Skip to main content

Cellulose-Based Superabsorbent Hydrogels

  • Living reference work entry
  • First Online:

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

Abstract

Hydrogels are polymeric three-dimensional networks able to absorb and release water solutions. Sometimes, this behavior is reversed in response to definite environmental stimuli, i.e., temperature, pH, ionic strength, etc. Such stimuli-responsive behavior makes hydrogels attractive candidates for the design of “smart” devices, applicable in a variety of technological fields. In particular, when concerning either ecological or biocompatibility issues, the biodegradability of the hydrogel network, combined with the control of the degradation rate, may add more value to the developed device. Development of new products and materials, particularly those which are based on renewable organic resources using innovative sustainable processes, represents an increasing interest in both academic and industrial research. Cellulose and its derivatives – with numerous hydroxyl groups – have established to be flexible materials with unique chemical structure which provides a good platform for the creation of hydrogel networks with distinctive properties with respect to swelling ability and sensibility to external stimuli. Consequently, cellulose-based hydrogels are attractive materials, biodegradable, biocompatible, and low cost, which exhibit properties that make them promising in many applications, particularly in biomedical and environmental applications. This article reviews the design and the applications of cellulose-based hydrogels, which are extensively investigated due to cellulose availability in nature, the intrinsic degradability of cellulose, and the smart behavior displayed by some cellulose derivatives.

This is a preview of subscription content, log in via an institution.

References

  1. Kamath KR, Park K (1993) Biodegradable hydrogels in drug delivery. Adv Drug Deliv Rev 11:59–84

    Article  CAS  Google Scholar 

  2. Kaplan DL (1998) Introduction to polymers from renewable resources. In: Kaplan DL (ed) Biopolymers from renewable resources. Springer, Berlin, pp 1–29

    Chapter  Google Scholar 

  3. Narain R (2011) Engineered carbohydrate-based materials for biomedical applications: polymers, surfaces, dendrimers, nanoparticles, and hydrogels. Wiley, Hoboken, pp 15–36

    Book  Google Scholar 

  4. Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100

    Article  CAS  Google Scholar 

  5. Carmen AL, Barbara BF, Ana MP, Angel C (2013) Cross-linked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Rev 65:1148–1171

    Article  CAS  Google Scholar 

  6. Brandt L (2001) Cellulose ethers. In: Wilks ES (ed) Industrial polymers handbook, vol 3. Wiley-VCH, Weinheim, pp 1569–1613

    Google Scholar 

  7. Xie J, Hsieh YL (2003) Thermosensitive poly(n-isopropylacrylamide) hydrogels bonded on cellulose supports. J Appl Polym Sci 89:999–1006

    Article  CAS  Google Scholar 

  8. Lund K, Sjöström K, Brelid H (2012) Alkali extraction of kraft pulp fibers: influence on fiber and fluff pulp properties. J Eng Fibers Fabr 7:30–39

    CAS  Google Scholar 

  9. Krassig HA (1993) Cellulose-structure, accessibility and reactivity. Gordon and Breach Science Publisher, Yverdon, pp 103–119

    Google Scholar 

  10. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  11. Krassig HA (1985) In: Kennedy JF, Phillips GO, Wedlock DJ, Williams PA (eds) Cellulose and its derivatives: chemistry, biochemistry and applications. Ellis Horwood Limited, Chichester, pp 3–25

    Google Scholar 

  12. Wakelyn PJ (1998) In: Lewin M, Pearce EM (eds) Handbook of fiber chemistry. Marcel Dekker, New York, pp 642–654

    Google Scholar 

  13. Zeronian SH (1985) In: Nevell TP, Zeronian SH (eds) Cellulose chemistry and its applications. Ellis Horwood Limited, Chichester, pp 159–180

    Google Scholar 

  14. Roy D, Semsarilar M, James T, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064

    Article  CAS  PubMed  Google Scholar 

  15. Trejo-O’Reilly JA, Cavaille JY, Gandini A (1997) The surface chemical modification of cellulosic fibers in view of their use in composite materials. Cellulose 4:305–320

    Article  Google Scholar 

  16. Vail SL (1985) In: Nevell TP, Zeronian SH (eds) Cellulose chemistry and its applications. Halsted Press, John Wiley, New York, pp 384–422

    Google Scholar 

  17. Stevens MP (1999) Polymer chemistry, 3rd edn. Oxford University Press, New York, pp 122–157

    Google Scholar 

  18. Odian G (2004) Principles of polymerization, 4th edn. Wiley, Hoboken

    Book  Google Scholar 

  19. Roy D, Guthrie JT, Perrier S (2005) Cellulose modification by polymer grafting: a review. Polym Prepr Am Chem Soc Div Polym Chem 46:324–325

    CAS  Google Scholar 

  20. Gomez-Dıaz D, Navaza JM (2002) Rheological characterization of aqueous solutions of the food additive carboxymethyl cellulose. Elec J Env Agricult Food Chem 1(1):1579–1587

    Google Scholar 

  21. Sannino A, Esposito A, Nicolais L, Del Nobile MA, Giovane A, Balestrieri C, Esposito R, Agresti M (2000) Cellulose-based hydrogels as body water retainers. J Mater Sci Mater Med 11(4):247–253

    Article  CAS  PubMed  Google Scholar 

  22. Bao Y, Ma J, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly (AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr Polym 84(1):76–82

    Article  CAS  Google Scholar 

  23. Chang C, Duan B, Cai J (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46(1):92–100

    Article  CAS  Google Scholar 

  24. Bao Y, Ma J, Sun Y (2012) Swelling behaviors of organic/inorganic composites based on various cellulose derivatives and inorganic particles. Carbohydr Polym 88(2):589–595

    Article  CAS  Google Scholar 

  25. Bortolin A, Aouada FA, Mattoso LH, Ribeiro C (2013) Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J Agric Food Chem 61(31):7431–7439

    Article  CAS  PubMed  Google Scholar 

  26. Stoyneva V, Momekova D, Kostova B (2014) Stimuli sensitive super-macroporous cryogels based on photocrosslinked 2-hydroxyethylcellulose and chitosan. Carbohydr Polym 99:825–830

    Article  CAS  PubMed  Google Scholar 

  27. Liu C, Wei N, Wang S (2009) Preparation and characterization superporous hydroxypropyl methylcellulose gel beads. Carbohydr Polym 78(1):1–4

    Article  CAS  Google Scholar 

  28. Peng XW, Ren JL, Zhong LX (2011) Xylan-rich hemicelluloses-graft-acrylic acid ionic hydrogels with rapid responses to pH, salt, and organic solvents. J Agric Food Chem 59(15):8208–8215

    Article  CAS  PubMed  Google Scholar 

  29. Sand A, Yadav M, Behari K (2010) Preparation and characterization of modified sodium carboxymethyl cellulose via free radical grafting copolymerization of vinyl sulfonic acid in aqueous media. Carbohydr Polym 81(1):97–103

    Article  CAS  Google Scholar 

  30. Tripathy J, Mishra DK, Behari K (2009) Grafting copolymerization of N-vinylformamide onto sodium carboxymethylcellulose and study of its swelling, metal ion sorption and flocculation behaviour. Carbohydr Polym 75(4):604–611

    Article  CAS  Google Scholar 

  31. Liu J, Li Q, Su Y (2013) Synthesis of wheat straw cellulose-g-poly (potassium acrylate)/PVA semi-IPNs superabsorbent resin. Carbohydr Polym 94(1):539–546

    Article  CAS  PubMed  Google Scholar 

  32. Gil E, Hudson S (2004) Stimuli-responsive polymers and their bioconjugates. Prog Polym Sci 29(12):1173–1222. ISSN: 0079-6700

    Article  CAS  Google Scholar 

  33. Peppas N, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50(1):27–46. ISSN 0939-6411

    Article  CAS  PubMed  Google Scholar 

  34. Alpesh P, Kibret M (2011) Hydrogel biomaterials, biomedical engineering – frontiers and challenges. Prof. Reza Fazel (Ed.). InTech. ISBN: 978-953-307-309-5. Available from http://www.intechopen.com/books/biomedical-engineering-frontiers-and-challenges/hydrogel-biomaterials

  35. Chen C, Tsai C, Chen W, Mi F, Liang H, Chen S, Sung H (2006) Novel living cell sheet harvest system composed of thermo-reversible methylcellulose hydrogels. Biomacromolecules 7(3):736–743

    Article  CAS  PubMed  Google Scholar 

  36. Stabenfeldt SE, Garcia AJ, LaPlaca MC (2006) Thermo-reversible laminin-functionalized hydrogel for neural tissue engineering. J Biomed Mater Res A 77(4):718–725

    Article  CAS  PubMed  Google Scholar 

  37. Te N (2007) On the nature of crosslinks in thermo-reversible gels. Polym Bull 58(1):27–42

    Article  CAS  Google Scholar 

  38. Schmaljohann D (2005) Thermo-responsive polymers and hydrogels in tissue engineering. E-Polymers 5:1–17. 021. ISSN 1618-7229

    Article  Google Scholar 

  39. Vinatier C, Magne D, Weiss P, Trojani C, Rochet N, Carle G, Vignes C, Chadjichristos C, Galera P, Daculsi G, Guicheux J (2005) A silanized hydroxypropyl methylcellulose hydrogel for the three-dimensional culture of chondrocytes. Biomaterials 26(33):6643–6651. ISSN: 0142-9612

    Article  CAS  PubMed  Google Scholar 

  40. Weng L, Zhang L, Ruan D, Shi L, Xu J (2004) Thermal gelation of cellulose in a NaOH/thiourea aqueous solution. Langmuir 20:2086

    Article  CAS  PubMed  Google Scholar 

  41. Deng J, He Q, Wu Z, Yang W (2008) Using glycidyl methacrylate as crosslinking agent to prepare thermosensitive hydrogels by a novel one-step method. J Polym Sci A Polym Chem 46:2193

    Article  CAS  Google Scholar 

  42. Wu D, Wang T, Lu B, Xu X, Cheng S, Jiang X (2008) Fabrication of supramolecular hydrogels for drug delivery and stem cell encapsulation. Langmuir 24:10306

    Article  CAS  PubMed  Google Scholar 

  43. Vinatier C, Magne D, Moreau A, Gauthier O, Malard O, Colombeix C, Daculsi G, Weiss P, Guicheux J (2007) Engineering cartilage with human nasal chondrocytes and a silanized hydroxypropyl methylcellulose hydrogel. J Biomed Mater Res 80A(1):66–74

    Article  CAS  Google Scholar 

  44. Zohuriaan-Mehr MJ, Kabir K (2008) Superabsorbent polymer material: a review. Iran Polym J 17(6):451–477

    CAS  Google Scholar 

  45. Alessandro S, Christian D, Marta M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373. https://doi.org/10.3390/ma2020353

    Article  CAS  Google Scholar 

  46. Chen H, Fan M (2008) Novel thermally sensitive pH-dependent chitosan/carboxymethyl cellulose hydrogels. J Bioact Compat Polym 23(1):38–48

    Article  CAS  Google Scholar 

  47. Sannino A, Pappadà S, Madaghiele M, Maffezzoli A, Ambrosio L, Nicolais L (2005) Crosslinking of cellulose derivatives and hyaluronic acid with water-soluble carbodiimide. Polymer 46(25):11206–11212

    Article  CAS  Google Scholar 

  48. Marcì G, Mele G, Palmisano L, Pulito P, Sannino A (2006) Environmentally sustainable production of cellulose-based superabsorbent hydrogels. Green Chem 8(5):439–444

    Article  CAS  Google Scholar 

  49. Sarvas M, Pavlenda P, Takacova E (2007) Effect of hydrogel application on survival and growth of pine seedlings in reclamations. J For Sci 53(5):204–209

    Google Scholar 

  50. Lenzi F, Sannino A, Borriello A, Porro F, Mensitieri G (2003) Probing the degree of crosslinking of a cellulose based superabsorbing hydrogel through traditional and NMR techniques. Polymer 44(5):1577–1588

    Article  CAS  Google Scholar 

  51. Trong MD, Mei-Lien H, Ai-Chien C, Kuo-Huai K, Wen-Yen C, Lien-Hua C (2008) Preparation of thermo-responsive acrylic hydrogels useful for the application in transdermal drug delivery systems. Mater Chem Phys 107:266–273

    Article  CAS  Google Scholar 

  52. Jing W, Xuesong Z, Huining X (2013) Structure and properties of cellulose/poly(N-isopropylacrylamide) hydrogels prepared by SIPN strategy. Carbohydr Polym 94:749–754

    Article  CAS  Google Scholar 

  53. Zhang GQ, Zha LS, Zhou MH, Ma JH, Liang BR (2005) Preparation and characterization of pH- and temperature-responsive semi-interpenetrating polymer network hydrogels based on linear sodium alginate and crosslinked poly(N-isopropylacrylamide). J Appl Polym Sci 97:1931–1940

    Article  CAS  Google Scholar 

  54. Fidelia N, Chris B (2011) Environmentally friendly superabsorbent polymers for water conservation in agricultural lands. J Soil Sci Environ Manage 2(7):206–211

    Google Scholar 

  55. Guyton AC, Hall JE (1998) Secretory functions of the alimentary tract. In: Guyton AC, Hall JE (eds) Textbook of medical physiology. Elsevier Saunders, Philadelphia, pp 815–832

    Google Scholar 

  56. Deshpande AA (1992) Intravaginal drug delivery. Drug Dev Ind Pharm 18:1225–1279

    Article  Google Scholar 

  57. Sujan D, Pousali S, Dibakar D (2016) Temperature, pH and redox responsive cellulose based hydrogels for protein delivery. Int J Biol Macromol 87:92–100

    Article  CAS  Google Scholar 

  58. Lim SL, Ishak A, Azwan ML (2015) pH sensitive hydrogel based on poly(acrylic acid) and cellulose nanocrystals. Sains Malaysiana 44(6):779–785

    Article  CAS  Google Scholar 

  59. Gholamreza M, Ali A, Hossein E, Hossein H (2017) Magnetic/pH-sensitive nanocomposite hydrogel based carboxymethyl cellulose-g-polyacrylamide/montmorillonite for colon targeted drug deliver. Nanomed Res J 2(2):111–122

    Google Scholar 

  60. Toshio Y, Nana H, Rumiko F (1997) Preparation and Characterization of Biodegradable Hydrogels Based on Ulvan, a Polysaccharide from Green Seaweeds. Polymer 38:2791

    Article  Google Scholar 

  61. Min-min W, Li W (2013) Synthesis and characterization of carboxymethyl cellulose/organic montmorillonite nanocomposites and its adsorption behavior for Congo Red dye. Water Sci Eng 6(3):272–282

    Google Scholar 

  62. Toshio Y, Keiko S, Rumiko F (2005) Pectin-based surperabsorbent hydrogels crosslinked by some chemicals: synthesis and characterization. Polym Bull 55:123–129

    Article  CAS  Google Scholar 

  63. Stahl JD, Cameron MD, Haselbach J, Aust SD (2000) Biodegradation of superabsorbent polymers in soil. Environ Sci Pollut Res Int 7(2):83–88

    Article  CAS  PubMed  Google Scholar 

  64. Barbucci R, Magnani A, Consumi M (2000) Swelling behavior of carboxymethylcellulose hydrogels in relation to cross-linking, pH, and charge density. Macromolecules 33:7475–7480

    Article  CAS  Google Scholar 

  65. Heinze T, Pfeiffer K (1999) Studies on the synthesis and characterization of carboxymethylcellulose. Angew Makromol Chem 266:37–45

    Article  CAS  Google Scholar 

  66. Suo A, Qian J, Yao Y, Zhang W (2007) Synthesis and properties of carboxymethyl cellulose-graft-poly(acrylic acid-co-acrylamide) as a novel cellulose-based superabsorbent. J Appl Polym Sci 103:1382–1388

    Article  CAS  Google Scholar 

  67. Lee WF, Wu RJ (1996) Superabsorbent polymeric materials. I. Swelling behaviors of crosslinked poly(sodium acrylate-co-hydroxyethyl methacrylate) in aqueous salt solution. J Appl Polym Sci 62:1099–1114

    Article  CAS  Google Scholar 

  68. Toshio Y, Kaori M, Rumiko F (2006) Novel biodegradable superabsorbent hydrogels derived from cotton cellulose and succinic anhydride: synthesis and characterization. J Appl Polym Sci 99:3251–3256

    Article  CAS  Google Scholar 

  69. Montesanoa FF, Parente A, Santamaria P, Sannino A, Serio F (2015) Biodegradable superabsorbent hydrogel increases water retention properties of growing media and plant growth. Agric Agric Sci Procedia 4:451–458

    Article  Google Scholar 

  70. Christian D, Roberta DS, Francesca S, Alessandro S, Giuseppe V, Alfonso M, Luigi A, Luigi N (2008) Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J Appl Polym Sci 110:2453–2460

    Article  CAS  Google Scholar 

  71. Chunyu C, Ang L, Lina Z (2008) Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels. Macromol Chem Phys 209:1266–1273

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude for the Egyptian Petroleum Research Institute for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manar El-Sayed Abdel-Raouf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hasan, A.M.A., Abdel-Raouf, M.ES. (2018). Cellulose-Based Superabsorbent Hydrogels. In: Mondal, M. (eds) Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-76573-0_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76573-0_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76573-0

  • Online ISBN: 978-3-319-76573-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics