Skip to main content

Cellulose-Based Composite Hydrogels: Preparation, Structures, and Applications

  • Living reference work entry
  • First Online:
Cellulose-Based Superabsorbent Hydrogels

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

Abstract

In this chapter, cellulose-based composite hydrogels were summarized in three categories according to the components. S ynthetic polymer/cellulose composite hydrogels combine the advantages of synthetic polymers and cellulose. Soluble cellulose derivatives are feasible to construct the composite hydrogels with polyacrylamide, polyvinyl alcohol, polyacrylic acid, and so on. The composite hydrogels are normally applied as superabsorbents for heavy metal ions and dyes because the abundant functional groups in the hydrogels can act as binding sites. Due to most of the crosslinked polymeric hydrogels suffering from poor mechanical performance, low breaking strain, and sensitivity to fracture, cellulose nanocrystal can be combined into the hydrogels to enhance the mechanical properties significantly in order to obtain the mechanically strong, tough, or highly stretchable nanocomposite hydrogels. Natural macromolecules/cellulose composite hydrogels have a great potential for applications in tissue engineering, drug delivery, sensors, and purification for their excellent biocompatible, biodegradable, and nontoxic properties. Cellulose hydrogels have high mechanical strength and good permeability for liquids, gases, and electrolytes, the composite hydrogels which combine cellulose and extracellular matrixes are very promising scaf folds for the tissue repair and regeneration. Chitosan, alginate, and other polysaccharides are popular natural macromolecules for the composite hydrogels. Inorganics/cellulose composite hydrogels have recently received considerable attentions in both academic research and industrial application due to their excellent hybrid properties. Montmorillonite, clay, and bentonite are traditional inorganic minerals to fabricate the composite hydrogels as superabsorbents for water treatment, personal care, and agriculture. Nanoparticles of ZnO and Ag are also incorporated into the cellulose hydrogels to render the antimicrobial activity to biomedical materials. Recently, the novel cellulose-based composite hydrogels with graphene oxide, carbon nanotube, and carbon dots show potential applications in supercapacitors and biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Silva AK, Richard C, Bessodes M, Scherman D, Merten OW (2009) Growth factor delivery approaches in hydrogels. Biomacromolecules 10(1):9–18

    Article  PubMed  CAS  Google Scholar 

  2. Chang CY, Zhang LN (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84(1):40–53

    Article  CAS  Google Scholar 

  3. Fekete T, Borsa J, Takács E, Wojnárovits L (2016) Synthesis of cellulose-based superabsorbent hydrogels by high-energy irradiation in the presence of crosslinking agent. Radiat Phys Chem 118:114–119

    Article  CAS  Google Scholar 

  4. Wang WB, Wang AQ (2010) Nanocomposite of carboxymethyl cellulose and attapulgite as a novel ph-sensitive superabsorbent: synthesis, characterization and properties. Carbohydr Polym 82(1):83–91

    Article  CAS  Google Scholar 

  5. Gao XY, Cao Y, Song XF, Zhang Z, Zhuang XL, He CL, Chen XS (2014) Biodegradable, ph-responsive carboxymethyl cellulose/poly(acrylic acid) hydrogels for oral insulin delivery. Macromol Biosci 14(4):565–575

    Article  PubMed  CAS  Google Scholar 

  6. Bajpai AK, Mishra A (2004) Ionizable interpenetrating polymer networks of carboxymethyl cellulose and polyacrylic acid: evaluation of water uptake. J Appl Polym Sci 93(5):2054–2065

    Article  CAS  Google Scholar 

  7. Wang WB, Wang AQ (2011) Preparation, swelling, and stimuli-responsive characteristics of superabsorbent nanocomposites based on carboxymethyl cellulose and rectorite. Polym Adv Technol 22(12):1602–1611

    Article  CAS  Google Scholar 

  8. Mohy Eldin MS, El-Sherif HM, Soliman EA, Elzatahry AA, Omer AM (2011) Polyacrylamide-grafted carboxymethyl cellulose: smart pH-sensitive hydrogel for protein concentration. J Appl Polym Sci 122:469–479

    Article  CAS  Google Scholar 

  9. Said HM, Abd Alla SGA, El-Naggar AWM (2004) Synthesis and characterization of novel gels based on carboxymethyl cellulose/acrylic acid prepared by electron beam irradiation. React Funct Polym 61(3):397–404

    Article  CAS  Google Scholar 

  10. Abd El-Mohdy HL (2015) Radiation initiated synthesis of 2-acrylamidoglycolic acid grafted carboxymethyl cellulose as pH-sensitive hydrogel. Polym Eng Sci 54(12):2753–2761

    Article  CAS  Google Scholar 

  11. Abdel Ghaffar AM, El-Arnaouty MB, Abdel Baky AA, Shama SA (2016) Radiation-induced grafting of acrylamide and methacrylic acid individually onto carboxymethyl cellulose for removal of hazardous water pollutants. Des Monomers Polym 19(8):706–718

    Article  CAS  Google Scholar 

  12. Vimala K, Samba Sivudu K, Murali Mohan Y, Sreedhar B, Mohana RK (2009) Controlled silver nanoparticles synthesis in semi-hydrogel networks of poly(acrylamide) and carbohydrates: a rational methodology for antibacterial application. Carbohydr Polym 75(3):463–471

    Article  CAS  Google Scholar 

  13. Fekete T, Borsa J, Takács E, Wojnárovits L (2016) Synthesis of carboxymethylcellulose/ acrylic acid hydrogels with superabsorbent properties by radiation-initiated crosslinking. Radiat Phys Chem 124:135–139

    Article  CAS  Google Scholar 

  14. Wang WB, Wang Q, Wang AQ (2011) pH-responsive carboxymethylcellulose-g-poly (sodium acrylate)/polyvinylpyrrolidone semi-IPN hydrogels with enhanced responsive and swelling properties. Macromol Res 19(1):57–65

    Article  CAS  Google Scholar 

  15. Salama A (2015) Carboxymethyl cellulose-g-poly(acrylic acid)/calcium phosphate as a multifunctional hydrogel composite. Mater Lett 157:243–247

    Article  CAS  Google Scholar 

  16. Mandal B, Ray SK (2016) Removal of safranine t and brilliant cresyl blue dyes from water by carboxy methyl cellulose incorporated acrylic hydrogels: isotherms, kinetics and thermodynamic study. J Taiwan Inst Chem Eng 60:313–327

    Article  CAS  Google Scholar 

  17. Maswal M, Chat OA, Dar AA (2015) Rheological characterization of multi-component hydrogel based on carboxymethyl cellulose: insight into its encapsulation capacity and release kinetics towards ibuprofen. Colloid Polym Sci 293(6):1723–1735

    Article  CAS  Google Scholar 

  18. Malik NS, Ahmad M, Minhas MU (2017) Cross-linked beta-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir. PLoS One 12(2):e0172727. https://doi.org/10.1371/journal.pone.0172727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Zhu LX, Qiu JH, Sakai E, Ito K (2017) Rapid recovery double cross-linking hydrogel with stable mechanical properties and high resilience triggered by visible light. ACS Appl Mater Interfaces 9(15):13593–13601

    Article  PubMed  CAS  Google Scholar 

  20. El-Din HMN, Alla SGA, El-Naggar AWM (2010) Swelling and drug release properties of acrylamide/carboxymethyl cellulose networks formed by gamma irradiation. Radiat Phys Chem 79(6):725–730

    Article  CAS  Google Scholar 

  21. Maziad NA, FIA EF, El-Kelesh NA, El-Hamouly SH, Zeid IF, Gayed HM (2016) Radiation synthesis and characterization of super absorbent hydrogels for controlled release of some agrochemicals. J Radioanal Nucl Chem 307(1):513–521

    Article  CAS  Google Scholar 

  22. Li N, Chen GX, Chen W, Huang JH, Tian JF, Wan XF, He MH, Zhang HF (2017) Multivalent cations-triggered rapid shape memory sodium carboxymethyl cellulose/polyacrylamide hydrogels with tunable mechanical strength. Carbohydr Polym 178:159–165

    Article  PubMed  CAS  Google Scholar 

  23. Wu SP, Yu F, Dong H, Cao XD (2017) A hydrogel actuator with flexible folding deformation and shape programming via using sodium carboxymethyl cellulose and acrylic acid. Carbohydr Polym 173:526–534

    Article  PubMed  CAS  Google Scholar 

  24. Vasile C, Bumbu GG, Dumitriu RP, Staikos G (2004) Comparative study of the behavior of carboxymethyl cellulose-g-poly(N-isopropylacrylamide) copolymers and their equivalent physical blends. Eur Polym J 40(6):1209–1215

    Article  CAS  Google Scholar 

  25. Ekici S (2011) Intelligent poly(N-isopropylacrylamide)-carboxymethyl cellulose full interpenetrating polymeric networks for protein adsorption studies. J Mater Sci 46(9):2843–2850

    Article  CAS  Google Scholar 

  26. Don TM, Huang ML, Chiu AC, Kuo KH, Chiu WY, Chiu LH (2008) Preparation of thermo-responsive acrylic hydrogels useful for the application in transdermal drug delivery systems. Mater Chem Phys 107(2–3):266–273

    Article  CAS  Google Scholar 

  27. Dutta S, Samanta P, Dhara D (2016) Temperature, pH and redox responsive cellulose based hydrogels for protein delivery. Int J Biol Macromol 87:92–100

    Article  PubMed  CAS  Google Scholar 

  28. Patenaude M, Hoare T (2012) Injectable, mixed natural-synthetic polymer hydrogels with modular properties. Biomacromolecules 13(2):369–378

    Article  PubMed  CAS  Google Scholar 

  29. Tran TH, Okabe H, Hidaka Y, Hara K (2017) Removal of metal ions from aqueous solutions using carboxymethyl cellulose/sodium styrene sulfonate gels prepared by radiation grafting. Carbohydr Polym 157:335–343

    Article  PubMed  CAS  Google Scholar 

  30. Pourjavadi A, Ghasemzadeh H, Mojahedi F (2010) Swelling properties of CMC-g-poly (AAM-co-AMPS) superabsorbent hydrogel. J Appl Polym Sci 113(6):3442–3449

    Article  CAS  Google Scholar 

  31. Lam YC, Joshi SC, Tan BK (2007) Thermodynamic characteristics of gelation for methyl-cellulose hydrogels. J Therm Anal Calorim 87(2):475–482

    Article  CAS  Google Scholar 

  32. Zhang YL, Gao CJ, Li XL, Xu C, Zhang Y, Sun ZM, Liu Y, Gao JP (2014) Thermosensitive methyl cellulose-based injectable hydrogels for post-operation anti-adhesion. Carbohydr Polym 101:171–178

    Article  PubMed  CAS  Google Scholar 

  33. Bortolin A, Aouada FA, Mattoso LHC, Ribeiro C (2013) Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J Agric Food Chem 61(31):7431–7439

    Article  PubMed  CAS  Google Scholar 

  34. Aouada FA, Pan ZL, Orts WJ, Mattoso LHC (2009) Removal of paraquat pesticide from aqueous solutions using a novel adsorbent material based on polyacrylamide and methylcellulose hydrogels. J Appl Polym Sci 114(4):2139–2148

    Article  CAS  Google Scholar 

  35. Chen Q, Zhu L, Su XY, An HY (2011) Preparation and swelling dynamics research on polyacrylamide/methyl cellulose semi-interpenetrating polymer networks. Sci Technol Rev 29(29):38–43

    Google Scholar 

  36. Rassu M, Alzari V, Nuvoli D, Nuvoli L, Sanna D, Sanna V, Malucelli G, Mariani A (2017) Semi-interpenetrating polymer networks of methyl cellulose and polyacrylamide prepared by frontal polymerization. J Polym Sci A Polym Chem 55(7):1268–1274

    Article  CAS  Google Scholar 

  37. Stalling SS, Akintoye SO, Nicoll SB (2009) Development of photocrosslinked methylcellulose hydrogels for soft tissue reconstruction. Acta Biomater 5(6):1911–1918

    Article  PubMed  CAS  Google Scholar 

  38. Samanta S, Das S, Layek RK, Chatterjee DP, Nandi AK (2012) Polythiophene-g-poly(dimethylaminoethyl methacrylate) doped methyl cellulose hydrogel behaving like a polymeric and logic gate. Soft Matter 8(22):6066–6072

    Article  CAS  Google Scholar 

  39. Das R, Pal S (2013) Hydroxypropyl methyl cellulose grafted with polyacrylamide: application in controlled release of 5-amino salicylic acid. Colloids Surf B Biointerfaces 110:236–241

    Article  PubMed  CAS  Google Scholar 

  40. Das R, Panda AB, Pal S (2012) Synthesis and characterization of a novel polymeric hydrogel based on hydroxypropyl methyl cellulose grafted with polyacrylamide. Cellulose 19(3):933–945

    Article  CAS  Google Scholar 

  41. Xiao YL, Xia CC, Duan GY, Zhao XD (2011) Preparation and characterization of thermo-sensitive hydroxypropylmethyl cellulose/poly(N-isopropylacrylamide) hydrogel. Adv Mater Res 194-196:773–776

    Article  CAS  Google Scholar 

  42. Davaran S, Rashidi MR, Khani A (2007) Synthesis of chemically cross-linked hydroxypropyl methyl cellulose hydrogels and their application in controlled release of 5-amino salicylic acid. Drug Dev Ind Pharm 33(8):881–887

    Article  PubMed  CAS  Google Scholar 

  43. Velickova E, Petrov P, Tsvetanov C, Kuzmanova S, Cvetkovska M, Winkelhausen E (2010) Entrapment of saccharomyces cerevisiae cells in u.V. Crosslinked hydroxyethylcellulose/ poly (ethylene oxide) double-layered gels. React Funct Polym 70(11):908–915

    Article  CAS  Google Scholar 

  44. Plungpongpan K, Koyanukkul K, Kaewvilai A, Nootsuwan N, Kewsuwan P, Laobuthee A (2013) Preparation of pvp/mhec blended hydrogels via gamma irradiation and their calcium ion uptaking and releasing ability. Energy Procedia 34:775–781

    Article  CAS  Google Scholar 

  45. Li QJ, Gong JX, Zhang JF (2015) Rheological properties and microstructures of hydroxyethyl cellulose/poly(acrylic acid) blend hydrogels. J Macromol Sci Part B Phys 54(9):1132–1143

    Article  CAS  Google Scholar 

  46. Wang JL, Wang WB, Zheng YA, Wang AQ (2011) Effects of modified vermiculite on the synthesis and swelling behaviors of hydroxyethyl cellulose-g-poly(acrylic acid)/vermiculite superabsorbent nanocomposites. J Polym Res 18(3):401–408

    Article  CAS  Google Scholar 

  47. Peng ZY, Chen FG (2010) Synthesis and properties of temperature-sensitive hydrogel based on hydroxyethyl cellulose. Int J Polym Mater 59(6):450–461

    Article  CAS  Google Scholar 

  48. Yamashita S, Hiroki A, Taguchi M (2014) Radiation-induced change of optical property of hydroxypropyl cellulose hydrogel containing methacrylate compounds: as a basis for development of a new type of radiation dosimeter. Radiat Phys Chem 101:53–58

    Article  CAS  Google Scholar 

  49. Marsano E, Bianchi E, Sciutto L (2003) Microporous thermally sensitive hydrogels based on hydroxypropyl cellulose crosslinked with poly-ethyleneglicol diglycidyl ether. Polymer 44(22):6835–6841

    Article  CAS  Google Scholar 

  50. Lei M, Hu JW, Lu MG, Tu YY, Chen X, Li YW, Lin SD, Li F, Hu SY (2016) Alkynyl-functionalization of hydroxypropyl cellulose and thermoresponsive hydrogel thereof prepared with P (NIPAAm-co-HEMAPCL). Carbohydr Polym 137:433–440

    Article  CAS  Google Scholar 

  51. Xu FJ, Zhu Y, Liu FS, Nie J, Ma J, Yang WT (2010) Comb-shaped conjugates comprising hydroxypropyl cellulose backbones and low-molecular-weight poly (N-isopropylacryamide) side chains for smart hydrogels: synthesis, characterization, and biomedical applications. Bioconjug Chem 21(3):456–464

    Article  PubMed  CAS  Google Scholar 

  52. Hoo SP, Loh QL, Yue ZL, Fu J, Tan TTY, Choong C, Chan PPY (2013) Preparation of a soft and interconnected macroporous hydroxypropyl cellulose methacrylate scaffold for adipose tissue engineering. J Mater Chem B 1(24):3107–3117

    Article  CAS  Google Scholar 

  53. Zamarripa-Cerón JL, García-Cruz JC, Martínez-Arellano AC, Castro-Guerrero CF, Martín MEÁS, Morales-Cepeda AB (2016) Heavy metal removal using hydroxypropyl cellulose and polyacrylamide gels, kinetical study. J Appl Polym Sci 133(15):43285. https://doi.org/10.1002/app.43285

    Article  CAS  Google Scholar 

  54. Castro-Guerrero CF, Morales-Cepeda A, Rivera-Armenta J, Mendoza-Martínez A, Álvarez-Castillo A (2008) Gels from acrylic acid and hydroxypropyl cellulose via free radical polymerization. E-Polymers 8(1):1697–1704

    Article  Google Scholar 

  55. George J, Sabapathi SN, Siddaramaiah (2015) Water soluble polymer-based nanocomposites containing cellulose nanocrystals. In: Eco-friendly polymer nanocomposites. Springer, New Delhi, pp 259–293

    Google Scholar 

  56. De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29(11):4609–4631

    Article  CAS  Google Scholar 

  57. Tummala GK, Joffre T, Rojas R, Persson C, Mihranyan A (2017) Strain-induced stiffening of nanocellulose-reinforced poly(vinyl alcohol) hydrogels mimicking collagenous soft tissues. Soft Matter 13(21):3936–3945

    Article  PubMed  CAS  Google Scholar 

  58. Chen X, Chen CT, Zhang H, Huang Y, Yang JZ, Sun DP (2017) Facile approach to the fabrication of 3D cellulose nanofibrils (CNFs) reinforced poly (vinyl alcohol) hydrogel with ideal biocompatibility. Carbohydr Polym 173:547–555

    Article  PubMed  CAS  Google Scholar 

  59. Han JQ, Lei TZ, Wu QL (2013) Facile preparation of mouldable polyvinyl alcohol-borax hydrogels reinforced by well-dispersed cellulose nanoparticles: physical, viscoelastic and mechanical properties. Cellulose 20(6):2947–2958

    Article  CAS  Google Scholar 

  60. Abitbol T, Johnstone T, Quinn TM, Gray DG (2011) Reinforcement with cellulose nanocrystals of poly (vinyl alcohol) hydrogels prepared by cyclic freezing and thawing. Soft Matter 7(6):2373–2379

    Article  CAS  Google Scholar 

  61. Gonzalez JS, Ludueña LN, Ponce A, Alvarez VA (2014) Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater Sci Eng C 34:54–61

    Article  CAS  Google Scholar 

  62. Xu ZY, Li JY, Zhou H, Jiang XD, Yang C, Wang F, Pan YY, Li NN, Li XY, Shi LN, Shi XM (2016) Morphological and swelling behavior of cellulose nanofiber (CNF)/poly(vinyl alcohol) (PVA) hydrogels: poly(ethylene glycol) (PEG) as porogen. RSC Adv 6(49):43626–43633

    Article  CAS  Google Scholar 

  63. Tummala GK, Rojas R, Mihranyan A (2016) Poly(vinyl alcohol) hydrogels reinforced with nanocellulose for ophthalmic applications: general characteristics and optical properties. J Phys Chem B 120(51):13094–13101

    Article  PubMed  CAS  Google Scholar 

  64. Tummala GK, Joffre T, Lopes VR, Liszka A, Buznyk O, Ferraz N, Persson C, Griffith M, Mihranyan A (2016) Hyperelastic nanocellulose-reinforced hydrogel of high water content for ophthalmic applications. ACS Biomater Sci Eng 2(11):2072–2079

    Article  CAS  Google Scholar 

  65. Mckee JR, Appel EA, Seitsonen J, Kontturi E, Scherman OA, Ikkala O (2014) Healable, stable and stiff hydrogels: combining conflicting properties using dynamic and selective three-component recognition with reinforcing cellulose nanorods. Adv Funct Mater 24(18):2706–2713

    Article  CAS  Google Scholar 

  66. Mihranyan A (2013) Viscoelastic properties of cross-linked polyvinyl alcohol and surface-oxidized cellulose whisker hydrogels. Cellulose 20(3):1369–1376

    Article  CAS  Google Scholar 

  67. Anirudhan TS, Rejeena SR (2014) Poly (acrylic acid-co-acrylamide-co-2-acrylamido −2-methyl-1-propanesulfonic acid)-grafted nanocellulose/poly (vinyl alcohol) composite for the in vitro gastrointestinal release of amoxicillin. J Appl Polym Sci 131(17):40699. https://doi.org/10.1002/app.40699

    Article  CAS  Google Scholar 

  68. Zhou YM, Fu SY, Zhang LL, Zhan HY, Levit MV (2014) Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(II). Carbohydr Polym 101:75–82

    Article  PubMed  CAS  Google Scholar 

  69. Yue YY, Han JQ, Han GP, French AD, Qi YD, Wu QL (2016) Cellulose nanofibers reinforced sodium alginate-polyvinyl alcohol hydrogels: core-shell structure formation and property characterization. Carbohydr Polym 147:155–164

    Article  PubMed  CAS  Google Scholar 

  70. Kobe R, Yoshitani K, Teramoto Y (2016) Fabrication of elastic composite hydrogels using surface-modified cellulose nanofiber as a multifunctional crosslinker. J Appl Polym Sci 133(4):42906. https://doi.org/10.1002/app.42906

    Article  CAS  Google Scholar 

  71. Kobe R, Iwamoto S, Endo T, Yoshitani K, Teramoto Y (2016) Stretchable composite hydrogels incorporating modified cellulose nanofiber with dispersibility and polymerizability: mechanical property control and nanofiber orientation. Polymer 97:480–486

    Article  CAS  Google Scholar 

  72. Hebeish A, Farag S, Sharaf S, Shaheen TI (2014) Thermal responsive hydrogels based on semi interpenetrating network of poly(NIPAm) and cellulose nanowhiskers. Carbohydr Polym 102:159–166

    Article  PubMed  CAS  Google Scholar 

  73. Wei JG, Chen YF, Liu HZ, Du CG, Yu HL, Zhou ZX (2016) Thermo-responsive and compression properties of tempo-oxidized cellulose nanofiber-modified pnipam hydrogels. Carbohydr Polym 147:201–207

    Article  PubMed  CAS  Google Scholar 

  74. Wei JG, Chen YF, Liu HZ, Du CG, Yu HL, Ru J, Zhou ZX (2016) Effect of surface charge content in the tempo-oxidized cellulose nanofibers on morphologies and properties of poly (N -isopropylacrylamide)-based composite hydrogels. Ind Crop Prod 92:227–235

    Article  CAS  Google Scholar 

  75. Larsson E, Boujemaoui A, Malmstrom E, Carlmark A (2015) Thermoresponsive cryogels reinforced with cellulose nanocrystals. RSC Adv 5(95):77643–77650

    Article  CAS  Google Scholar 

  76. Zhou CJ, Wu QL, Yue YY, Zhang QG (2011) Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J Colloid Interface Sci 353(1):116–123

    Article  PubMed  CAS  Google Scholar 

  77. Zhou CJ, Wu QL, Zhang QG (2011) Dynamic rheology studies of in situ polymerization process of polyacrylamide-cellulose nanocrystal composite hydrogels. Colloid Polym Sci 289(3):247–255

    Article  CAS  Google Scholar 

  78. Yang J, Han CR, Duan JF, Ma MG, Zhang XM, Xu F, Sun RC (2013) Synthesis and characterization of mechanically flexible and tough cellulose nanocrystals- polyacrylamide nanocomposite hydrogels. Cellulose 20(1):227–237

    Article  CAS  Google Scholar 

  79. Yang J, Zhao JJ, Zhang XM (2014) Modification of cellulose nanocrystal-reinforced composite hydrogels: effects of co-crosslinked and drying treatment. Cellulose 21(5):3487–3496

    Article  CAS  Google Scholar 

  80. Yang J, Han CR, Duan JF, Ma MG, Zhang XM, Xu F, Sun RC, Xie XM (2012) Studies on the properties and formation mechanism of flexible nanocomposite hydrogels from cellulose nanocrystals and poly (acrylic acid). J Mater Chem 22(42):22467–22480

    Article  CAS  Google Scholar 

  81. Yang J, Zhao JJ, Xu F, Sun RC (2013) Revealing strong nanocomposite hydrogels reinforced by cellulose nanocrystals: insight into morphologies and interactions. ACS Appl Mater Interfaces 5(24):12960–12967

    Article  PubMed  CAS  Google Scholar 

  82. Yang J, Han CR, Xu F, Sun RC (2014) Simple approach to reinforce hydrogels with cellulose nanocrystals. Nanoscale 6(11):5934–5943

    Article  PubMed  CAS  Google Scholar 

  83. Yuan NX, Xu L, Zhang L, Ye HW, Zhao JH, Liu Z, Rong JH (2016) Superior hybrid hydrogels of polyacrylamide enhanced by bacterial cellulose nanofiber clusters. Mat Sci Eng C 67:221–230

    Article  CAS  Google Scholar 

  84. Yang J, Xu F (2017) Synergistic reinforcing mechanisms in cellulose nanofibrils composite hydrogels: interfacial dynamics, energy dissipation, and damage resistance. Biomacromolecules 18(8):2623–2632

    Article  PubMed  CAS  Google Scholar 

  85. Yang J, Han CR, Zhang XM, Xu F, Sun RC (2014) Cellulose nanocrystals mechanical reinforcement in composite hydrogels with multiple cross-links: correlations between dissipation properties and deformation mechanisms. Macromolecules 47(12):4077–4086

    Article  CAS  Google Scholar 

  86. Mohamad N, Amin MCIM, Pandey M, Ahmad N, Rajab NF (2014) Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model. Carbohydr Polym 114:312–320

    Article  PubMed  CAS  Google Scholar 

  87. Amin MCIM, Ahmad N, Halib N, Ahmad I (2012) Synthesis and characterization of thermo- and ph-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym 88(2):465–473

    Article  CAS  Google Scholar 

  88. Wen YB, Zhu XH, Gauthier DE, An XY, Cheng D, Ni YH, Yin LH (2015) Development of poly(acrylic acid)/nanofibrillated cellulose superabsorbent composites by ultraviolet light induced polymerization. Cellulose 22(4):2499–2506

    Article  CAS  Google Scholar 

  89. Bajpai SK, Pathak V, Soni B, Mohan YM (2014) CNWs loaded poly(SA) hydrogels: effect of high concentration of CNWs on water uptake and mechanical properties. Carbohydr Polym 106:351–358

    Article  PubMed  CAS  Google Scholar 

  90. Di Z, Shi ZJ, Ullah MW, Li SX, Yang G (2017) A transparent wound dressing based on bacterial cellulose whisker and poly (2-hydroxyethyl methacrylate). Int J Biol Macromol 105:638–644

    Article  PubMed  CAS  Google Scholar 

  91. Karaaslan MA, Tshabalala MA, Yelle DJ, Buschle-Diller G (2011) Nanoreinforced biocompatible hydrogels from wood hemicelluloses and cellulose whiskers. Carbohydr Polym 86(1):192–201

    Article  CAS  Google Scholar 

  92. Volynets B, Nakhoda H, Ghalia MA, Dahman Y (2017) Preparation and characterization of poly (2-hydroxyethyl methacrylate) grafted bacterial cellulose using atom transfer radical polymerization. Fibers Polym 18(5):859–867

    Article  CAS  Google Scholar 

  93. Shen XP, Shamshina JL, Paula B, Gurau G, Rogers RD (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem 47(9):53–75

    Article  Google Scholar 

  94. Han S, Wang T, Yang L, Li B (2017) Building a bio-based hydrogel via electrostatic and host-guest interactions for realizing dual-controlled release mechanism. Int J Biol Macromol 105:377–384

    Article  PubMed  CAS  Google Scholar 

  95. Wang YP, Qian JM, Zhao N, Liu T, Xu WJ, Suo AL (2017) Novel hydroxyethyl chitosan/cellulose scaffolds with bubble-like porous structure for bone tissue engineering. Carbohydr Polym 167:44–51

    Article  PubMed  CAS  Google Scholar 

  96. Li N, Bai RB (2005) Copper adsorption on chitosan-cellulose hydrogel beads: behaviors and mechanisms. Sep Purif Technol 42(3):237–247

    Article  CAS  Google Scholar 

  97. Essawy HA, Ghazy MBM, Abd El-Hai F, Mohamed MF (2016) Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients. Int J Biol Macromol 89:144–151

    Article  PubMed  CAS  Google Scholar 

  98. Kaihara S, Suzuki Y, Fujimoto K (2011) In situ synthesis of polysaccharide nanoparticles via polyion complex of carboxymethyl cellulose and chitosan. Colloids Surf B Biointerfaces 85(2):343–348

    Article  PubMed  CAS  Google Scholar 

  99. Benghanem S, Chetouani A, Elkolli M, Bounekhel M, Benachour D (2017) Grafting of oxidized carboxymethyl cellulose with hydrogen peroxide in presence of cu(II) to chitosan and biological elucidation. Biocybern Biomed Eng 37(1):94–102

    Article  Google Scholar 

  100. Jiang XL, Zhao Y, Peng YF, Han BQ, Li ZY, Li XH, Liu WS (2016) Preparation, characterization and feasibility study of dialdehyde carboxymethyl cellulose as a novel crosslinking reagent. Carbohydr Polym 137:632–641

    Article  PubMed  CAS  Google Scholar 

  101. Weng LH, Le HC, Lin JY, Golzarian J (2011) Doxorubicin loading and eluting characteristics of bioresorbable hydrogel microspheres: in vitro study. Int J Pharm 409(1–2):185–193

    Article  PubMed  CAS  Google Scholar 

  102. Weng LH, Rostambeigi N, Zantek ND, Rostamzadeh P, Bravo M, Carey J, Golzarian J (2013) An in situ forming biodegradable hydrogel-based embolic agent for interventional therapies. Acta Biomater 9(9):8182–8191

    Article  PubMed  CAS  Google Scholar 

  103. Fan LH, Tan C, Wang LB, Pan XR, Cao M, Wen F, Xie WG, Nie M (2013) Preparation, characterization and the effect of carboxymethylated chitosan–cellulose derivatives hydrogels on wound healing. J Appl Polym Sci 128(5):2789–2796

    Article  CAS  Google Scholar 

  104. Kimura S, Isobe N, Wada M, Kuga S, Ko JH, Kim UJ (2011) Enzymatic hydrolysis of chitosan-dialdehyde cellulose hydrogels. Carbohydr Polym 83(4):1850–1853

    Article  CAS  Google Scholar 

  105. Yoshii F, Zhao L, Wach RA, Nagasawa N, Mitomo H, Kume T (2003) Hydrogels of polysaccharide derivatives crosslinked with irradiation at paste-like condition. Nucl Instrum Methods Phys Res B 208:320–324

    Article  CAS  Google Scholar 

  106. Hiroki A, Tran HT, Nagasawa N, Yagi T, Tamada M (2009) Metal adsorption of carboxymethyl cellulose/carboxymethyl chitosan blend hydrogels prepared by gamma irradiation. Radiat Phys Chem 78(12):1076–1080

    Article  CAS  Google Scholar 

  107. Wach RA, Mitomo H, Nagasawa N, Yoshii F (2003) Radiation crosslinking of carboxymethylcellulose of various degree of substitution at high concentration in aqueous solutions of natural pH. Radiat Phys Chem 68(5):771–779

    Article  CAS  Google Scholar 

  108. Zhao L, Mitomo H, Nagasawa N, Yoshii F, Kume T (2003) Radiation synthesis and characteristic of the hydrogels based on carboxymethylated chitin derivatives. Carbohydr Polym 51(2):169–175

    Article  CAS  Google Scholar 

  109. Yan LF, Qian F, Zhu QS (2001) Interpolymer complex polyampholytic hydrogel of chitosan and carboxymethyl cellulose (CMC): synthesis and ion effect. Polym Int 50(12):1370–1374

    Article  CAS  Google Scholar 

  110. Wang M, Xu L, Zhai ML, Peng J, Li JQ, Wei GS (2008) Gamma-ray radiation-induced synthesis and Fe(III) ion adsorption of carboxymethylated chitosan hydrogels. Carbohydr Polym 74(3):498–503

    Article  CAS  Google Scholar 

  111. Wach RA, Mitomo H, Yoshii F (2004) ESR investigation on gamma-irradiated methylcellulose and hydroxyethylcellulose in dry state and in aqueous solution. J Radioanal Nucl Chem 261(1):113–118

    Article  CAS  Google Scholar 

  112. Barros SC, da Silva AA, Costa DB, Cesarino I, Costa CM, Lanceros-Méndez S, Pawlicka A, Silva MM (2014) Thermo-sensitive chitosan-cellulose derivative hydrogels: swelling behaviour and morphologic studies. Cellulose 21(6):4531–4544

    Article  CAS  Google Scholar 

  113. Barros SC, da Silva AA, Costa DB, Costa CM, Lanceros-Méndez S, Maciavello MNT, Ribelles JLG, Sentanin F, Pawlicka A, Silva MM (2015) Thermal-mechanical behaviour of chitosan-cellulose derivative thermoreversible hydrogel films. Cellulose 22(3):1911–1929

    Article  CAS  Google Scholar 

  114. Yan SF, Yin JB, Tang L, Chen XS (2011) Novel physically crosslinked hydrogels of carboxymethyl chitosan and cellulose ethers: structure and controlled drug release behavior. J Appl Polym Sci 119(4):2350–2358

    Article  CAS  Google Scholar 

  115. Bhattarai N, Gunn J, Zhang MQ (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62(1):83–99

    Article  PubMed  CAS  Google Scholar 

  116. Vashist A, Gupta YK, Ahmad S (2012) Interpenetrating biopolymer network based hydrogels for an effective drug delivery system. Carbohydr Polym 87(2):1433–1439

    Article  CAS  Google Scholar 

  117. Kim MH, An S, Won K, Kim HJ, Lee SH (2012) Entrapment of enzymes into cellulose-biopolymer composite hydrogel beads using biocompatible ionic liquid. J Mol Catal B Enzym 75:68–72

    Article  CAS  Google Scholar 

  118. Liu Z, Wang HS, Liu C, Jiang YJ, Yu G, Mu XD, Wang XY (2012) Magnetic cellulose-chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions. Chem Commun 48(59):7350–7352

    Article  CAS  Google Scholar 

  119. Wang YY, Hong CT, Chiu WT, Fang JY (2001) In vitro and in vivo evaluations of topically applied capsaicin and nonivamide from hydrogels. Int J Pharm 224(1–2):89–104

    Article  PubMed  CAS  Google Scholar 

  120. Mitsumata T, Suemitsu Y, Fujii K, Fujii T, Taniguchi T, Koyama K (2003) pH-response of chitosan, κ-carrageenan, carboxymethyl cellulose sodium salt complex hydrogels. Polymer 44(23):7103–7111

    Article  CAS  Google Scholar 

  121. Gaihre B, Jayasuriya AC (2016) Fabrication and characterization of carboxymethyl cellulose novel microparticles for bone tissue engineering. Mater Sci Eng C 69:733–743

    Article  CAS  Google Scholar 

  122. Lai YL, Annadurai G, Huang FC, Lee JF (2008) Biosorption of Zn(II) on the different ca-alginate beads from aqueous solution. Bioresour Technol 99(14):6480–6487

    Article  PubMed  CAS  Google Scholar 

  123. Dewangan T, Tiwari A, Bajpai AK (2011) Removal of chromium(VI) ions by adsorption onto binary biopolymeric beads of sodium alginate and carboxymethyl cellulose. J Dispers Sci Technol 32(8):1075–1082

    Article  CAS  Google Scholar 

  124. Dewangan T, Tiwari A, Bajpai AK (2010) Adsorption of hg(II) ions onto binary biopolymeric beads of carboxymethyl cellulose and alginate. J Dispers Sci Technol 31(6):844–851

    Article  CAS  Google Scholar 

  125. Agarwal T, Narayana SNGH, Pal K, Pramanik K, Giri S, Banerjee I (2015) Calcium alginate-carboxymethyl cellulose beads for colon-targeted drug delivery. Int J Biol Macromol 75:409–417

    Article  PubMed  CAS  Google Scholar 

  126. Banerjee S, Singh S, Bhattacharya SS, Chattopadhyay P (2013) Trivalent ion cross-linked pH sensitive alginate-methyl cellulose blend hydrogel beads from aqueous template. Int J Biol Macromol 57:297–307

    Article  PubMed  CAS  Google Scholar 

  127. Thi HAM, Van NT, Van VML (2013) Biochemical studies on the immobilized lactase in the combined alginate-carboxymethyl cellulose gel. Biochem Eng J 74(7):81–87

    Google Scholar 

  128. Thomas M, Naikoo GA, Sheikh MUD, Bano M, Khan F (2016) Effective photocatalytic degradation of Congo red dye using alginate/carboxymethyl cellulose/TiO2, nanocomposite hydrogel under direct sunlight irradiation. J Photochem Photobiol A 327:33–43

    Article  CAS  Google Scholar 

  129. Wang Q, Wang WB, Wu J, Wang AQ (2012) Effect of attapulgite contents on release behaviors of a pH sensitive carboxymethyl cellulose-g-poly(acrylic acid)/attapulgite/ sodium alginate composite hydrogel bead containing diclofenac. J Appl Polym Sci 124(6):4424–4432

    CAS  Google Scholar 

  130. Chiaoprakobkij N, Sanchavanakit N, Subbalekha K, Pavasant P, Phisalaphong M (2011) Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts. Carbohydr Polym 85(3):548–553

    Article  CAS  Google Scholar 

  131. Park MS, Lee DJ, Hyun JH (2015) Nanocellulose-alginate hydrogel for cell encapsulation. Carbohydr Polym 116:223–228

    Article  PubMed  CAS  Google Scholar 

  132. Kirdponpattara S, Khamkeaw A, Sanchavanakit N, Pavasant P, Phisalaphong M (2015) Structural modification and characterization of bacterial cellulose-alginate composite scaffolds for tissue engineering. Carbohydr Polym 132:146–155

    Article  PubMed  CAS  Google Scholar 

  133. Shao W, Liu H, Liu XF, Wang SX, Wu JM, Zhang R, Min MH, Huang M (2015) Development of silver sulfadiazine loaded bacterial cellulose/sodium alginate composite films with enhanced antibacterial property. Carbohydr Polym 132:351–358

    Article  PubMed  CAS  Google Scholar 

  134. Shi XN, Zheng YD, Wang C, Yue LN, Qiao K, Wang GJ, Wang LN, Quan HY (2015) Dual stimulus responsive drug releasing under the interaction of ph value and pulsatile electric field for bacterial cellulose/sodium alginate/multi-walled carbon nanotubes hybrid hydrogel. RSC Adv 5(52):41820–41829

    Article  CAS  Google Scholar 

  135. Kim JH, Park S, Kim H, Kim HJ, Yang YH, Kim YH, Jung SK, Kan E, Lee SH (2017) Alginate/bacterial cellulose nanocomposite beads prepared using gluconacetobacter xylinus and their application in lipase immobilization. Carbohydr Polym 157:137–145

    Article  PubMed  CAS  Google Scholar 

  136. Kirdponpattara S, Phisalaphong M (2013) Bacterial cellulose-alginate composite sponge as a yeast cell carrier for ethanol production. Biochem Eng J 77:103–109

    Article  CAS  Google Scholar 

  137. Mohamed MA (2012) Swelling characteristics and application of gamma-radiation on irradiated SBR-carboxymethylcellulose (CMC) blends. Arab J Chem 5(2):207–211

    Article  CAS  Google Scholar 

  138. Bhattacharya SS, Ghosh AK, Banerjee S, Chattopadhyay P, Ghosh A (2012) Al3+ ion cross-linked interpenetrating polymeric network microbeads from tailored natural polysaccharides. Int J Biol Macromol 51(5):1173–1184

    Article  PubMed  CAS  Google Scholar 

  139. Kim MS, Park SJ, Gu BK, Kim CH (2012) Ionically crosslinked alginate–carboxymethyl cellulose beads for the delivery of protein therapeutics. Appl Surf Sci 262(13):28–33

    Article  CAS  Google Scholar 

  140. Swamy BY, Yun YS (2015) In vitro release of metformin from iron (III) cross-linked alginate-carboxymethyl cellulose hydrogel beads. Int J Biol Macromol 77:114–119

    Article  PubMed  CAS  Google Scholar 

  141. Tsirigotis-Maniecka M, Gancarz R, Wilk KA (2017) Polysaccharide hydrogel particles for enhanced delivery of hesperidin: fabrication, characterization and in vitro evaluation. Colloids Surf A Physicochem Eng Asp 532:48–56

    Article  CAS  Google Scholar 

  142. Ren HX, Gao ZM, Wu DJ, Jiang JH, Sun YM, Luo CW (2016) Efficient Pb(II) removal using sodium alginate-carboxymethyl cellulose gel beads: preparation, characterization, and adsorption mechanism. Carbohydr Polym 137:402–409

    Article  PubMed  CAS  Google Scholar 

  143. Işiklan N (2006) Controlled release of insecticide carbaryl from sodium alginate, sodium alginate/gelatin, and sodium alginate/sodium carboxymethyl cellulose blend beads crosslinked with glutaraldehyde. J Appl Polym Sci 99(4):1310–1319

    Article  CAS  Google Scholar 

  144. Al-Kahtani AA, Sherigara BS (2014) Controlled release of diclofenac sodium through acrylamide grafted hydroxyethyl cellulose and sodium alginate. Carbohydr Polym 104(104):151–157

    Article  PubMed  CAS  Google Scholar 

  145. Chang CY, Duan B, Zhang LN (2009) Fabrication and characterization of novel macroporous cellulose-alginate hydrogels. Polymer 50(23):5467–5473

    Article  CAS  Google Scholar 

  146. Bang S, Ko YG, Kim WII, Cho D, Park WH, Kwon OH (2017) Preventing postoperative tissue adhesion using injectable carboxymethyl cellulose-pullulan hydrogels. Int J Biol Macromol 105:886–893

    Article  PubMed  CAS  Google Scholar 

  147. Pathak VM, Kumar N (2017) Dataset on the superabsorbent hydrogel synthesis with SiO2 nanoparticle and role in water restoration capability of agriculture soil. Data Brief 13:291–294

    Article  PubMed  PubMed Central  Google Scholar 

  148. Gomes RF, de Neto A, Antonio C, Pereira AGB, Muniz EC, Fajardo AR, Rodrigues FHA (2015) Fast dye removal from water by starch-based nanocomposites. J Colloid Interface Sci 454:200–209

    Article  PubMed  CAS  Google Scholar 

  149. Spagnol C, Rodrigues FHA, Pereira AGB, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel nanocomposites based on starch-g-poly(sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose 19(4):1225–1237

    Article  CAS  Google Scholar 

  150. Liu ZJ, Huang HH (2016) Preparation and characterization of cellulose composite hydrogels from tea residue and carbohydrate additives. Carbohydr Polym 147:226–233

    Article  PubMed  CAS  Google Scholar 

  151. Hu XY, Wang J, Huang HH (2013) Impacts of some macromolecules on the characteristics of hydrogels prepared from pineapple peel cellulose using ionic liquid. Cellulose 20:2923–2933

    Article  CAS  Google Scholar 

  152. Michailova V, Titeva S, Kotsilkova R, Krusteva E, Minkov E (2001) Influence of hydrogel structure on the processes of water penetration and drug release from mixed hydroxypropylmethyl cellulose/thermally pregelatinized waxy maize starch hydrophilic matrices. Int J Pharm 222(1):7–17

    Article  PubMed  CAS  Google Scholar 

  153. Nagasawa N, Yagi T, Kume T, Yoshii F (2004) Radiation crosslinking of carboxymethyl starch. Carbohydr Polym 58(2):109–113

    Article  CAS  Google Scholar 

  154. Othman Z, Hassan O, Hashim K (2015) Physicochemical and thermal properties of gamma-irradiated sago (metroxylon sagu) starch. Radiat Phys Chem 109:48–53

    Article  CAS  Google Scholar 

  155. Basri SN, Zainuddin N, Hashim K, Yusof NA (2016) Preparation and characterization of irradiated carboxymethyl sago starch-acid hydrogel and its application as metal scavenger in aqueous solution. Carbohydr Polym 138:34–40

    Article  PubMed  CAS  Google Scholar 

  156. Senna MM, Mostafa AEKB, Mahdy SR, El-Naggar AWM (2016) Characterization of blend hydrogels based on plasticized starch/cellulose acetate/carboxymethyl cellulose synthesized by electron beam irradiation. Nucl Instrum Methods Phys Res B 386:22–29

    Article  CAS  Google Scholar 

  157. Tan HL, Wong YY, Muniyandy S, Hashim K, Pushpamalar J (2016) Carboxymethyl sago pulp/carboxymethyl sago starch hydrogel: effect of polymer mixing ratio and study of controlled drug release. J Appl Polym Sci 133(28):43652. https://doi.org/10.1002/app.43652

    Article  CAS  Google Scholar 

  158. Fekete T, Borsa J, Takács E, Wojnárovits L (2017) Synthesis of carboxymethylcellulose/ starch superabsorbent hydrogels by gamma-irradiation. Chem Cent J 11:46

    Article  PubMed  PubMed Central  Google Scholar 

  159. Liu SM, Luo WC, Huang HH (2016) Characterization and behavior of composite hydrogel prepared from bamboo shoot cellulose and β-cyclodextrin. Int J Biol Macromol 89:527–534

    Article  PubMed  CAS  Google Scholar 

  160. Badruddoza AZM, Tay ASH, Tan PY, Hidajat K, Uddin MS (2011) Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: synthesis and adsorption studies. J Hazard Mater 185(2–3):1177–1186

    Article  PubMed  CAS  Google Scholar 

  161. Goto H, Furusho Y, Yashima E (2007) Supramolecular control of unwinding and rewinding of a double helix of oligoresorcinol using cyclodextrin/adamantane system. J Am Chem Soc 129(1):109–112

    Article  PubMed  CAS  Google Scholar 

  162. Zhang LZ, Zhou JP, Zhang LN (2013) Structure and properties of β-cyclodextrin/ cellulose hydrogels prepared in naoh/urea aqueous solution. Carbohydr Polym 94(1):386–393

    Article  PubMed  CAS  Google Scholar 

  163. Ghorpade VS, Yadav AV, Dias RJ (2016) Citric acid crosslinked cyclodextrin/ hydroxypropylmethyl cellulose hydrogel films for hydrophobic drug delivery. Int J Biol Macromol 93:75–86

    Article  PubMed  CAS  Google Scholar 

  164. Ghorpade VS, Yadav AV, Dias RJ (2017) Citric acid crosslinked β -cyclodextrin/ carboxymethylcellulose hydrogel films for controlled delivery of poorly soluble drugs. Carbohydr Polym 164:339–348

    Article  PubMed  CAS  Google Scholar 

  165. Rodriguez-Tenreiro C, Alvarez-Lorenzo C, Rodriguez-Perez A, Concheiro A, Torres-Labandeira JJ (2006) New cyclodextrin hydrogels cross-linked with diglycidylethers with a high drug loading and controlled release ability. Pharm Res 23(1):121–130

    Article  PubMed  CAS  Google Scholar 

  166. Pinho E, Henriques M, Soares G (2014) Cyclodextrin/cellulose hydrogel with gallic acid to prevent wound infection. Cellulose 21(6):4519–4530

    Article  CAS  Google Scholar 

  167. Medronho B, Duarte H, Alves L, Antunes FE, Romano A, Valente AJM (2016) The role of cyclodextrin-tetrabutyl ammonium complexation on the cellulose dissolution. Carbohydr Polym 140:136–143

    Article  PubMed  CAS  Google Scholar 

  168. Medronho B, Duarte H, Magalhães S, Alves L, Valente AJM, Romano A (2017) From a new cellulose solvent to the cyclodextrin induced formation of hydrogels. Colloids Surf A Physicochem Eng Asp 532:548–555

    Article  CAS  Google Scholar 

  169. Duan JF, Zhang XJ, Jiang JX, Han CR, Yang J, Liu LJ, Lan HY, Huang DZ (2014) The synthesis of a novel cellulose physical gel. J Nanomater 2014:312696

    Article  CAS  Google Scholar 

  170. Sun N, Wang T, Yan XF (2017) Self-assembled supermolecular hydrogel based on hydroxyethyl cellulose: formation, in vitro release and bacteriostasis application. Carbohydr Polym 172:49–59

    Article  PubMed  CAS  Google Scholar 

  171. Lin N, Dufresne A (2013) Supramolecular hydrogels from in situ host-guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin. Biomacromolecules 14(3):871–880

    Article  PubMed  CAS  Google Scholar 

  172. Mourtas S, Aggelopoulos CA, Klepetsanis P, Tsakiroglou CD, Antimisiaris SG (2009) Complex hydrogel systems composed of polymers, liposomes, and cyclodextrins: implications of composition on rheological properties and aging. Langmuir 25(15):8480–8488

    Article  PubMed  CAS  Google Scholar 

  173. Kato N, Tanaka T, Nakagawa S, Morohoshi T, Hiratani K, Ikeda T (2007) Control of virulence factor expression in opportunistic pathogens using cyclodextrin immobilized gel. J Incl Phenom Macrocycl Chem 57(1–4):419–423

    Article  CAS  Google Scholar 

  174. Pose-Vilarnovo B, Rodríguez-Tenreiro C, dos JFR S, Vázquez-Doval J, Concheiro A, Alvarez-Lorenzo C, Torres-Labandeira JJ (2004) Modulating drug release with cyclodextrins in hydroxypropyl methylcellulose gels and tablets. J Control Release 94(2–3):351–363

    Article  PubMed  CAS  Google Scholar 

  175. Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK (2016) Extracellular matrix structure. Adv Drug Deliv Rev 97:4–27

    Article  PubMed  CAS  Google Scholar 

  176. Badylak SF (2007) The extracellular matrix as a biologic scaffold material. Biomaterials 28(25):3587–3593

    Article  PubMed  CAS  Google Scholar 

  177. Gelse K, Pöschl E, Aigner T (2003) Collagens-structure, function, and biosynthesis. Adv Drug Deliv Rev 55(12):1531–1546

    Article  PubMed  CAS  Google Scholar 

  178. Kanth SV, Ramaraj A, Rao JR, Nair BU (2009) Stabilization of type I collagen using dialdehyde cellulose. Process Biochem 44(8):869–874

    Article  CAS  Google Scholar 

  179. Pietrucha K, Safandowska M (2015) Dialdehyde cellulose-crosslinked collagen and its physicochemical properties. Process Biochem 50(12):2105–2111

    Article  CAS  Google Scholar 

  180. Cheng YM, Lu JT, Liu SL, Zhao P, Lu GZ, Chen JH (2014) The preparation, characterization and evaluation of regenerated cellulose/collagen composite hydrogel films. Carbohydr Polym 107:57–64

    Article  PubMed  CAS  Google Scholar 

  181. Li HL, Wu B, Mu CD, Lin W (2011) Concomitant degradation in periodate oxidation of carboxymethyl cellulose. Carbohydr Polym 84(3):881–886

    Article  CAS  Google Scholar 

  182. Tan H, Wu B, Li CP, Mu CD, Li HL, Lin W (2015) Collagen cryogel cross-linked by naturally derived dialdehyde carboxymethyl cellulose. Carbohydr Polym 129:17–24

    Article  PubMed  CAS  Google Scholar 

  183. Pei Y, Wang XY, Huang WH, Liu P, Zhang LN (2013) Cellulose-based hydrogels with excellent microstructural replicationability and cytocompatibility for microfluidic devices. Cellulose 20(4):1897–1909

    Article  CAS  Google Scholar 

  184. Dai J, Yang H, Yan H, Shangguan YG, Zheng Q, Cheng RS (2011) Phosphate adsorption from aqueous solutions by disused adsorbents: chitosan hydrogel beads after the removal of copper(II). Chem Eng J 166(3):970–977

    Article  CAS  Google Scholar 

  185. Wang JL, Wei LG, Ma YC, Li KL, Li MH, Yu YC, Wang L, Qiu HH (2013) Collagen/cellulose hydrogel beads reconstituted from ionic liquid solution for cu(II) adsorption. Carbohydr Polym 98(1):736–743

    Article  PubMed  CAS  Google Scholar 

  186. Cai ZJ, Yang G (2015) Bacterial cellulose/collagen composite: characterization and first evaluation of cytocompatibility. J Appl Polym Sci 120(5):2938–2944

    Google Scholar 

  187. Fontes de Sousa Moraes PR, Saska S, Barud H, Saska S, Barud H, LRD L, VDCA M, AMDG P, SJL R, AMM G (2016) Bacterial cellulose/collagen hydrogel for wound healing. Mater Res-Ibero-Am J 19(1):106–116

    Google Scholar 

  188. Lin YK, Chen KH, Ou KL, Liu M (2011) Effects of different extracellular matrices and growth factor immobilization on biodegradability and biocompatibility of macroporous bacterial cellulose. J Bioact Compat Polym 26(5):508–518

    Article  CAS  Google Scholar 

  189. Yang Q, Ma H, Dai ZW, Wang JF, Dong SW, Shen JJ, Dong J (2017) Improved thermal and mechanical properties of bacterial cellulose with the introduction of collagen. Cellulose 24(9):3777–3787

    Article  CAS  Google Scholar 

  190. Sampath UGTM, Ching YC, Cheng HC, Singh R, Lin PC (2017) Preparation and characterization of nanocellulose reinforced semi-interpenetrating polymer network of chitosan hydrogel. Cellulose 24(5):2215–2228

    Article  CAS  Google Scholar 

  191. Gunathilake TMSU, Ching YC, Cheng HC (2017) Enhancement of curcumin bioavailability using nanocellulose reinforced chitosan hydrogel. Polymers 9(2):64. https://doi.org/10.3390/polym9020064

    Article  CAS  Google Scholar 

  192. Yang H, Sheikhi A, van de Ven TG (2016) Reusable green aerogels from crosslinked hairy nanocrystalline cellulose and modified chitosan for dye removal. Langmuir 32(45):11771–11779

    Article  PubMed  CAS  Google Scholar 

  193. Sukul M, Ventura RD, Bae SH, Choi HJ, Lee SY, Lee BT (2017) Plant-derived oxidized nanofibrillar cellulose-chitosan composite as an absorbable hemostat. Mater Lett 197:150–155

    Article  CAS  Google Scholar 

  194. Lai C, Zhang SJ, Chen XC, Sheng LY (2014) Nanocomposite films based on tempo–mediated oxidized bacterial cellulose and chitosan. Cellulose 21(4):2757–2772

    Article  CAS  Google Scholar 

  195. Spagnol C, Rodrigues FHA, Pereira AGB, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft- poly(acrylic acid). Carbohydr Polym 87(3):2038–2045

    Article  CAS  Google Scholar 

  196. Rao KM, Kumar A, Han SS (2017) Polysaccharide based bionanocomposite hydrogels reinforced with cellulose nanocrystals: drug release and biocompatibility analyses. Int J Biol Macromol 101:165–171

    Article  CAS  Google Scholar 

  197. Ul-Islam M, Khan T, Park JK (2012) Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr Polym 88(2):596–603

    Article  CAS  Google Scholar 

  198. Kim HJ, Jin JN, Kan E, Kim KJ, Lee SH (2017) Bacterial cellulose-chitosan composite hydrogel beads for enzyme immobilization. Biotechnol Bioprocess Eng 22(1):89–94

    Article  CAS  Google Scholar 

  199. Jia YY, Wang XH, Huo MM, Zhai XL, Li F, Zhong C (2017) Preparation and characterization of a novel bacterial cellulose/chitosan bio-hydrogel. Nanomater Nanotechno 7. https://doi.org/10.1177/1847980417707172

    Article  Google Scholar 

  200. Mohammed N, Grishkewich N, Waeijen HA, Berry RM, Tam KC (2016) Continuous flow adsorption of methylene blue by cellulose nanocrystal-alginate hydrogel beadsin fixed bed columns. Carbohydr Polym 136:1194–1202

    Article  PubMed  CAS  Google Scholar 

  201. Mohammed N, Grishkewich N, Berry RM, Tam KC (2015) Cellulose nanocrystal-alginate hydrogel beads as novel adsorbents for organic dyes in aqueoussolutions. Cellulose 22(6):3725–3738

    Article  CAS  Google Scholar 

  202. Suratago T, Taokaew S, Kanjanamosit N, Kanjanaprapakul K, Burapatana V, Phisalaphong M (2015) Development of bacterial cellulose/alginate nanocomposite membrane for separation of ethanol-water mixtures. J Ind Eng Chem 32:305–312

    Article  CAS  Google Scholar 

  203. Leppiniemi J, Lahtinen P, Paajanen A, Mahlberg R, Metsä-Kortelainen S, Pinomaa T, Pajari H, Vikholm-Lundin I, Pursula P, Hytönen VP (2017) 3D-printable bioactivated Nanocellulose-alginate hydrogels. ACS Appl Mater Interfaces 9(26):21959–21970

    Article  PubMed  CAS  Google Scholar 

  204. Naseri N, Deepa B, Mathew AP, Oksman K, Girandon L (2016) Nanocellulose- based interpenetrating polymer network (IPN) hydrogels for cartilage applications. Biomacromolecules 17(11):3714–3723

    Article  PubMed  CAS  Google Scholar 

  205. Lin N, Geze A, Wouessidjewe D, Huang J, Dufresne A (2016) Biocompatible double-membrane hydrogels from cationic cellulose nanocrystals and anionic alginate as complexing drugs Codelivery. ACS Appl Mater Interfaces 8(11):6880–6889

    Article  PubMed  CAS  Google Scholar 

  206. Dai QZ, Kadla JF (2009) Effect of Nanofillers on Carboxymethyl cellulose/ hydroxyethyl cellulose hydrogels. J Appl Polym Sci 114(3):1664–1669

    Article  CAS  Google Scholar 

  207. Mckee JR, Hietala S, Seitsonen J, Laine J, Kontturi E, Ikkala O (2014) Thermoresponsive Nanocellulose hydrogels with tunable mechanical properties. ACS Macro Lett 3(3):266–270

    Article  CAS  Google Scholar 

  208. Yang X, Bakaic E, Hoare T, Cranston ED (2013) Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: morphology, rheology, degradation, and Cytotoxicityv. Biomacromolecules 14(12):4447–4455

    Article  PubMed  CAS  Google Scholar 

  209. Zhou YM, Fu SY, Zhang LL, Zhan HY (2013) Superabsorbent nanocomposite hydrogels made of carboxylated cellulose nanofibrils and CMC-g-p(AA-co-AM). Carbohydr Polym 97(2):429–435

    Article  PubMed  CAS  Google Scholar 

  210. Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater 14(11):1124–1128

    Article  CAS  Google Scholar 

  211. Wang WH, Zhang XW, Teng AG, Liu AJ (2017) Mechanical reinforcement of gelatin hydrogel with nanofiber cellulose as a function of percolation concentration. Int J Biol Macromol 103:226–233

    Article  PubMed  CAS  Google Scholar 

  212. Li WC, Lan Y, Guo R, Zhang Y, Xue W, Zhang YM (2015) In vitro and in vivo evaluation of a novel collagen/cellulose nanocrystals scaffold for achievingthe sustained release of basic fibroblast growth factor. J Biomater Appl 29(6):882–893

    Article  PubMed  CAS  Google Scholar 

  213. Mathew AP, Oksman K, Pierron D, Harmad MF (2012) Crosslinked fibrous composites based on cellulose nanofibers and collagen with in situ pHinduced fibrillation. Cellulose 19(1):139–150

    Article  CAS  Google Scholar 

  214. Mathew AP, Oksman K, Pierron D, Harmand MF (2013) Biocompatible fibrous networks of cellulose Nanofibres and collagen crosslinked using Genipin: potential as artificial ligament/tendons. Macromol Biosci 13(3):289–298

    Article  PubMed  CAS  Google Scholar 

  215. Lu TH, Li Q, Chen WS, Yu HP (2014) Composite aerogels based on dialdehyde nanocellulose and collagen for potential applicationsas wound dressing and tissue engineering scaffold. Compos Sci Technol 94:132–138

    Article  CAS  Google Scholar 

  216. Mauricio MR, da Coster PG, Haraguchi SK, Guilherme MR, Muniz EC, Rubira AF (2015) Synthesis of a microhydrogel composite from cellulose nanowhiskers and starch for drugdelivery. Carbohydr Polym 115:715–722

    Article  PubMed  CAS  Google Scholar 

  217. Chiu CW, Lin JJ (2012) Self-assembly behavior of polymer-assisted clays. Prog Polym Sci 37(3):406–444

    Article  CAS  Google Scholar 

  218. Zafar R, Zia KM, Tabasum S, Jabeen F, Noreen A, Zuber M (2016) Polysaccharide based bionanocomposites, properties and applications: a review. Int J Biol Macromol 92:1012–1024

    Article  PubMed  CAS  Google Scholar 

  219. Liu Y, Wang WB, Jin YL, Wang AQ (2011) Adsorption behavior of methylene blue from aqueous solution by the hydrogel CompositesBased on Attapulgite. Sep Sci Technol 46(5):858–868

    Article  CAS  Google Scholar 

  220. Bao Y, Ma JZ, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr Polym 84(1):76–82

    Article  CAS  Google Scholar 

  221. Bao Y, Ma JZ, Sun YG (2012) Swelling behaviors of organic/inorganic composites based on various cellulose derivatives and inorganic particles. Carbohydr Polym 88(2):589–595

    Article  CAS  Google Scholar 

  222. Fan XW, Xia CJ, Advincula RC (2003) Intercalation of polymerization initiators into montmorillonite platelets: free radical vs. anionic initiator clays. Colloids Surf A Physicochem Eng Asp 219(1–3):75–86

    Article  CAS  Google Scholar 

  223. Uthirakumar P, Nahm KS, Hahn YB, Lee YS (2004) Preparation of polystyrene/ montmorillonite nanocomposites using a new radical initiator- montmorillonite hybrid via in situ intercalative polymerization. Eur Polym J 40(11):2437–2444

    Article  CAS  Google Scholar 

  224. Karadag E, Nalbantoglu A, Kundakci S, Uzum OB (2014) Highly swollen polymer/clay composite sorbent-based AAm/AMPS hydrogels and semi-IPNsComposed of Carboxymethyl cellulose and montmorillonite and cross-linked by PEGDA. Polym-Plast Technol Eng 53(1):54–64

    Article  CAS  Google Scholar 

  225. Bortolin A, Serafim AR, Aouada FA, Mattoso LHC, Ribeiro C (2016) Macro- and micronutrient simultaneous slow release from highly Swellable nanocomposite hydrogels. J Agric Food Chem 64(16):3133–3140

    Article  PubMed  CAS  Google Scholar 

  226. Ozkahraman B, Acar I, Emik S (2011) Removal of Cu2+ and Pb2+ ions using CMC based Thermoresponsive nanocomposite hydrogel. Clean: Soil Air Water 39(7):658–664

    CAS  Google Scholar 

  227. Peng N, Hu DN, Zeng J, Li Y, Liang L, Chang CY (2016) Superabsorbent cellulose-clay nanocomposite hydrogels for highly efficient removal of dye in water. ACS Sustain Chem Eng 4(12):7217–7224

    Article  CAS  Google Scholar 

  228. Anirudhan TS, Tharun AR (2012) Preparation and adsorption properties of a novel interpenetrating polymer network (IPN) containing carboxyl groups for basic dye from aqueous media. Chem Eng J 181:761–769

    Article  CAS  Google Scholar 

  229. Abu-Jdayil B, Ghannam M (2014) The modification of rheological properties of sodium bentonite-water dispersions with low viscosity CMC polymer effect. Energy Source Part A 36(10):1037–1048

    Article  CAS  Google Scholar 

  230. Li JF, Lu JH, Li YM (2009) Carboxylmethylcellulose/bentonite composite gels: water sorption behavior and controlled release of herbicide. J Appl Polym Sci 112(1):261–268

    Article  CAS  Google Scholar 

  231. Huang B, Liu MX, Zhou CR (2017) Cellulose-halloysite nanotube composite hydrogels for curcumin delivery. Cellulose 24(7):2861–2875

    Article  CAS  Google Scholar 

  232. Del Buffa S, Rinaldi E, Carretti E, Ridi F, Bonini M (2016) Injectable composites via functionalization of 1D nanoclays and biodegradable coupling with a polysaccharide hydrogel. Colloids Surf B: Biointerfaces 145:562–566

    Article  PubMed  CAS  Google Scholar 

  233. Dai HJ, Huang HH (2017) Enhanced swelling and responsive properties of pineapple peel Carboxymethyl cellulose-g-poly(acrylic acid-co-acrylamide) superabsorbent hydrogel by the introduction of Carclazyte. J Agric Food Chem 65(3):565–574

    Article  PubMed  CAS  Google Scholar 

  234. Xu J, Meng YZ, Li RKY, Xu Y, Rajulu AV (2003) Preparation and properties of poly(vinyl alcohol)-vermiculite nanocomposites. J Polym Sci B Polym Phys 41(7):749–755

    Article  CAS  Google Scholar 

  235. Wang WB, Wang J, Kang YR, Wang AQ (2011) Synthesis, swelling and responsive properties of a new composite hydrogel based on hydroxyethyl cellulose and medicinal stone. Compos Part B Eng 42(4):809–818

    Article  CAS  Google Scholar 

  236. AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290

    Article  PubMed  CAS  Google Scholar 

  237. Hebeish A, Hashem M, Abd El-Hady MM, Sharaf S (2013) Development of CMC hydrogels loaded with silver nano-particles for medical applications. Carbohydr Polym 92(1):407–413

    Article  PubMed  CAS  Google Scholar 

  238. Park MVDZ, Neigh AM, Vermeulen JP, de la LJJ F, Verharen HW, Briede JJ, van Loveren H, de Jong WH (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32(36):9810–9817

    Article  PubMed  CAS  Google Scholar 

  239. Mohan YM, Vimala K, Thomas V, Varaprasad K, Sreedhar B, Bajpai SK, Raju KM (2010) Controlling of silver nanoparticles structure by hydrogel networks. J Colloid Interface Sci 342(1):73–82

    Article  CAS  Google Scholar 

  240. Rangelova N, Aleksandrov L, Angelova T, Georgieva N, Muller R (2014) Preparation and characterization of SiO2/CMC/ag hybrids with antibacterial properties. Carbohydr Polym 101:1166–1175

    Article  PubMed  CAS  Google Scholar 

  241. Hebeish AA, El-Rafie MH, Abdel-Mohdy FA, Abdel-Halim ES, Emam HE (2010) Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles. Carbohydr Polym 82(3):933–941

    Article  CAS  Google Scholar 

  242. Abdel-Halim ES, Alanazi HH, Al-Deyab SS (2015) Utilization of hydroxypropyl carboxymethyl cellulose in synthesis of silver nanoparticles. Int J Biol Macromol 75:467–473

    Article  PubMed  CAS  Google Scholar 

  243. Goia DV (2004) Preparation and formation mechanisms of uniform metallic particles in homogeneous solutions. J Mater Chem 14(4):451–458

    Article  CAS  Google Scholar 

  244. Chen J, Wang J, Zhang X, Jin YL (2008) Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate. Mater Chem Phys 108(2–3):421–424

    Article  CAS  Google Scholar 

  245. Bozaci E, Akar E, Ozdogan E, Demir A, Altinisik A, Seki Y (2015) Application of carboxymethylcellulose hydrogel based silver nanocomposites on cotton fabrics for antibacterial property. Carbohydr Polym 134:128–135

    Article  PubMed  CAS  Google Scholar 

  246. Alshehri SM, Aldalbahi A, Al-Hajji AB, Chaudhary AA, Panhuis MIH, Alhokbany N, Ahamad T (2016) Development of carboxymethyl cellulose-based hydrogel and nanosilver composite as antimicrobial agents for UTI pathogens. Carbohydr Polym 138:229–236

    Article  PubMed  CAS  Google Scholar 

  247. Hebeish A, Sharaf S (2015) Novel nanocomposite hydrogel for wound dressing and other medical applications. RSC Adv 5(125):103036–103046

    Article  CAS  Google Scholar 

  248. Gulsonbi M, Parthasarathy S, Raj KB, Jaisankar V (2016) Green synthesis, characterization and drug delivery applications of a novel silver/carboxymethylcellulose - poly(acrylamide) hydrogel nanocomposite. Ecotoxicol Environ Saf 134:421–426

    Article  PubMed  CAS  Google Scholar 

  249. Wang QY, Cai J, Zhang LN (2014) In situ synthesis of Ag3PO4/cellulose nanocomposites with photocatalytic activities under sunlight. Cellulose 21(5):3371–3382

    Article  CAS  Google Scholar 

  250. Nocchetti M, Donnadio A, Ambrogi V, Andreani P, Bastianini M, Pietrella D, Latterini L (2013) Ag/AgCl nanoparticle decorated layered double hydroxides: synthesis, characterization and antimicrobial properties. J Mater Chem B 1(18):2383–2393

    Article  CAS  Google Scholar 

  251. Yadollahi M, Namazi H, Aghazadeh M (2015) Antibacterial carboxymethyl cellulose/ag nanocomposite hydrogels cross-linked with layered double hydroxides. Int J Biol Macromol 79:269–277

    Article  PubMed  CAS  Google Scholar 

  252. Dong H, Snyder JF, Tran DT, Leadore JL (2013) Hydrogel, aerogel and film of cellulose nanofibrils functionalized with silver nanoparticles. Carbohydr Polym 95(2):760–767

    Article  PubMed  CAS  Google Scholar 

  253. Yang JZ, Liu XL, Huang LY, Sun DP (2013) Antibacterial properties of novel bacterial cellulose nanofiber containing silver nanoparticles. Chin J Chem Eng 21(12):1419–1424

    Article  CAS  Google Scholar 

  254. Li Y, Lin ML, Davenport JW (2011) Ab initio studies of cellulose I: crystal structure, intermolecular forces, and interactions with water. J Phys Chem C 115(23):11533–11539

    Article  CAS  Google Scholar 

  255. Chen CT, Zhang T, Dai BB, Zhang H, Chen X, Yang JZ, Liu J, Sun DP (2016) Rapid fabrication of composite hydrogel microfibers for Weavable and sustainable antibacterial applications. ACS Sustain Chem Eng 4(12):6534–6542

    Article  CAS  Google Scholar 

  256. Pal S, Nisi R, Stoppa M, Licciulli A (2017) Silver-functionalized bacterial cellulose as antibacterial membrane for wound-healing applications. ACS Omega 2:3632–3639

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  257. Petrov P, Petrova E, Tsvetanov CB (2009) UV-assisted synthesis of super-macroporous polymer hydrogels. Polymer 50(5):1118–1123

    Article  CAS  Google Scholar 

  258. Gustaite S, Kazlauske J, Bobokalonov J, Perni S, Dutschk V, Liesiene J, Prokopovich P (2015) Characterization of cellulose based sponges for wound dressings. Colloids Surf A Physicochem Eng Asp 480:336–342

    Article  CAS  Google Scholar 

  259. Mekkawy AI, El-Mokhtar MA, Nafady NA, Yousef N, Hamad MA, El-Shanawany SM, Ibrahim EH, Elsabahy M (2017) In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: effect of surface coating and loading into hydrogels. Int J Nanomedicine 12:759–777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  260. Zhang LL, Ding YL, Povey M, York D (2008) ZnO nanofluids - a potential antibacterial agent. Prog Nat Sci 18(8):939–944

    Article  CAS  Google Scholar 

  261. El Shafei A, Abou-Okeil A (2011) ZnO/carboxymethyl chitosan bionano-composite to impart antibacterial and UV protection for cotton fabric. Carbohydr Polym 83(2):920–925

    Article  CAS  Google Scholar 

  262. Perelshtein I, Ruderman E, Perkas N, Tzanov T, Beddow J, Joyce E, Mason TJ, Blanes M, Molla K, Patlolla A (2013) Chitosan and chitosan-ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity. J Mater Chem B 1(14):1968–1976

    Article  CAS  Google Scholar 

  263. Yadollahi M, Gholamali I, Namazi H, Aghazadeh M (2015) Synthesis and characterization of antibacterial carboxymethyl cellulose/ZnO nanocomposite hydrogels. Int J Biol Macromol 74:136–141

    Article  PubMed  CAS  Google Scholar 

  264. Fei JQ, Gu LX (2002) PVA/PAA thermo-crosslinking hydrogel fiber: preparation and pH-sensitive properties in electrolyte solution. Eur Polym J 38(8):1653–1658

    Article  CAS  Google Scholar 

  265. Hashem M, Sharaf S, Abd El-Hady MM, Hebeish A (2013) Synthesis and characterization of novel carboxymethyl cellulose hydrogels and carboxymethyl cellulolse-hydrogel-ZnO-nanocomposites. Carbohydr Polym 95(1):421–427

    Article  PubMed  CAS  Google Scholar 

  266. Li XB, Zhang X, Li LC, Huang LL, Zhang W, Ye JD, Hong JG (2016) Preparation of nano-ZnO/regenerated cellulose composite particles via co-gelation and low-temperature hydrothermal synthesis. Mater Lett 175:122–125

    Article  CAS  Google Scholar 

  267. Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 7(1):183–189

    Article  PubMed  CAS  Google Scholar 

  268. Qin C, Li SJ, Jiang GQ, Jun CB, Guo YL, Li JW, Zhang B, Han SY (2017) Preparation of flower-like ZnO nanoparticles in a cellulose hydrogel microreactor. Bioresources 12(2):3182–3191

    Article  CAS  Google Scholar 

  269. Janpetch N, Saito N, Rujiravanit R (2016) Fabrication of bacterial cellulose-ZnO composite via solution plasma process for antibacterial applications. Carbohydr Polym 148:335–344

    Article  PubMed  CAS  Google Scholar 

  270. Zare-Akbari Z, Farhadnejad H, Furughi-Nia B, Abedin S, Yadollahi M, Khorsand-Ghayeni M (2016) PH-sensitive bionanocomposite hydrogel beads based on carboxymethyl cellulose/ZnO nanoparticle as drug carrier. Int J Biol Macromol 93:1317–1327

    Article  PubMed  CAS  Google Scholar 

  271. Rakhshaei R, Namazi H (2017) A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel. Mater Sci Eng C Mater Biol Appl 73:456–464

    Article  PubMed  CAS  Google Scholar 

  272. Ahtzaz S, Nasir M, Shahzadi L, Amir W, Anjum A, Arshad R, Iqbal F, Chaudhry AA, Yar M, Rehman IU (2017) A study on the effect of zinc oxide and zinc peroxide nanoparticles to enhance angiogenesis-pro-angiogenic grafts for tissue regeneration applications. Mater Des 132:409–418

    Article  CAS  Google Scholar 

  273. Wan CC, Li J (2016) Graphene oxide/cellulose aerogels nanocomposite: preparation, pyrolysis, and application for electromagnetic interference shielding. Carbohydr Polym 150:172–179

    Article  PubMed  CAS  Google Scholar 

  274. Xu MM, Huang QB, Wang XH, Sun RC (2015) Highly tough cellulose/graphene composite hydrogels prepared from ionic liquids. Ind Crop Prod 70:56–63

    Article  CAS  Google Scholar 

  275. Liu JJ, Chu HJ, Wei HL, Zhu HZ, Wang G, Zhu J, He J (2016) Facile fabrication of carboxymethyl cellulose sodium/graphene oxide hydrogel microparticles for water purification. RSC Adv 6(55):50061–50069

    Article  CAS  Google Scholar 

  276. Wang ZM, Ning AM, Xie PH, Gao GQ, Xie LX, Li X, Song AD (2017) Synthesis and swelling behaviors of carboxymethyl cellulose-based superabsorbent resin hybridized with graphene oxide. Carbohydr Polym 157:48–56

    Article  PubMed  CAS  Google Scholar 

  277. Varaprasad K, Jayaramudu T, Sadiku ER (2017) Removal of dye by carboxymethyl cellulose, acrylamide and graphene oxide via a free radical polymerization process. Carbohydr Polym 164:186–194

    Article  PubMed  CAS  Google Scholar 

  278. Sung Y, Kim TH, Lee B (2016) Syntheses of carboxymethylcellulose/graphene nanocomposite superabsorbent hydrogels with improved gel properties using electron beam radiation. Macromol Res 24(2):143–151

    Article  CAS  Google Scholar 

  279. Chen X, Zhou SK, Zhang LM, You TT, Xu F (2016) Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution. Materials 9(7):582

    Article  PubMed Central  CAS  Google Scholar 

  280. Rasoulzadeh M, Namazi H (2017) Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent. Carbohydr Polym 168:320–326

    Article  PubMed  CAS  Google Scholar 

  281. Wang R, Shou D, Lv O, Kong Y, Deng LH, Shen J (2017) pH-controlled drug delivery with hybrid aerogel of chitosan, carboxymethyl cellulose and graphene oxide as the carrier. Int J Biol Macromol 103:248–253

    Article  PubMed  CAS  Google Scholar 

  282. Zhang HJ, Zhai DD, He Y (2014) Graphene oxide/polyacrylamide/carboxymethyl cellulose sodium nanocomposite hydrogel with enhanced mechanical strength: preparation, characterization and the swelling behavior. RSC Adv 4(84):44600–44609

    Article  CAS  Google Scholar 

  283. Liu XY, Zhou YF, Nie WY, Song LY, Chen PP (2015) Fabrication of hydrogel of hydroxypropyl cellulose (HPC) composited with graphene oxide and its application for methylene blue removal. J Mater Sci 50(18):6113–6123

    Article  CAS  Google Scholar 

  284. Hao N, Zhang X, Zhou Z, Hua R, Zhang Y, Liu Q, Qian J, Li H, Wang K (2017) AgBr nanoparticles/3D nitrogen-doped graphene hydrogel for fabricating all-solid-state luminol-electrochemiluminescence Escherichia coli aptasensors. Biosens Bioelectron 97:377–383

    Article  PubMed  CAS  Google Scholar 

  285. Jiang M, Zhang JL, Qiao F, Zhang RY, Xing LB, Zhou J, Cui HY, Zhuo SP (2016) Self-assembled reduced graphene hydrogels by facile chemical reduction using acetaldehyde oxime for electrode materials in supercapacitors. RSC Adv 6(54):48276–48282

    Article  CAS  Google Scholar 

  286. Feng YY, Zhang XQ, Shen YT, Yoshino K, Feng W (2012) A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydr Polym 87(1):644–649

    Article  CAS  Google Scholar 

  287. Shao W, Wang SX, Liu H, Wu JM, Zhang R, Min HH, Huang M (2016) Preparation of bacterial cellulose/graphene nanosheets composite films with enhanced mechanical performances. Carbohydr Polym 138:166–171

    Article  PubMed  CAS  Google Scholar 

  288. Ramani D, Sastry TP (2014) Bacterial cellulose-reinforced hydroxyapatite functionalized graphene oxide: a potential osteoinductive composite. Cellulose 21(5):3585–3595

    Article  CAS  Google Scholar 

  289. Luo HL, Xiong GY, Yang ZW, Raman SR, Si HJ, Wan YZ (2014) A novel three-dimensional graphene/bacterial cellulose nanocomposite prepared by in situ biosynthesis. RSC Adv 4(28):14369–14372

    Article  CAS  Google Scholar 

  290. Si HJ, Luo HL, Xiong GY, Yang ZW, Raman SR, Guo RS, Wan YZ (2014) One-step in situ biosynthesis of graphene oxide-bacterial cellulose nanocomposite hydrogels. Macromol Rapid Commun 35(19):1706–1711

    Article  PubMed  CAS  Google Scholar 

  291. Luo HL, Ao HY, Li G, Li W, Xiong GY, Zhu Y, Wan YZ (2017) Bacterial cellulose/ graphene oxide nanocomposite as a novel drug delivery system. Curr Appl Phys 17(2):249–254

    Article  Google Scholar 

  292. Wong BS, Yoong SL, Jagusiak A, Panczyk T, Ho HK, Ang WH, Pastorin G (2013) Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev 65(15):1964–2015

    Article  PubMed  CAS  Google Scholar 

  293. Hu Y, Li YZ, Wang D, Zhou WY, Dong XM, Zhou SY, Wang CY, Yang ZH (2017) Highly flexible polymer-carbon dot-ferric ion nanocomposite hydrogels displaying super stretchability, ultrahigh toughness, good self-recovery and shape memory performance. Eur Polym J 95:482–490

    Article  CAS  Google Scholar 

  294. Mandal B, Das D, Rameshbabu AP, Dhara S, Pal S (2016) A biodegradable, biocompatible transdermal device derived from carboxymethyl cellulose and multi-walled carbon nanotubes for sustained release of diclofenac sodium. RSC Adv 6(23):19605–19611

    Article  CAS  Google Scholar 

  295. Zhang YP, Huang R, Peng S, Ma ZC (2015) MWCNTs/cellulose hydrogels prepared from NaOH/urea aqueous solution with improved mechanical properties. J Chem 2015:1–8

    Google Scholar 

  296. Wang M, Anoshkin IV, Nasibulin AG, Ras RHA, Nonappa LJ, Kauppinen EI, Ikkala O (2016) Electrical behaviour of native cellulose nanofibril/carbon nanotube hybrid aerogels under cyclic compression. RSC Adv 6(92):89051–89056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  297. Yan ZY, Chen SY, Wang HP, Wang BA, Jiang JM (2008) Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture. Carbohydr Polym 74(3):659–665

    Article  CAS  Google Scholar 

  298. Junka K, Guo JQ, Filpponen I, Laine J, Rojas OJ (2014) Modification of cellulose Nanofibrils with luminescent carbon dots. Biomacromolecules 15(3):876–881

    Article  PubMed  CAS  Google Scholar 

  299. Kim YH, Park S, Won K, Kim HJ, Sang HL (2013) Bacterial cellulose-carbon nanotube composite as a biocompatible electrode for the direct electron transfer of glucose oxidase. J Chem Technol Biotechnol 88(6):1067–1070

    Article  CAS  Google Scholar 

  300. Liu SM, Zheng YD, Sun Y, Su L, Yue LN, Wang YS, Feng JX, Fan JS (2016) An oxygen tolerance conductive hydrogel anode membrane for use in a potentially implantable glucose fuel cell. RSC Adv 6(114):112971–112980

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liying Qian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Qian, L. (2018). Cellulose-Based Composite Hydrogels: Preparation, Structures, and Applications. In: Mondal, M. (eds) Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-76573-0_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76573-0_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76573-0

  • Online ISBN: 978-3-319-76573-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics