. PLoS One 7(10):e46673. https://doi.org/10.1371/journal.pone.0046673

    Article  CAS  Google Scholar 

  11. Wu SJ, Shan LB, He P (2014) Microbial signature-triggered plant defense responses and early signaling mechanisms. Plant Sci 228:118–126. https://doi.org/10.1016/j.plantsci.2014.03.001

    Article  CAS  PubMed  Google Scholar 

  12. Sun YD, Li L, Macho AP, Han ZF, Hu ZH, Zipfel C, Zhou JM, Chai JJ (2013) Structural basis for flg22-induced activation of the arabidopsis FLS2-BAK1 immune complex. Science 342:624–628. https://doi.org/10.1126/science.1243825

    Article  CAS  PubMed  Google Scholar 

  13. Schulze B, Mentzel T, Jehle AK, Mueller K, Beeler S, Boller T, Felix G, Chinchilla D (2010) Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. J Biol Chem 285:9444–9451. https://doi.org/10.1074/jbc.M109.096842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jeworutzki E, Roelfsema MRG, Anschutz U, Krol E, Elzenga JTM, Felix G, Boller T, Hedrich R, Becker D (2010) Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca2+−associated opening of plasma membrane anion channels. Plant J 62:367–378. https://doi.org/10.1111/j.1365-313X.2010.04155.x

    Article  CAS  PubMed  Google Scholar 

  15. Willmann R et al (2011) Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc Natl Acad Sci USA 108:19824–19829. https://doi.org/10.1073/pnas.1112862108

    Article  PubMed  Google Scholar 

  16. Liu B et al (2012) Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity. Plant Cell 24:3406–3419. https://doi.org/10.1105/tpc.112.102475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. De Jonge R et al (2010) Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329:953–955. https://doi.org/10.1126/science.1190859

    Article  CAS  PubMed  Google Scholar 

  18. Cao YR, Liang Y, Tanaka K, Nguyen CT, Jedrzejczak RP, Joachimiak A, Stacey G (2014) The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. Elife 3. https://doi.org/10.7554/eLife.03766

  19. Akamatsu A et al (2013) An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity. Cell Host Microbe 13:465–476. https://doi.org/10.1016/j.chom.2013.03.007

    Article  CAS  PubMed  Google Scholar 

  20. Kishi-Kaboshi M et al (2010) A rice fungal MAMP-responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synthesis. Plant J 63:599–612. https://doi.org/10.1111/j.1365-313X.2010.04264.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shimizu T et al (2010) Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J 64:204–214. https://doi.org/10.1111/j.1365-313X.2010.04324.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shinya T, Motoyama N, Ikeda A, Wada M, Kamiya K, Hayafune M, Kaku H, Shibuya N (2012) Functional characterization of CEBiP and CERK1 homologs in arabidopsis and rice reveals the presence of different chitin receptor systems in plants. Plant Cell Physiol 53:1696–1706. https://doi.org/10.1093/pcp/pcs113

    Article  CAS  PubMed  Google Scholar 

  23. Liu TT et al (2012) Chitin-induced dimerization activates a plant immune receptor. Science 336:1160–1164. https://doi.org/10.1126/science.1218867

    Article  CAS  PubMed  Google Scholar 

  24. Wan JR, Tanaka K, Zhang XC, Son GH, Brechenmacher L, Tran HNN, Stacey G (2012) LYK4, a lysin motif receptor-like kinase, is important for chitin signaling and plant innate immunity in arabidopsis. Plant Physiol 160:396–406. https://doi.org/10.1104/pp.112.201699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shen Y, Liu N, Li C, Wang X, Xu X, Chen W, Xing G, Zheng W (2017) The early response during the interaction of fungal phytopathogen and host plant. Open Biol 7. https://doi.org/10.1098/rsob.170057

    Article  Google Scholar 

  26. Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci U S A 99:9328–9333. https://doi.org/10.1073/pnas.142284999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nirmala J, Drader T, Chen X, Steffenson B, Kleinhofs A (2010) Stem rust spores elicit rapid RPG1 phosphorylation. Mol Plant-Microbe Interact 23:1635–1642. https://doi.org/10.1094/MPMI-06-10-0136

    Article  CAS  PubMed  Google Scholar 

  28. Nirmala J, Brueggeman R, Maier C, Clay C, Rostoks N, Kannangara CG, von Wettstein D, Steffenson BJ, Kleinhofs A (2006) Subcellular localization and functions of the barley stem rust resistance receptor-like serine/threonine-specific protein kinase Rpg1. Proc Natl Acad Sci U S A 103:7518–7523. https://doi.org/10.1073/pnas.0602379103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mandadi KK, Scholthof KBG (2013) Plant immune responses against viruses: how does a virus cause disease? Plant Cell 25:1489–1505. https://doi.org/10.1105/tpc.113.111658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Korner CJ, Klauser D, Niehl A, Dominguez-Ferreras A, Chinchilla D, Boller T, Heinlein M, Hann DR (2013) The immunity regulator BAK1 contributes to resistance against diverse RNA viruses. Mol Plant Microbe Interact 26:1271–1280. https://doi.org/10.1094/Mpmi-06-13-0179-R

    Article  CAS  PubMed  Google Scholar 

  31. Incarbone M, Dunoyer P (2013) RNA silencing and its suppression: novel insights from in planta analyses. Trends Plant Sci 18:382–392. https://doi.org/10.1016/j.tplants.2013.04.001

    Article  CAS  PubMed  Google Scholar 

  32. Kube M et al (2014) Analysis of the complete genomes of Acholeplasma brassicae, A. palmae and A. laidlawii and their comparison to the obligate parasites from ‘Candidatus Phytoplasma’. J Mol Microb Biotech 24:19–36. https://doi.org/10.1159/000354322

    Article  CAS  Google Scholar 

  33. Win J et al (2012) Effector biology of plant-associated organisms: concepts and perspectives. Cold Spring Harb Symp Quant Biol 77:235–247. https://doi.org/10.1101/sqb.2012.77.015933

    Article  CAS  PubMed  Google Scholar 

  34. MacLean AM, Sugio A, Makarova OV, Findlay KC, Grieve VM, Toth R, Nicolaisen M, Hogenhout SA (2011) Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiol 157:831–841. https://doi.org/10.1104/pp.111.181586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Toruno TY, Music MS, Simi S, Nicolaisen M, Hogenhout SA (2010) Phytoplasma PMU1 exists as linear chromosomal and circular extrachromosomal elements and has enhanced expression in insect vectors compared with plant hosts. Mol Microbiol 77:1406–1415. https://doi.org/10.1111/j.1365-2958.2010.07296.x

    Article  CAS  PubMed  Google Scholar 

  36. Caillaud MC, Wirthmueller L, Fabro G, Piquerez SJ, Asai S, Ishaque N, Jones JD (2012) Mechanisms of nuclear suppression of host immunity by effectors from the Arabidopsis downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa). Cold Spring Harb Symp Quant Biol 77:285–293. https://doi.org/10.1101/sqb.2012.77.015115

    Article  PubMed  Google Scholar 

  37. Musetti R, Buxa SV, De Marco F, Loschi A, Polizzotto R, Kogel KH, van Bel AJE (2013) Phytoplasma-triggered Ca2+ influx is involved in sieve-tube blockage. Mol Plant-Microbe Interact 26:379–386. https://doi.org/10.1094/Mpmi-08-12-0207-R

    Article  CAS  PubMed  Google Scholar 

  38. Pineda A, Soler R, Weldegergis BT, Shimwela MM, Van Loon JJA, Dicke M (2013) Non-pathogenic rhizobacteria interfere with the attraction of parasitoids to aphid-induced plant volatiles via jasmonic acid signalling. Plant Cell Environ 36:393–404. https://doi.org/10.1111/j.1365-3040.2012.02581.x

    Article  CAS  PubMed  Google Scholar 

  39. Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25:139–150. https://doi.org/10.1094/Mpmi-06-11-0179

    Article  CAS  PubMed  Google Scholar 

  40. Planchamp C, Glauser G, Mauch-Mani B (2015) Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants. Front Plant Sci 5:719. https://doi.org/10.3389/Fpls.2014.00719

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kumar AS, Lakshmanan V, Caplan JL, Powell D, Czymmek KJ, Levia DF, Bais HP (2012) Rhizobacteria Bacillus subtilis restricts foliar pathogen entry through stomata. Plant J 72:694–706. https://doi.org/10.1111/j.1365-313X.2012.05116.x

    Article  CAS  PubMed  Google Scholar 

  42. Lopez-Gomez M, Sandal N, Stougaard J, Boller T (2012) Interplay of flg22-induced defence responses and nodulation in Lotus japonicus. J Exp Bot 63:393–401. https://doi.org/10.1093/jxb/err291

    Article  CAS  PubMed  Google Scholar 

  43. Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375. https://doi.org/10.1146/annurev-phyto-082712-102340

    Article  CAS  PubMed  Google Scholar 

  44. Liang Y, Cao YR, Tanaka K, Thibivilliers S, Wan JR, Choi J, Kang CH, Qiu J, Stacey G (2013) Nonlegumes respond to rhizobial Nod factors by suppressing the innate immune response. Science 341:1384–1387. https://doi.org/10.1126/science.1242736

    Article  CAS  PubMed  Google Scholar 

  45. Fliegmann J et al (2013) Lipo-chitooligosaccharidic symbiotic signals are recognized by LysM receptor-like kinase LYR3 in the Legume Medicago truncatula. ACS Chem Biol 8:1900–1906. https://doi.org/10.1021/cb400369u

    Article  CAS  PubMed  Google Scholar 

  46. Bucher M, Hause B, Krajinski F, Kuster H (2014) Through the doors of perception to function in arbuscular mycorrhizal symbioses. New Phytol 204:833–840. https://doi.org/10.1111/nph.12862

    Article  CAS  PubMed  Google Scholar 

  47. Czaja LF, Hogekamp C, Lamm P, Maillet F, Martinez EA, Samain E, Denarie J, Kuster H, Hohnjec N (2012) Transcriptional responses toward diffusible signals from symbiotic microbes reveal MtNFP- and MtDMI3-dependent reprogramming of host gene expression by arbuscular mycorrhizal fungal lipochitooligosaccharides. Plant Physiol 159:1671–1685. https://doi.org/10.1104/pp.112.195990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Plett JM, Martin FM (2018) Know your enemy, embrace your friend: using omics to understand how plants respond differently to pathogenic and mutualistic microorganisms. Plant J 93:729–746. https://doi.org/10.1111/tpj.13802

    Article  CAS  PubMed  Google Scholar 

  49. Chen M, Arato M, Borghi L, Nouri E, Reinhardt D (2018) Beneficial services of arbuscular mycorrhizal fungi – from ecology to application. Front Plant Sci 9:1270. https://doi.org/10.3389/fpls.2018.01270

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rey T, Chatterjee A, Buttay M, Toulotte J, Schornack S (2015) Medicago truncatula symbiosis mutants affected in the interaction with a biotrophic root pathogen. New Phytol 206:497–500. https://doi.org/10.1111/nph.13233

    Article  PubMed  Google Scholar 

  51. Xu S, Zhou WW, Pottinger S, Baldwin IT (2015) Herbivore associated elicitor-induced defences are highly specific among closely related Nicotiana species. BMC Plant Biol 15:2. https://doi.org/10.1186/S12870-014-0406-0

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gouhier-Darimont C, Schmiesing A, Bonnet C, Lassueur S, Reymond P (2013) Signalling of Arabidopsis thaliana response to Pieris brassicae eggs shares similarities with PAMP-triggered immunity. J Exp Bot 64:665–674. https://doi.org/10.1093/jxb/ers362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Maffei ME, Arimura GI, Mithoefer A (2012) Natural elicitors, effectors and modulators of plant responses. Nat Prod Rep 29:1288–1303

    Article  CAS  Google Scholar 

  54. Huffaker A et al (2013) Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense. Proc Natl Acad Sci USA 110:5707–5712. https://doi.org/10.1073/pnas.1214668110

    Article  CAS  PubMed  Google Scholar 

  55. Kanchiswamy CN et al (2010) Regulation of Arabidopsis defense responses against Spodoptera littoralis by CPK-mediated calcium signaling. BMC Plant Biol 10:97. https://doi.org/10.1186/1471-2229-10-97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hu L, Ye M, Kuai P, Ye M, Erb M, Lou Y (2018) OsLRR-RLK1, an early responsive leucine-rich repeat receptor-like kinase, initiates rice defense responses against a chewing herbivore. New Phytol 219:1097–1111. https://doi.org/10.1111/nph.15247

    Article  CAS  PubMed  Google Scholar 

  57. Cao YR, Aceti DJ, Sabat G, Song JQ, Makino S, Fox BG, Bent AF (2013) Mutations in FLS2 Ser-938 dissect signaling activation in FLS2-mediated arabidopsis immunity. PLoS Pathog 9:e1003313. https://doi.org/10.1371/journal.ppat.1003313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yang DH, Hettenhausen C, Baldwin IT, Wu JQ (2012) Silencing Nicotiana attenuata calcium-dependent protein kinases, CDPK4 and CDPK5, strongly up-regulates wound- and herbivory-induced jasmonic acid accumulations. Plant Physiol 159:1591–1607. https://doi.org/10.1104/pp.112.199018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Camoni L, Barbero F, Aducci P, Maffei ME (2018) Spodoptera littoralis oral secretions inhibit the activity of Phaseolus lunatus plasma membrane H+-ATPase. PLoS One 13:e0202142. https://doi.org/10.1371/journal.pone.0202142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang DH, Hettenhausen C, Baldwin IT, Wu JQ (2011) BAK1 regulates the accumulation of jasmonic acid and the levels of trypsin proteinase inhibitors in Nicotiana attenuata’s responses to herbivory. J Exp Bot 62:641–652. https://doi.org/10.1093/jxb/erq298

    Article  CAS  PubMed  Google Scholar 

  61. Monaghan J et al (2014) The calcium-dependent protein kinase CPK28 buffers plant immunity and regulates BIK1 turnover. Cell Host Microbe 16:605–615. https://doi.org/10.1016/j.chom.2014.10.007

    Article  CAS  PubMed  Google Scholar 

  62. Kadota Y et al (2014) Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Mol Cell 54:43–55. https://doi.org/10.1016/j.molcel.2014.02.021

    Article  CAS  PubMed  Google Scholar 

  63. Li L et al (2014) The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe 15:329–338. https://doi.org/10.1016/j.chom.2014.02.009

    Article  CAS  PubMed  Google Scholar 

  64. Agliassa C, Maffei ME (2018) Origanum vulgare Terpenoids Induce Oxidative Stress and Reduce the Feeding Activity of Spodoptera littoralis. Int J Mol Sci 19. https://doi.org/10.3390/ijms19092805

    Article  Google Scholar 

  65. Prince DC, Drurey C, Zipfel C, Hogenhout SA (2014) The leucine-rich repeat receptor-like kinase brassinosteroid insensitive1-associated kinase1 and the cytochrome P450 phytoalexin deficient3 contribute to innate immunity to aphids in arabidopsis. Plant Physiol 164:2207–2219. https://doi.org/10.1104/pp.114.235598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pierik R, Ballare CL, Dicke M (2014) Ecology of plant volatiles: taking a plant community perspective. Plant Cell Environ 37:1845–1853. https://doi.org/10.1111/pce.12330

    Article  PubMed  Google Scholar 

  67. Carriedo LG, Maloof JN, Brady SM (2016) Molecular control of crop shade avoidance. Curr Opin Plant Biol 30:151–158. https://doi.org/10.1016/j.pbi.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  68. Warnasooriya SN, Brutnell TP (2014) Enhancing the productivity of grasses under high-density planting by engineering light responses: from model systems to feedstocks. J Exp Bot 65:2825–2834. https://doi.org/10.1093/jxb/eru221

    Article  PubMed  Google Scholar 

  69. Young NF, Ferguson BJ, Antoniadi I, Bennett MH, Beveridge CA, Turnbull CGN (2014) Conditional auxin response and differential cytokinin profiles in shoot branching mutants. Plant Physiol 165:1723–1736

    Article  CAS  Google Scholar 

  70. Bou-Torrent J et al (2014) Plant proximity perception dynamically modulates hormone levels and sensitivity in Arabidopsis. J Exp Bot 65:2937–2947. https://doi.org/10.1093/jxb/eru083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Heil M (2014) Herbivore- induced plant volatiles: targets, perception and unanswered questions. New Phytol 204:297–306. https://doi.org/10.1111/nph.12977

    Article  CAS  Google Scholar 

  72. Simpraga M, Takabayashi J, Holopainen JK (2016) Language of plants: where is the word? J Integr Plant Biol 58:343–349. https://doi.org/10.1111/jipb.12447

    Article  CAS  PubMed  Google Scholar 

  73. Sugimoto K et al (2014) Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense. Proc Natl Acad Sci USA 111:7144–7149

    Article  CAS  Google Scholar 

  74. Manohar M et al (2015) Identification of multiple salicylic acid-binding proteins using two high throughput screens. Front Plant Sci 5:777

    Article  Google Scholar 

  75. Kikuta Y, Ueda H, Nakayama K, Katsuda Y, Ozawa R, Takabayashi J, Hatanaka A, Matsuda K (2011) Specific regulation of pyrethrin biosynthesis in Chrysanthemum cinerariaefolium by a blend of volatiles emitted from artificially damaged conspecific plants. Plant Cell Physiol 52:588–596

    Article  CAS  Google Scholar 

  76. Zebelo SA, Matsui K, Ozawa R, Maffei ME (2012) Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicum) plant-to-plant communication. Plant Sci 196:93–100

    Article  CAS  Google Scholar 

  77. Holopainen JK, Gershenzon J (2010) Multiple stress factors and the emission of plant VOCs. Trends Plant Sci 15:176–184

    Article  CAS  Google Scholar 

  78. Hartikainen K et al (2012) Impact of elevated temperature and ozone on the emission of volatile organic compounds and gas exchange of silver birch (Betula pendula Roth). Environ Exper Bot 84:33–43

    Article  CAS  Google Scholar 

  79. Pierik R, Mommer L, Voesenek LACJ (2013) Molecular mechanisms of plant competition: neighbour detection and response strategies. Funct Ecol 27:841–853. https://doi.org/10.1111/1365-2435.12010

    Article  Google Scholar 

  80. Bouwmeester HJ, Roux C, Lopez-Raez JA, Becard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224–230

    Article  CAS  Google Scholar 

  81. Lopez-Raez JA, Pozo MJ, Garcia-Garrido JM (2011) Strigolactones: a cry for help in the rhizosphere. Botany 89:513–522

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon A. Zebelo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zebelo, S.A. (2019). Decrypting Early Perception of Biotic Stress on Plants. In: Merillon, JM., Ramawat, K. (eds) Co-Evolution of Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-76887-8_30-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76887-8_30-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76887-8

  • Online ISBN: 978-3-319-76887-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics