Skip to main content

Benefits of Renewable Hydrogels over Acrylate- and Acrylamide-Based Hydrogels

  • Living reference work entry
  • First Online:
Cellulose-Based Superabsorbent Hydrogels

Abstract

In recent years, renewable/biodegradable polymer-based hydrogels have attracted great interest in the field of hydrogel research and development. The reasons of this interest are their applications in versatile fields including personal care products; drug delivery systems; wound healing; tissue engineering; industrial, pharmaceutical, and biomedical, agricultures; water treatments; food packaging; etc. Other important reasons are the problems caused by synthetic sources to the environment. Therefore, it is our demand to develop natural materials that can be biocompatible and biodegradable with the environment, and important efforts are focused on finding alternatives to replace the synthetic one. Furthermore, renewable hydrogels display unique properties such as biodegradability, biocompatibility, stimuli-responsive characteristics and biological functions. Natural hydrogels are often based on polysaccharide or protein chains. Due to the hydrophilic structure of polysaccharides, they have a good property to form hydrogel. There are various polysaccharides like starch, cellulose, sodium alginate, chitosan, guar gum, carrageenan, etc. that have been focused and used for the preparation of environmental friendly hydrogels. Among them, cellulose and its derivatives revealed distinctive benefits because they are the most abundant natural polysaccharide having low cost and better biodegradability and biocompatibility. Protein chains, which form natural hydrogels, are collagen, silk, keratin, elastin, resilin, and gelatin. On the other hand, many synthetic polymers/copolymers also form hydrogel like poly(vinyl alcohol), polyacrylamide, poly(ethylene oxide), poly(ethylene glycol), etc. Synthetic polymer-based hydrogels have one benefit of chemical strength than natural counterpart due to the slower degradation rate of the hydrolyzable moieties. However, biorenewable polymers usually present higher biocompatibility compared to synthetic polymers, as they undergo enzyme-controlled biodegradation by human enzymes (e.g., lysozyme) and produce biocompatible by-products. This chapter focused on the advantages of biorenewable hydrogels over synthetic (acrylate- and acrylamide-based) hydrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Gomes M, Azevedo H, Malafaya P, Silva S, Olivera J, Silva G, Sousa R, Mano J, Reis R (2008) Natural polymers in tissue engineering applications. In: Van Blitterswijk C, Thomsen P, Lindahl A, Hubbell J, Williams DF, Cancedda R, De Bruijn JD and Sohier J (eds) Tissue Engineering. Academic Press, Burlington, MA, pp 145–192

    Google Scholar 

  2. Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118

    Article  Google Scholar 

  3. Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210:908–910

    Article  PubMed  CAS  Google Scholar 

  4. Yannas I, Lee E, Orgill DP, Skrabut E, Murphy GF (1989) Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci 86:933–937

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Ratner BD, Hoffman AS (1976) Synthetic hydrogels for biomedical applications. In: Hydrogels for medical and related applications. ACS, Washington, DC, pp 1–36

    Google Scholar 

  6. Peppas N, Huang Y, Torres-Lugo M, Ward J, Zhang J (2000) Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 2:9–29

    Article  PubMed  CAS  Google Scholar 

  7. Chen L, Tian Z, Du Y (2004) Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials 25:3725–3732

    Article  PubMed  CAS  Google Scholar 

  8. Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373

    Article  CAS  PubMed Central  Google Scholar 

  9. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    Article  Google Scholar 

  10. Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97:2892–2923

    Article  PubMed  CAS  Google Scholar 

  11. Jagur-Grodzinski J (2010) Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polym Adv Technol 21:27–47

    CAS  Google Scholar 

  12. Xinming L, Yingde C, Lloyd AW, Mikhalovsky SV, Sandeman SR, Howel CA, Liewen L (2008) Polymeric hydrogels for novel contact lens-based ophthalmic drug delivery systems: a review. Cont Lens Anterior Eye 31:57–64

    Article  PubMed  Google Scholar 

  13. Guilherme MR, Aouada FA, Fajardo AR, Martins AF, Paulino AT, Davi MF, Rubira AF, Muniz EC (2015) Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: a review. Eur Polym J 72:365–385

    Article  CAS  Google Scholar 

  14. Jing G, Wang L, Yu H, Amer WA, Zhang L (2013) Recent progress on study of hybrid hydrogels for water treatment. Colloids Surf A Physicochem Eng Asp 416:86–94

    Article  CAS  Google Scholar 

  15. Farris S, Schaich KM, Liu L, Piergiovanni L, Yam KL (2009) Development of polyion-complex hydrogels as an alternative approach for the production of bio-based polymers for food packaging applications: a review. Trends Food Sci Technol 20:316–332

    Article  CAS  Google Scholar 

  16. Bordi F, Paradossi G, Rinaldi C, Ruzicka B (2002) Chemical and physical hydrogels: two casesystems studied by quasi elastic light scattering. Physica A 304:119–128

    Article  CAS  Google Scholar 

  17. Akhtar MF, Hanif M, Ranjha NM (2016) Methods of synthesis of hydrogels… a review. Saudi Pharm J 24:554–559

    Article  PubMed  Google Scholar 

  18. Myung D, Waters D, Wiseman M, Duhamel PE, Noolandi J, Ta CN, Frank CW (2008) Progress in the development of interpenetrating polymer network hydrogels. Polym Adv Technol 19:647–657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Sperling LH (1994) Interpenetrating polymer networks: an overview. In: Klempner D, Sperling LH, Utracki LA (eds) Interpenetrating polymer networks, Advances in chemistry series, vol 239. American Chemical Society, Washington, DC, pp 3–38

    Chapter  Google Scholar 

  20. Dragan ES, Perju MM, Dinu MV (2012) Preparation and characterization of IPN composite hydrogels based on polyacrylamide and chitosan and their interaction with ionic dyes. Carbohydr Polym 88:270–281

    Article  CAS  Google Scholar 

  21. Yin L, Fei L, Tang C, Yin C (2007) Synthesis, characterization, mechanical properties and biocompatibility of interpenetrating polymer network–super-porous hydrogel containing sodium alginate. Polym Int 56:1563–1571

    Article  CAS  Google Scholar 

  22. Oh SB, Choi YK, Cho CS (2003) Thermoplastic hydrogel based on pentablock copolymer consisting of poly (γ-benzyl L-glutamate) and poloxamer. J Appl Polym Sci 88:2649–2656

    Article  CAS  Google Scholar 

  23. Işiklan N (2006) Controlled release of insecticide carbaryl from sodium alginate, sodium alginate/gelatin, and sodium alginate/sodium carboxymethyl cellulose blend beads crosslinked with glutaraldehyde. J Appl Polym Sci 99:1310–1319

    Article  CAS  Google Scholar 

  24. Cipriano BH, Banik SJ, Sharma R, Rumore D, Hwang W, Briber RM, Raghavan SR (2014) Superabsorbent hydrogels that are robust and highly stretchable. Macromolecules 47:4445–4452

    Article  CAS  Google Scholar 

  25. Zhang M, Cheng Z, Zhao T, Liu M, Hu M, Li J (2014) Synthesis, characterization, and swelling behaviors of salt-sensitive maize bran–poly (acrylic acid) superabsorbent hydrogel. J Agric Food Chem 62:8867–8874

    Article  PubMed  CAS  Google Scholar 

  26. Sun JY, Zhao X, Illeperuma WR, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo Z (2012) Highly stretchable and tough hydrogels. Nature 489:133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Derraik JG (2002) The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 44:842–852

    Article  PubMed  CAS  Google Scholar 

  28. Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297:803–807

    Article  PubMed  CAS  Google Scholar 

  29. Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408

    Article  PubMed  CAS  Google Scholar 

  30. Prabaharan M, Mano JF (2006) Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials. Macromol Biosci 6:991–1008

    Article  PubMed  CAS  Google Scholar 

  31. Thakur VK, Thakur MK (2014) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15

    Article  CAS  Google Scholar 

  32. Suh JKF, Matthew HW (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21:2589–2598

    Article  PubMed  CAS  Google Scholar 

  33. Coviello T, Matricardi P, Marianecci C, Alhaique F (2007) Polysaccharide hydrogels for modified release formulations. J Control Release 119:5–24

    Article  PubMed  CAS  Google Scholar 

  34. Qiu X, Hu S (2013) “Smart” materials based on cellulose: a review of the preparations, properties, and applications. Materials 6:738–781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Rutz AL, Shah RN (2016) Protein-based hydrogels. In: Polymeric hydrogels as smart biomaterials. Springer, Cham, pp 73–104

    Chapter  Google Scholar 

  36. Jonker AM, Löwik DW, van Hest JC (2012) Peptide-and protein-based hydrogels. Chem Mater 24:759–773

    Article  CAS  Google Scholar 

  37. Chen Q, Zhu L, Chen H, Yan H, Huang L, Yang J, Zheng J (2015) A novel design strategy for fully physically linked double network hydrogels with tough, fatigue resistant, and self-healing properties. Adv Funct Mater 25:1598–1607

    Article  CAS  Google Scholar 

  38. Matzelle T, Geuskens G, Kruse N (2003) Elastic properties of poly (N-isopropylacrylamide) and poly (acrylamide) hydrogels studied by scanning force microscopy. Macromolecules 36:2926–2931

    Article  CAS  Google Scholar 

  39. Anseth KS, Bowman CN, Brannon-Peppas L (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17:1647–1657

    Article  PubMed  CAS  Google Scholar 

  40. Joshi JR, Patel RP (2012) Role of biodegradable polymers in drug delivery. Int J Curr Pharm Res 4:74–81

    CAS  Google Scholar 

  41. Chan AW, Whitney RA, Neufeld RJ (2009) Semisynthesis of a controlled stimuli-responsive alginate hydrogel. Biomacromolecules 10:609–616

    Article  PubMed  CAS  Google Scholar 

  42. Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100

    Article  CAS  Google Scholar 

  43. Zhou J, Chang C, Zhang R, Zhang L (2007) Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution. Macromol Biosci 7:804–809

    Article  PubMed  CAS  Google Scholar 

  44. Meyers MA, Chen PY, Lin AYM, Seki Y (2008) Biological materials: structure and mechanical properties. Prog Mater Sci 53:1–206

    Article  CAS  Google Scholar 

  45. Kumar A, Srivastava A, Galaev IY, Mattiasson B (2007) Smart polymers: physical forms and bioengineering applications. Prog Polym Sci 32:1205–1237

    Article  CAS  Google Scholar 

  46. Li H, Koenig AM, Sloan P, Leipzig ND (2014) In vivo assessment of guided neural stem cell differentiation in growth factor immobilized chitosan-based hydrogel scaffolds. Biomaterials 35:9049–9057

    Article  CAS  PubMed  Google Scholar 

  47. Sokker H, Ghaffar AA, Gad Y, Aly A (2009) Synthesis and characterization of hydrogels based on grafted chitosan for the controlled drug release. Carbohydr Polym 75:222–229

    Article  CAS  Google Scholar 

  48. Rinaudo M (2008) Main properties and current applications of some polysaccharides as biomaterials. Polym Int 57:397–430

    Article  CAS  Google Scholar 

  49. Ismail H, Irani M, Ahmad Z (2013) Starch-based hydrogels: present status and applications. Int J Polym Mater Polym Biomater 62:411–420

    Article  CAS  Google Scholar 

  50. Wang X, Li H, Cao Y, Tang Q (2011) Cellulose extraction from wood chip in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Bioresour Technol 102:7959–7965

    Article  PubMed  CAS  Google Scholar 

  51. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Joshi MK, Pant HR, Tiwari AP, Maharjan B, Liao N, Park CH, Kim CS (2016) Three-dimensional cellulose sponge: fabrication, characterization, biomimetic mineralization, and in vitro cell infiltration. Carbohydr Polym 136:154–162

    Article  PubMed  CAS  Google Scholar 

  53. Bajpai A, Shukla SK, Bhanu S, Kankane S (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci 33:1088–1118

    Article  CAS  Google Scholar 

  54. Faroongsarng D, Sukonrat P (2008) Thermal behavior of water in the selected starch-and cellulose-based polymeric hydrogels. Int J Pharm 352:152–158

    Article  PubMed  CAS  Google Scholar 

  55. Hebeish A, Higazy A, El-Shafei A, Sharaf S (2010) Synthesis of carboxymethyl cellulose (CMC) and starch-based hybrids and their applications in flocculation and sizing. Carbohydr Polym 79:60–69

    Article  CAS  Google Scholar 

  56. Sannino A, Madaghiele M, Conversano F, Mele G, Maffezzoli A, Netti P, Ambrosio L, Nicolais L (2004) Cellulose derivative− hyaluronic acid-based microporous hydrogels cross-linked through divinyl sulfone (DVS) to modulate equilibrium sorption capacity and network stability. Biomacromolecules 5:92–96

    Article  PubMed  CAS  Google Scholar 

  57. Ivanov C, Popa M, Ivanov M, Popa A (2007) Synthesis of poly(vinyl alcohol): methyl cellulose hydrogel as possible scaffolds in tissue engineering. J Optoelectron Adv Mater 9:3440–3444

    CAS  Google Scholar 

  58. Nie K, Pang W, Wang Y, Lu F, Zhu Q (2005) Effects of specific bonding interactions in poly (ɛ-caprolactone)/silica hybrid materials on optical transparency and melting behavior. Mater Lett 59:1325–1328

    Article  CAS  Google Scholar 

  59. Sannino A, Esposito A, Nicolais L, Del Nobile M, Giovane A, Balestrieri C, Esposito R, Agresti M (2000) Cellulose-based hydrogels as body water retainers. J Mater Sci Mater M 11:247–253

    Article  CAS  Google Scholar 

  60. Sannino A, Mensitieri G, Nicolais L (2004) Water and synthetic urine sorption capacity of cellulose-based hydrogels under a compressive stress field. J Appl Polym Sci 91:3791–3796

    Article  CAS  Google Scholar 

  61. Lenzi F, Sannino A, Borriello A, Porro F, Capitani D, Mensitieri G (2003) Probing the degree of crosslinking of a cellulose based superabsorbing hydrogel through traditional and NMR techniques. Polymer 44:1577–1588

    Article  CAS  Google Scholar 

  62. Sannino A, Esposito A, Rosa AD, Cozzolino A, Ambrosio L, Nicolais L (2003) Biomedical application of a superabsorbent hydrogel for body water elimination in the treatment of edemas. J Biomed Mater Res A 67:1016–1024

    Article  PubMed  CAS  Google Scholar 

  63. Peng X-W, Zhong L-X, Ren J-L, Sun R-C (2012) Highly effective adsorption of heavy metal ions from aqueous solutions by macroporous xylan-rich hemicelluloses-based hydrogel. J Agric Food Chem 60:3909–3916

    Article  PubMed  CAS  Google Scholar 

  64. Chen X, Zhou S, Zhang L, You T, Xu F (2016) Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution. Materials 9:582

    Article  PubMed Central  CAS  Google Scholar 

  65. Esposito A, Sannino A, Cozzolino A, Quintiliano SN, Lamberti M, Ambrosio L, Nicolais L (2005) Response of intestinal cells and macrophages to an orally administered cellulose-PEG based polymer as a potential treatment for intractable edemas. Biomaterials 26:4101–4110

    Article  PubMed  CAS  Google Scholar 

  66. Sannino A, Pappad à S, Madaghiele M, Maffezzoli A, Ambrosio L, Nicolais L (2005) Crosslinking of cellulose derivatives and hyaluronic acid with water-soluble carbodiimide. Polymer 46:11206–11212

    Article  CAS  Google Scholar 

  67. Sannino A, Madaghiele M, Lionetto M, Schettino T, Maffezzoli A (2006) A cellulose-based hydrogel as a potential bulking agent for hypocaloric diets: an in vitro biocompatibility study on rat intestine. J Appl Polym Sci 102:1524–1530

    Article  CAS  Google Scholar 

  68. Stabenfeldt SE, García AJ, LaPlaca MC (2006) Thermoreversible laminin-functionalized hydrogel for neural tissue engineering. J Biomed Mater Res A 77:718–725

    Article  PubMed  CAS  Google Scholar 

  69. Fellah BH, Weiss P, Gauthier O, Rouillon T, Pilet P, Daculsi G, Layrolle P (2006) Bone repair using a new injectable self-crosslinkable bone substitute. J Orthop Res 24:628–635

    Article  PubMed  CAS  Google Scholar 

  70. Marler JJ, Upton J, Langer R, Vacanti JP (1998) Transplantation of cells in matrices for tissue regeneration. Adv Drug Deliv Rev 33:165–182

    Article  PubMed  CAS  Google Scholar 

  71. Prabhakaran MP, Venugopal J, Ramakrishna S (2009) Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomater 5:2884–2893

    Article  PubMed  CAS  Google Scholar 

  72. Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL (2007) Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 59:1413–1433

    Article  PubMed  CAS  Google Scholar 

  73. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1880

    Article  PubMed  CAS  Google Scholar 

  74. Märtson M, Viljanto J, Hurme T, Saukko P (1998) Biocompatibility of cellulose sponge with bone. Eur Surg Res 30:426–432

    Article  PubMed  Google Scholar 

  75. Takata T, Miyauchi M, Wang HL (2001) Migration of osteoblastic cells on various guided bone regeneration membranes. Clin Oral Implants Res 12:332–338

    Article  PubMed  CAS  Google Scholar 

  76. Risbud MV, Bhonde RR (2001) Suitability of cellulose molecular dialysis membrane for bioartificial pancreas: in vitro biocompatibility studies. J Biomed Mater Res A 54:436–444

    Article  CAS  Google Scholar 

  77. LaIuppa JA, McAdams TA, Papoutsakis ET, Miller WM (1997) Culture materials affect ex vivo expansion of hematopoietic progenitor cells. J Biomed Mater Res A 36:347–359

    Article  CAS  Google Scholar 

  78. Cullen B, Watt PW, Lundqvist C, Silcock D, Schmidt RJ, Bogan D, Light ND (2002) The role of oxidised regenerated cellulose/collagen in chronic wound repair and its potential mechanism of action. Int J Biochem Cell Biol 34:1544–1556

    Article  PubMed  CAS  Google Scholar 

  79. Katepetch C, Rujiravanit R, Tamura H (2013) Formation of nanocrystalline ZnO particles into bacterial cellulose pellicle by ultrasonic-assisted in situ synthesis. Cellulose 20:1275–1292

    Article  CAS  Google Scholar 

  80. Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51

    Article  CAS  Google Scholar 

  81. Flores-Hernández CG, Colín-Cruz A, Velasco-Santos C, Castaño VM, Rivera-Armenta JL, Almendarez-Camarillo A, García-Casillas PE, Martínez-Hernández AL (2014) All green composites from fully renewable biopolymers: chitosan-starch reinforced with keratin from feathers. Polymers 6:686–705

    Article  CAS  Google Scholar 

  82. Baran E, Mano J, Reis R (2004) Starch–chitosan hydrogels prepared by reductive alkylation cross-linking. J Mater Sci Mater M 15:759–765

    Article  CAS  Google Scholar 

  83. Chatakanonda P, Varavinit S, Chinachoti P (2000) Effect of crosslinking on thermal and microscopic transitions of rice starch. LWT-Food Sci Technol 33:276–284

    Article  CAS  Google Scholar 

  84. Xing GX, Zhang SF, Ju BZ, Yang JZ (2006) Study on adsorption behavior of crosslinked cationic starch maleate for chromium (VI). Carbohydr Polym 66:246–251

    Article  CAS  Google Scholar 

  85. Chen YX, Wang GY (2006) Adsorption properties of oxidized carboxymethyl starch and cross-linked carboxymethyl starch for calcium ion. Colloids Surf A Physicochem Eng Asp 289:75–83

    Article  CAS  Google Scholar 

  86. Ngoenkam J, Faikrua A, Yasothornsrikul S, Viyoch J (2010) Potential of an injectable chitosan/starch/β-glycerol phosphate hydrogel for sustaining normal chondrocyte function. Int J Pharm 391:115–124

    Article  PubMed  CAS  Google Scholar 

  87. Pereira C, Cunha A, Reis R, Vazquez B, San Roman J (1998) New starch-based thermoplastic hydrogels for use as bone cements or drug-delivery carriers. J Mater Sci Mater M 9:825–833

    Article  CAS  Google Scholar 

  88. Fekete T, Borsa J, Takács E, Wojnárovits L (2017) Synthesis of carboxymethylcellulose/starch superabsorbent hydrogels by gamma-irradiation. Chem Cent J 11:46

    Article  PubMed  PubMed Central  Google Scholar 

  89. Chantawong V, Harvey N, Bashkin V (2003) Comparison of heavy metal adsorptions by Thai kaolin and ballclay. Water Air Soil Pollut 148:111–125

    Article  CAS  Google Scholar 

  90. Hashem A, Ahmad F, Fahad R (2008) Application of some starch hydrogels for the removal of mercury (II) ions from aqueous solutions. Adsorpt Sci Technol 26:563–579

    Article  CAS  Google Scholar 

  91. Chauhan K, Chauhan GS, Ahn J-H (2010) Novel polycarboxylated starch-based sorbents for Cu2+ ions. Ind Eng Chem Res 49:2548–2556

    Article  CAS  Google Scholar 

  92. Schoeck VE Jr, Fuller EE, Dubnik A (2002) Water-blocked telecommunications cables, and water-blocking yarns usefully employed in same. US Patent 650,054,1 B1

    Google Scholar 

  93. Sirviö JA, Kolehmainen A, Liimatainen H, Niinimäki J, Hormi OE (2014) Biocomposite cellulose-alginate films: promising packaging materials. Food Chem 151:343–351

    Article  PubMed  CAS  Google Scholar 

  94. Draget KI, Taylor C (2011) Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocoll 25:251–256

    Article  CAS  Google Scholar 

  95. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Klöck G, Pfeffermann A, Ryser C, Gröhn P, Kuttler B, Hahn HJ, Zimmermann U (1997) Biocompatibility of mannuronic acid-rich alginates. Biomaterials 18:707–713

    Article  PubMed  Google Scholar 

  97. Mukai-Correa R, Prata A, Alvim I, Grosso C (2004) Controlled release of protein from hydrocolloid gel microbeads before and after drying. Curr Drug Deliv 1:265–273

    Article  PubMed  CAS  Google Scholar 

  98. Kumar Malik D, Baboota S, Ahuja A, Hasan S, Ali J (2007) Recent advances in protein and peptide drug delivery systems. Curr Drug Deliv 4:141–151

    Article  Google Scholar 

  99. Reyes N, Rivas-Ruiz I, Dominguez-Espinosa R, Solis S (2006) Influence of immobilization parameters on endopolygalacturonase productivity by hybrid Aspergillus sp. HL entrapped in calcium alginate. Biochem Eng J 32:43–48

    Article  CAS  Google Scholar 

  100. Seal B, Otero T, Panitch A (2001) Polymeric biomaterials for tissue and organ regeneration. Mater Sci Eng R Rep 34:147–230

    Article  Google Scholar 

  101. Zhao LB, Pan L, Zhang K, Guo SS, Liu W, Wang Y, Chen Y, Zhao XZ, Chan HL (2009) Generation of Janus alginate hydrogel particles with magnetic anisotropy for cell encapsulation. Lab Chip 9:2981–2986

    Article  PubMed  CAS  Google Scholar 

  102. Navratil M, Gemeiner P, Klein J, Sturdik E, Malovikova A, Nahalka J, Vikartovska A, Domeny Z, Smogrovicova D (2002) Properties of hydrogel materials used for entrapment of microbial cells in production of fermented beverages. Artif Cells Blood Substit Immobil Biotechnol 30:199–218

    Article  PubMed  CAS  Google Scholar 

  103. Wang CC, Yang KC, Lin KH, Liu HC, Lin FH (2011) A highly organized three-dimensional alginate scaffold for cartilage tissue engineering prepared by microfluidic technology. Biomaterials 32:7118–7126

    Article  PubMed  CAS  Google Scholar 

  104. Kulkarni RV, Sreedhar V, Mutalik S, Setty CM, Sa B (2010) Interpenetrating network hydrogel membranes of sodium alginate and poly(vinyl alcohol) for controlled release of prazosin hydrochloride through skin. Int J Biol Macromol 47:520–527

    Article  PubMed  CAS  Google Scholar 

  105. El-Sherbiny IM, Smyth HD (2010) Biodegradable nano-micro carrier systems for sustained pulmonary drug delivery:(I) self-assembled nanoparticles encapsulated in respirable/swellable semi-IPN microspheres. Int J Pharm 395:132–141

    Article  PubMed  CAS  Google Scholar 

  106. Detsch R, Sarker B, Zehnder T, Frank G, Boccaccini AR (2015) Advanced alginate-based hydrogels. Mater Today 18:590–591

    Article  Google Scholar 

  107. Xu Y, Zhan C, Fan L, Wang L, Zheng H (2007) Preparation of dual crosslinked alginate–chitosan blend gel beads and in vitro controlled release in oral site-specific drug delivery system. Int J Pharm 336:329–337

    Article  PubMed  CAS  Google Scholar 

  108. Bunaprasert T, Thongmarongsri N, Thanakit V, Ruangvejvorachai P, Buranapraditkul S, Maneesri S, Kanokpanont S (2006) Tissue engineering of cartilage with porous polycarprolactone–alginate scaffold: the first report of tissue engineering in Thailand. J Med Assoc Thailand 89:S108–S114

    Google Scholar 

  109. Pereira R, Mendes A, Bártolo P (2013) Alginate/Aloe vera hydrogel films for biomedical applications. Procedia CIRP 5:210–215

    Article  Google Scholar 

  110. Dahlmann J, Krause A, Möller L, Kensah G, Möwes M, Diekmann A, Martin U, Kirschning A, Gruh I, Dräger G (2013) Fully defined in situ cross-linkable alginate and hyaluronic acid hydrogels for myocardial tissue engineering. Biomaterials 34:940–951

    Article  PubMed  CAS  Google Scholar 

  111. Jayakumar R, Menon D, Manzoor K, Nair S, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials – a short review. Carbohydr Polym 82:227–232

    Article  CAS  Google Scholar 

  112. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  113. Duceppe N, Tabrizian M (2010) Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery. Expert Opin Drug Deliv 7:1191–1207

    Article  PubMed  CAS  Google Scholar 

  114. Sezer AD, Cevher E (2012) Topical drug delivery using chitosan nano-and microparticles. Expert Opin Drug Deliv 9:1129–1146

    Article  PubMed  CAS  Google Scholar 

  115. Peppas NA, Sahlin JJ (1996) Hydrogels as mucoadhesive and bioadhesive materials: a review. Biomaterials 17:1553–1561

    Article  PubMed  CAS  Google Scholar 

  116. Dai YN, Li P, Zhang JP, Wang AQ, Wei Q (2008) A novel pH sensitive N-succinyl chitosan/alginate hydrogel bead for nifedipine delivery. Biopharm Drug Dispos 29:173–184

    Article  PubMed  CAS  Google Scholar 

  117. Chang CH, Lin YH, Yeh CL, Chen YC, Chiou SF, Hsu YM, Chen YS, Wang CC (2009) Nanoparticles incorporated in pH-sensitive hydrogels as amoxicillin delivery for eradication of Helicobacter pylori. Biomacromolecules 11:133–142

    Article  CAS  Google Scholar 

  118. Patel VR, Amiji MM (1996) Preparation and characterization of freeze-dried chitosan-poly (ethylene oxide) hydrogels for site-specific antibiotic delivery in the stomach. Pharm Res 13:588–593

    Article  PubMed  CAS  Google Scholar 

  119. Nazar H, Fatouros DG, van der Merwe SM, Bouropoulos N, Avgouropoulos G, Tsibouklis J, Roldo M (2011) Thermosensitive hydrogels for nasal drug delivery: the formulation and characterisation of systems based on N-trimethyl chitosan chloride. Eur J Pharm Biopharm 77:225–232

    Article  PubMed  CAS  Google Scholar 

  120. Agrawal A, Gupta P, Khanna A, Sharma R, Chandrabanshi H, Gupta N, Patil U, Yadav S (2010) Development and characterization of in situ gel system for nasal insulin delivery. Die Pharmazie Int J Pharm Sci 65:188–193

    CAS  Google Scholar 

  121. Wu J, Wei W, Wang LY, Su ZG, Ma GH (2007) A thermosensitive hydrogel based on quaternized chitosan and poly(ethylene glycol) for nasal drug delivery system. Biomaterials 28:2220–2232

    Article  PubMed  CAS  Google Scholar 

  122. Yang C, Xu L, Zhou Y, Zhang X, Huang X, Wang M, Han Y, Zhai M, Wei S, Li J (2010) A green fabrication approach of gelatin/CM-chitosan hybrid hydrogel for wound healing. Carbohydr Polym 82:1297–1305

    Article  CAS  Google Scholar 

  123. Tran NQ, Joung YK, Lih E, Park KD (2011) In situ forming and rutin-releasing chitosan hydrogels as injectable dressings for dermal wound healing. Biomacromolecules 12:2872–2880

    Article  PubMed  CAS  Google Scholar 

  124. Hong Y, Gong Y, Gao C, Shen J (2008) Collagen-coated polylactide microcarriers/chitosan hydrogel composite: injectable scaffold for cartilage regeneration. J Biomed Mater Res A 85:628–637

    Article  PubMed  CAS  Google Scholar 

  125. Park KM, Lee SY, Joung YK, Na JS, Lee MC, Park KD (2009) Thermosensitive chitosan-Pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration. Acta Biomater 5:1956–1965

    Article  PubMed  CAS  Google Scholar 

  126. Tang Y, Wang X, Li Y, Lei M, Du Y, Kennedy JF, Knill CJ (2010) Production and characterisation of novel injectable chitosan/methylcellulose/salt blend hydrogels with potential application as tissue engineering scaffolds. Carbohydr Polym 82:833–841

    Article  CAS  Google Scholar 

  127. Wu SJ, Liou TH, Yeh CH, Mi FL, Lin TK (2013) Preparation and characterization of porous chitosan–tripolyphosphate beads for copper (II) ion adsorption. J Appl Polym Sci 127:4573–4580

    Article  CAS  Google Scholar 

  128. Li N, Bai R (2005) Copper adsorption on chitosan–cellulose hydrogel beads: behaviors and mechanisms. Sep Purif Technol 42:237–247

    Article  CAS  Google Scholar 

  129. Wang X, Sun R, Wang C (2014) pH dependence and thermodynamics of Hg (II) adsorption onto chitosan-poly(vinyl alcohol) hydrogel adsorbent. Colloids Surf A Physicochem Eng Asp 441:51–58

    Article  CAS  Google Scholar 

  130. Mishra A, Sharma A (2011) Synthesis of γ-cyclodextrin/chitosan composites for the efficient removal of Cd (II) from aqueous solution. Int J Biol Macromol 49:504–512

    Article  PubMed  CAS  Google Scholar 

  131. Prabhanjan H, Gharia M, Srivastava H (1989) Guar gum derivatives. Part I: preparation and properties. Carbohydr Polym 11:279–292

    Article  CAS  Google Scholar 

  132. Patel J, Karve M, Patel NK (2014) Guar gum: a versatile material for pharmaceutical industries. Int J Pharm Pharm Sci 6:13–19

    CAS  Google Scholar 

  133. Shenoy MA, D’Melo DJ (2010) Synthesis and characterization of acryloyloxy guar gum. J Appl Polym Sci 117:148–154

    CAS  Google Scholar 

  134. Mestechkina NM, Egorov AV, Shcherbukhin VD (2010) Synthesis of galactomannan sulfates. J Appl Biochem Microbiol 42(3):326–330

    Article  CAS  Google Scholar 

  135. Gacitua W, Ballerini A, Zhang J (2005) Polymer nanocomposites: synthetic and natural fillers a review. Maderas Cienc Technol 7:159–178

    Google Scholar 

  136. Singh A, Sarkar DJ, Singh AK, Parsad R, Kumar A, Parmar BS (2011) Studies on novel nanosuperabsorbent composites: swelling behavior in different environments and effect on water absorption and retention properties of sandy loam soil and soil-less medium. J Appl Polym Sci 120:1448–1458

    Article  CAS  Google Scholar 

  137. Anupama Singh K, Jat ML, Parmar BS (2005) Performance of a new superabsorbent polymer on crop and water productivity of summer mung bean (Phaseolus radiatus). J Water Manage 13:1–5

    Google Scholar 

  138. Chourasia M, Jain S (2004) Polysaccharides for colon targeted drug delivery. Drug Deliv 11:129–148

    Article  PubMed  CAS  Google Scholar 

  139. Chaurasia M, Chourasia MK, Jain NK, Jain A, Soni V, Gupta Y, Jain SK (2006) Cross-linked guar gum microspheres: a viable approach for improved delivery of anticancer drugs for the treatment of colorectal cancer. AAPS PharmSciTech 7:E143

    Article  PubMed Central  Google Scholar 

  140. Gliko-Kabir I, Yagen B, Baluom M, Rubinstein A (2000) Phosphated crosslinked guar for colon-specific drug delivery. J Control Release 63:129–134

    Article  PubMed  CAS  Google Scholar 

  141. Fujioka R, Tanaka Y, Yoshimura T (2009) Synthesis and properties of superabsorbent hydrogels based on guar gum and succinic anhydride. J Appl Polym Sci 114:612–616

    Article  CAS  Google Scholar 

  142. Campo VL, Kawano DF, da Silva DB, Carvalho I (2009) Carrageenans: biological properties, chemical modifications and structural analysis – a review. Carbohydr Polym 77:167–180

    Article  CAS  Google Scholar 

  143. Montolalu RI, Tashiro Y, Matsukawa S, Ogawa H (2008) Effects of extraction parameters on gel properties of carrageenan from Kappaphycus alvarezii (Rhodophyta). J Appl Phycol 20:521–526

    Article  CAS  Google Scholar 

  144. Van de Velde F, Knutsen S, Usov A, Rollema H, Cerezo A (2002) 1 H and 13 C high resolution NMR spectroscopy of carrageenans: application in research and industry. Trends Food Sci Technol 13:73–92

    Article  Google Scholar 

  145. Keppeler S, Ellis A, Jacquier J (2009) Cross-linked carrageenan beads for controlled release delivery systems. Carbohydr Polym 78:973–977

    Article  CAS  Google Scholar 

  146. Meena R, Prasad K, Siddhanta A (2007) Effect of genipin, a naturally occurring crosslinker on the properties of kappa-carrageenan. Int J Biol Macromol 41:94–101

    Article  PubMed  CAS  Google Scholar 

  147. Distantina S, Rochmadi R, Fahrurrozi M, Wiratni W (2013) Hydrogels based on carrageenan extracted from Kappaphycus alvarezii. Int J Med Health Biomed Bioeng Pharm Eng 7(6):244–247

    Google Scholar 

  148. Santo VE, Frias AM, Carida M, Cancedda R, Gomes ME, Mano JF, Reis RL (2009) Carrageenan-based hydrogels for the controlled delivery of PDGF-BB in bone tissue engineering applications. Biomacromolecules 10:1392–1401

    Article  PubMed  CAS  Google Scholar 

  149. Soares PAG, C de Seixas JRP, Albuquerque PBS, Santos GRC, Mourão PAS, Barros W, Correia MTS, Carneiro-da-Cunha MG (2015) Development and characterization of a new hydrogel based on galactomannan and κ-carrageenan. Carbohydr Polym 134:673–679

    Article  PubMed  CAS  Google Scholar 

  150. Wang X, Kim HJ, Wong C, Vepari C, Matsumoto A, Kaplan DL (2006) Fibrous proteins and tissue engineering. Mater Today 9:44–53

    Article  Google Scholar 

  151. Karsdal MA, Nielsen MJ, Sand JM, Henriksen K, Genovese F, Bay-Jensen AC, Smith V, Adamkewicz JI, Christiansen C, Leeming DJ (2013) Extracellular matrix remodeling: the common denominator in connective tissue diseases possibilities for evaluation and current understanding of the matrix as more than a passive architecture, but a key player in tissue failure. Assay Drug Dev Technol 11:70–92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Vasconcelos A, Gomes AC, Cavaco-Paulo A (2012) Novel silk fibroin/elastin wound dressings. Acta Biomater 8:3049–3060

    Article  PubMed  CAS  Google Scholar 

  153. Scheibel T (2005) Protein fibers as performance proteins: new technologies and applications. Curr Opin Biotechnol 16:427–433

    Article  PubMed  CAS  Google Scholar 

  154. Pace LA, Plate JF, Smith TL, Van Dyke ME (2013) The effect of human hair keratin hydrogel on early cellular response to sciatic nerve injury in a rat model. Biomaterials 34:5907–5914

    Article  PubMed  CAS  Google Scholar 

  155. Leach JB, Wolinsky JB, Stone PJ, Wong JY (2005) Crosslinked α-elastin biomaterials: towards a processable elastin mimetic scaffold. Acta Biomater 1:155–164

    Article  PubMed  Google Scholar 

  156. Parenteau-Bareil R, Gauvin R, Berthod F (2010) Collagen-based biomaterials for tissue engineering applications. Materials 3:1863–1887

    Article  PubMed Central  CAS  Google Scholar 

  157. Ricard-Blum S (2011) The collagen family. Cold Spring Harb Perspect Biol 3:a004978

    Article  PubMed  PubMed Central  Google Scholar 

  158. Gelse K, Pöschl E, Aigner T (2003) Collagens – structure, function, and biosynthesis. Adv Drug Deliv Rev 55:1531–1546

    Article  PubMed  CAS  Google Scholar 

  159. Hesse E, Hefferan TE, Tarara JE, Haasper C, Meller R, Krettek C, Lu L, Yaszemski MJ (2010) Collagen type I hydrogel allows migration, proliferation, and osteogenic differentiation of rat bone marrow stromal cells. J Biomed Mater Res A 94:442–449

    PubMed  PubMed Central  Google Scholar 

  160. Almelkar S, Patwardhan A, Divate S, Agrawal N, Bhonde R, Chaukar A (2014) Fibrin matrix supports endothelial cell adhesion and migration in culture. OA Biology 2:5

    Google Scholar 

  161. Silvipriya K, Kumar KK, Bhat A, Kumar BD, John A (2015) Collagen: animal sources and biomedical application. J Appl Pharm Sci 5:123–127

    Article  CAS  Google Scholar 

  162. Gómez-Guillén M, Giménez B, López-Caballero MA, Montero M (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocoll 25:1813–1827

    Article  CAS  Google Scholar 

  163. Browne S, Zeugolis DI, Pandit A (2013) Collagen: finding a solution for the source. Tissue Eng A 19:1491–1494

    Article  CAS  Google Scholar 

  164. Kouris NA, Squirrell JM, Jung JP, Pehlke CA, Hacker T, Eliceiri KW, Ogle BM (2011) A nondenatured, noncrosslinked collagen matrix to deliver stem cells to the heart. Regen Med 6:569–582

    Article  PubMed  CAS  Google Scholar 

  165. Calderon L, Collin E, Velasco-Bayon D, Murphy M, O’Halloran D, Pandit A (2010) Type II collagen-hyaluronan hydrogel-a step towards a scaffold for intervertebral disc tissue engineering. Eur Cell Mater 20:134–148

    Article  PubMed  CAS  Google Scholar 

  166. Helary C, Bataille I, Abed A, Illoul C, Anglo A, Louedec L, Letourneur D, Meddahi-Pelle A, Giraud-Guille MM (2010) Concentrated collagen hydrogels as dermal substitutes. Biomaterials 31:481–490

    Article  PubMed  CAS  Google Scholar 

  167. Hui T, Cheung K, Cheung W, Chan D, Chan B (2008) In vitro chondrogenic differentiation of human mesenchymal stem cells in collagen microspheres: influence of cell seeding density and collagen concentration. Biomaterials 29:3201–3212

    Article  PubMed  CAS  Google Scholar 

  168. Aper T, Wilhelmi M, Gebhardt C, Hoeffler K, Benecke N, Hilfiker A, Haverich A (2016) Novel method for the generation of tissue-engineered vascular grafts based on a highly compacted fibrin matrix. Acta Biomater 29:21–32

    Article  PubMed  CAS  Google Scholar 

  169. Yamaoka H, Asato H, Ogasawara T, Nishizawa S, Takahashi T, Nakatsuka T, Koshima I, Nakamura K, Kawaguchi H, Chung U (2006) Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials. J Biomed Mater Res A 78:1–11

    Article  PubMed  CAS  Google Scholar 

  170. Schneider-Barthold C, Baganz S, Wilhelmi M, Scheper T, Pepelanova I (2016) Hydrogels based on collagen and fibrin–frontiers and applications. BioNanoMat 17:3–12

    Article  Google Scholar 

  171. Hu Y, Liu L, Gu Z, Dan W, Dan N, Yu X (2014) Modification of collagen with a natural derived cross-linker, alginate dialdehyde. Carbohydr Polym 102:324–332

    Article  PubMed  CAS  Google Scholar 

  172. Zhang X, Yang Y, Yao J, Shao Z, Chen X (2014) Strong collagen hydrogels by oxidized dextran modification. ACS Sustain Chem Eng 2:1318–1324

    Article  CAS  Google Scholar 

  173. Peng Z, Li Z, Zhang F, Peng X (2012) Preparation and properties of poly(vinyl alcohol)/collagen hydrogel. J Macromol Sci B 51:1934–1941

    Article  CAS  Google Scholar 

  174. Tronci G, Grant CA, Thomson NH, Russell SJ, Wood DJ (2015) Multi-scale mechanical characterization of highly swollen photo-activated collagen hydrogels. J R Soc Interf 12: 20141079

    Article  CAS  Google Scholar 

  175. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24:401–416

    Article  PubMed  CAS  Google Scholar 

  176. Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32:991–1007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Yucel T, Lovett ML, Kaplan DL (2014) Silk-based biomaterials for sustained drug delivery. J Control Release 190:381–397

    Article  PubMed  CAS  Google Scholar 

  178. Chao PHG, Yodmuang S, Wang X, Sun L, Kaplan DL, Vunjak-Novakovic G (2010) Silk hydrogel for cartilage tissue engineering. J Biomed Mater Res B Appl Biomater 95:84–90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Wang X, Kluge JA, Leisk GG, Kaplan DL (2008) Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials 29:1054–1064

    Article  PubMed  CAS  Google Scholar 

  180. Kaplan D, Adams WW, Farmer B, Viney C (1993) Silk: biology, structure, properties, and genetics. In: Silk Polymers Materials Science and Biotechnology, vol 544, ACS symposium series, ACS, Washington, DC, pp 2–16

    Google Scholar 

  181. Yigit S, Dinjaski N, Kaplan DL (2016) Fibrous proteins: at the crossroads of genetic engineering and biotechnological applications. Biotechnol Bioeng 113:913–929

    Article  PubMed  CAS  Google Scholar 

  182. Murphy AR, Kaplan DL (2009) Biomedical applications of chemically-modified silk fibroin. J Mater Chem 19:6443–6450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Kundu B, Rajkhowa R, Kundu SC, Wang X (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65:457–470

    Article  PubMed  CAS  Google Scholar 

  184. Hanawa T, Watanabe A, Tsuchiya T, Ikoma R, Hidaka M, Sugihara M (1995) New oral dosage form for elderly patients: preparation and characterization of silk fibroin gel. Chem Pharm Bull 43:284–288

    Article  CAS  Google Scholar 

  185. Kim U-J, Park J, Li C, Jin H-J, Valluzzi R, Kaplan DL (2004) Structure and properties of silk hydrogels. Biomacromolecules 5:786–792

    Article  PubMed  CAS  Google Scholar 

  186. Motta A, Migliaresi C, Faccioni F, Torricelli P, Fini M, Giardino R (2004) Fibroin hydrogels for biomedical applications: preparation, characterization and in vitro cell culture studies. J Biomater Sci Polym Ed 15:851–864

    Article  PubMed  CAS  Google Scholar 

  187. Kim I, Yoo M, Seo J, Park S, Na H, Lee H, Kim S, Cho C (2007) Evaluation of semi-interpenetrating polymer networks composed of chitosan and poloxamer for wound dressing application. Int J Pharm 341:35–43

    Article  PubMed  CAS  Google Scholar 

  188. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360

    Article  CAS  Google Scholar 

  189. Cen L, Liu W, Cui L, Zhang W, Cao Y (2008) Collagen tissue engineering: development of novel biomaterials and applications. Pediatr Res 63:492–496

    Article  PubMed  CAS  Google Scholar 

  190. Seib FP, Pritchard EM, Kaplan DL (2013) Self-assembling doxorubicin silk hydrogels for the focal treatment of primary breast cancer. Adv Funct Mater 23:58–65

    Article  PubMed  CAS  Google Scholar 

  191. Gil ES, Frankowski DJ, Spontak RJ, Hudson SM (2005) Swelling behavior and morphological evolution of mixed gelatin/silk fibroin hydrogels. Biomacromolecules 6:3079–3087

    Article  PubMed  CAS  Google Scholar 

  192. Sun W, Incitti T, Migliaresi C, Quattrone A, Casarosa S, Motta A (2016) Genipin-crosslinked gelatin–silk fibroin hydrogels for modulating the behaviour of pluripotent cells. J Tissue Eng Regen Med 10:876–887

    Article  PubMed  CAS  Google Scholar 

  193. Lv Q, Hu K, Feng Q, Cui F (2008) Fibroin/collagen hybrid hydrogels with crosslinking method: preparation, properties, and cytocompatibility. J Biomed Mater Res A 84:198–207

    Article  PubMed  CAS  Google Scholar 

  194. Ziv K, Nuhn H, Ben-Haim Y, Sasportas LS, Kempen PJ, Niedringhaus TP, Hrynyk M, Sinclair R, Barron AE, Gambhir SS (2014) A tunable silk–alginate hydrogel scaffold for stem cell culture and transplantation. Biomaterials 35:3736–3743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Kweon H, Park S, Yeo J, Lee Y, Cho C (2001) Preparation of semi-interpenetrating polymer networks composed of silk fibroin and poly(ethylene glycol) macromer. J Appl Polym Sci 80:1848–1853

    Article  CAS  Google Scholar 

  196. Megeed Z, Haider M, Li D, O’malley BW, Cappello J, Ghandehari H (2004) In vitro and in vivo evaluation of recombinant silk-elastinlike hydrogels for cancer gene therapy. J Control Release 94:433–445

    Article  PubMed  CAS  Google Scholar 

  197. Wang B, Yang W, McKittrick J, Meyers MA (2016) Keratin: structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog Mater Sci 76:229–318

    Article  CAS  Google Scholar 

  198. Shavandi A, Silva TH, Bekhit AA, Bekhit AE-D (2017) Dissolution, extraction and biomedical application of keratin: methods and factors affecting the extraction and physicochemical properties of keratin. Biomater Sci 5:1699–1735

    Article  PubMed  CAS  Google Scholar 

  199. Balaji S, Kumar R, Sripriya R, Kakkar P, Ramesh DV, Reddy PNK, Sehgal P (2012) Preparation and comparative characterization of keratin–chitosan and keratin–gelatin composite scaffolds for tissue engineering applications. Mater Sci Eng C 32:975–982

    Article  CAS  Google Scholar 

  200. Rouse JG, Van Dyke ME (2010) A review of keratin-based biomaterials for biomedical applications. Materials 3:999–1014

    Article  PubMed Central  Google Scholar 

  201. Buchanan JH (1977) A cystine-rich protein fraction from oxidized α-keratin. Biochem J 167:489–491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Maclaren J (1962) The extent of reduction of wool proteins by thiols. Aust J Chem 15:824–831

    Article  CAS  Google Scholar 

  203. Vasconcelos A, Cavaco-Paulo A (2011) Wound dressings for a proteolytic-rich environment. Appl Microbiol Biotechnol l90:445–460

    Article  CAS  Google Scholar 

  204. Apel PJ, Garrett JP, Sierpinski P, Ma J, Atala A, Smith TL, Koman LA, Van Dyke ME (2008) Peripheral nerve regeneration using a keratin-based scaffold: long-term functional and histological outcomes in a mouse model. J Hand Surg 33:1541–1547

    Article  Google Scholar 

  205. Aboushwareb T, Eberli D, Ward C, Broda C, Holcomb J, Atala A, Van Dyke M (2009) A keratin biomaterial gel hemostat derived from human hair: evaluation in a rabbit model of lethal liver injury. J Biomed Mater Res B Appl Biomater 90:45–54

    PubMed  Google Scholar 

  206. Wang J, Hao S, Luo T, Cheng Z, Li W, Gao F, Guo T, Gong Y, Wang B (2017) Feather keratin hydrogel for wound repair: preparation, healing effect and biocompatibility evaluation. Colloid Surfs B 149:341–350

    Article  CAS  Google Scholar 

  207. Wang S, Taraballi F, Tan LP, Ng KW (2012) Human keratin hydrogels support fibroblast attachment and proliferation in vitro. Cell Tissue Res 347:795–802

    Article  PubMed  CAS  Google Scholar 

  208. Almine JF, Bax DV, Mithieux SM, Nivison-Smith L, Rnjak J, Waterhouse A, Wise SG, Weiss AS (2010) Elastin-based materials. Chem Soc Rev 39:3371–3379

    Article  PubMed  CAS  Google Scholar 

  209. Wise SG, Mithieux SM, Weiss AS (2009) Engineered tropoelastin and elastin-based biomaterials. Adv Protein Chem Struct Biol 78:1–24

    Article  PubMed  CAS  Google Scholar 

  210. Annabi N, Mithieux SM, Boughton EA, Ruys AJ, Weiss AS, Dehghani F (2009) Synthesis of highly porous crosslinked elastin hydrogels and their interaction with fibroblasts in vitro. Biomaterials 30:4550–4557

    Article  PubMed  CAS  Google Scholar 

  211. Jiankang H, Dichen L, Yaxiong L, Bo Y, Hanxiang Z, Qin L, Bingheng L, Yi L (2009) Preparation of chitosan–gelatin hybrid scaffolds with well-organized microstructures for hepatic tissue engineering. Acta Biomater 5:453–461

    Article  PubMed  CAS  Google Scholar 

  212. Annabi N, Mithieux SM, Weiss AS, Dehghani F (2009) The fabrication of elastin-based hydrogels using high pressure CO 2. Biomaterials 30:1–7

    Article  PubMed  CAS  Google Scholar 

  213. Mithieux SM, Rasko JE, Weiss AS (2004) Synthetic elastin hydrogels derived from massive elastic assemblies of self-organized human protein monomers. Biomaterials 25:4921–4927

    Article  PubMed  CAS  Google Scholar 

  214. McDaniel JR, Bhattacharyya J, Vargo KB, Hassouneh W, Hammer DA, Chilkoti A (2013) Self-assembly of thermally responsive nanoparticles of a genetically encoded peptide polymer by drug conjugation. Angew Chem Int Ed 52:1683–1687

    Article  CAS  Google Scholar 

  215. Wang H, Cai L, Paul A, Enejder A, Heilshorn SC (2014) Hybrid elastin-like polypeptide–poly(ethylene glycol) (ELP-PEG) hydrogels with improved transparency and independent control of matrix mechanics and cell ligand density. Biomacromolecules 15:3421–3428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Yano S, Mori M, Teramoto N, Iisaka M, Suzuki N, Noto M, Kaimoto Y, Kakimoto M, Yamada M, Shiratsuchi E (2015) Preparation of photocrosslinked fish elastin polypeptide/microfibrillated cellulose composite gels with elastic properties for biomaterial applications. Mar Drugs 13:338–353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Weis-Fogh T (1961) Molecular interpretation of the elasticity of resilin, a rubber-like protein. J Mol Biol 3:648–667

    Article  CAS  Google Scholar 

  218. Weis-Fogh T (1961) Thermodynamic properties of resilin, a rubber-like protein. J Mol Biol 3:520–531

    Article  CAS  Google Scholar 

  219. Weis-Fogh T (1960) A rubber-like protein in insect cuticle. J Exp Biol 37:889–907

    CAS  Google Scholar 

  220. Gorb SN (2004) The jumping mechanism of cicada Cercopis vulnerata (Auchenorrhyncha, Cercopidae): skeleton–muscle organisation, frictional surfaces, and inverse-kinematic model of leg movements. Anthropod Struct Dev 33:201–220

    Article  Google Scholar 

  221. Dillinger S, Kesel A (2002) Changes in the structure of the cuticle of Ixodes ricinus L. 1758 (Acari, Ixodidae) during feeding. Anthropod Struct Dev 31:95–101

    Article  CAS  Google Scholar 

  222. Tatham AS, Shewry PR (2002) Comparative structures and properties of elastic proteins. Philos Trans R Soc Lond Ser B Biol Sci 357:229–234

    Article  CAS  Google Scholar 

  223. Su RS, Kim Y, Liu JC (2014) Resilin: protein-based elastomeric biomaterials. Acta Biomater 10:1601–1611

    Article  PubMed  CAS  Google Scholar 

  224. Qin G, Lapidot S, Numata K, Hu X, Meirovitch S, Dekel M, Podoler I, Shoseyov O, Kaplan DL (2009) Expression, cross-linking, and characterization of recombinant chitin binding resilin. Biomacromolecules 10:3227–3234

    Article  PubMed  CAS  Google Scholar 

  225. Tamburro AM, Panariello S, Santopietro V, Bracalello A, Bochicchio B, Pepe A (2010) Molecular and supramolecular structural studies on significant repetitive sequences of resilin. Chembiochem 11:83–93

    Article  PubMed  CAS  Google Scholar 

  226. Ryckaert JP, Ciccotti G, Berendsen HJ (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  227. Elvin CM, Carr AG, Huson MG, Maxwell JM, Pearson RD, Vuocolo T, Liyou NE, Wong DC, Merritt DJ, Dixon NE (2005) Synthesis and properties of crosslinked recombinant pro-resilin. Nature 437:999–1002

    Article  CAS  PubMed  Google Scholar 

  228. Truong MY, Dutta NK, Choudhury NR, Kim M, Elvin CM, Nairn KM, Hill AJ (2011) The effect of hydration on molecular chain mobility and the viscoelastic behavior of resilin-mimetic protein-based hydrogels. Biomaterials 32:8462–8473

    Article  CAS  PubMed  Google Scholar 

  229. Charati MB, Ifkovits JL, Burdick JA, Linhardt JG, Kiick KL (2009) Hydrophilic elastomeric biomaterials based on resilin-like polypeptides. Soft Matter 5:3412–3416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. Qin G, Rivkin A, Lapidot S, Hu X, Preis I, Arinus SB, Dgany O, Shoseyov O, Kaplan DL (2011) Recombinant exon-encoded resilins for elastomeric biomaterials. Biomaterials 32:9231–9243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. McGann CL, Levenson EA, Kiick KL (2013) Resilin-based hybrid hydrogels for cardiovascular tissue engineering. Macromol Chem Phys 214:203–213

    Article  CAS  Google Scholar 

  232. Li L, Tong Z, Jia X, Kiick KL (2013) Resilin-like polypeptide hydrogels engineered for versatile biological function. Soft Matter 9:665–673

    Article  PubMed  CAS  Google Scholar 

  233. Whittaker J, Dutta N, Elvin C, Choudhury N (2015) Fabrication of highly elastic resilin/silk fibroin based hydrogel by rapid photo-crosslinking reaction. J Mater Chem B 3:6576–6579

    Article  CAS  PubMed  Google Scholar 

  234. Liu X, Ma PX (2009) Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials 30:4094–4103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Silva SS, Mano JF, Reis RL (2010) Potential applications of natural origin polymer-based systems in soft tissue regeneration. Crit Rev Biotechnol 30:200–221

    Article  PubMed  CAS  Google Scholar 

  236. Huang S, Fu X (2010) Naturally derived materials-based cell and drug delivery systems in skin regeneration. J Control Release 142:149–159

    Article  PubMed  CAS  Google Scholar 

  237. Neffe AT, Loebus A, Zaupa A, Stoetzel C, Müller FA, Lendlein A (2011) Gelatin functionalization with tyrosine derived moieties to increase the interaction with hydroxyapatite fillers. Acta Biomater 7:1693–1701

    Article  PubMed  CAS  Google Scholar 

  238. Yuan S, Xiong G, Roguin A, Choong C (2012) Immobilization of gelatin onto poly (glycidyl methacrylate)-grafted polycaprolactone substrates for improved cell–material interactions. Biointerphases 7:30

    Article  PubMed  CAS  Google Scholar 

  239. Zhao F, Grayson WL, Ma T, Bunnell B, Lu WW (2006) Effects of hydroxyapatite in 3-D chitosan–gelatin polymer network on human mesenchymal stem cell construct development. Biomaterials 27:1859–1867

    Article  PubMed  CAS  Google Scholar 

  240. Gilsenan P, Ross-Murphy S (2000) Rheological characterisation of gelatins from mammalian and marine sources. Food Hydrocoll 14:191–195

    Article  CAS  Google Scholar 

  241. Yoshimura K, Terashima M, Hozan D, Ebato T, Nomura Y, Ishii Y, Shirai K (2000) Physical properties of shark gelatin compared with pig gelatin. J Agric Food Chem 48:2023–2027

    Article  PubMed  CAS  Google Scholar 

  242. Van Den Bulcke AI, Bogdanov B, De Rooze N, Schacht EH, Cornelissen M, Berghmans H (2000) Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 1:31–38

    Article  CAS  Google Scholar 

  243. Bode F, da Silva MA, Drake AF, Ross-Murphy SB, Dreiss CA (2011) Enzymatically cross-linked tilapia gelatin hydrogels: physical, chemical, and hybrid networks. Biomacromolecules 12:3741–3752

    Article  PubMed  CAS  Google Scholar 

  244. Peña C, De La Caba K, Eceiza A, Ruseckaite R, Mondragon I (2010) Enhancing water repellence and mechanical properties of gelatin films by tannin addition. Bioresour Technol 101:6836–6842

    Article  PubMed  CAS  Google Scholar 

  245. Parker N, Povey M (2012) Ultrasonic study of the gelation of gelatin: phase diagram, hysteresis and kinetics. Food Hydrocoll 26:99–107

    Article  CAS  Google Scholar 

  246. Xing Q, Yates K, Vogt C, Qian Z, Frost MC, Zhao F (2014) Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal. Sci Rep 4:4706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  247. Dash R, Foston M, Ragauskas AJ (2013) Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers. Carbohydr Polym 91:638–645

    Article  PubMed  CAS  Google Scholar 

  248. Liu WG, De Yao K, Wang GC, Li HX (2000) Intrinsic fluorescence investigation on the change in conformation of cross-linked gelatin gel during volume phase transition. Polymer 41:7589–7592

    Article  CAS  Google Scholar 

  249. Ofner CM, Zhang YE, Jobeck VC, Bowman BJ (2001) Crosslinking studies in gelatin capsules treated with formaldehyde and in capsules exposed to elevated temperature and humidity. J Pharm Sci 90:79–88

    Article  PubMed  CAS  Google Scholar 

  250. Han L, Xu J, Lu X, Gan D, Wang Z, Wang K, Zhang H, Yuan H, Weng J (2017) Biohybrid methacrylated gelatin/polyacrylamide hydrogels for cartilage repair. J Mater Chem B 5:731–741

    Article  CAS  PubMed  Google Scholar 

  251. Bartnikowski M, Bartnikowski N, Woodruff M, Schrobback K, Klein T (2015) Protective effects of reactive functional groups on chondrocytes in photocrosslinkable hydrogel systems. Acta Biomater 27:66–76

    Article  PubMed  CAS  Google Scholar 

  252. Dragusin D-M, Van Vlierberghe S, Dubruel P, Dierick M, Van Hoorebeke L, Declercq HA, Cornelissen MM, Stancu I-C (2012) Novel gelatin-PHEMA porous scaffolds for tissue engineering applications. Soft Matter 8:9589–9602

    Article  CAS  Google Scholar 

  253. Yin OS, Ahmad I, Amin MCIM (2014) Synthesis of chemical cross-linked gelatin hydrogel reinforced with cellulose nanocrystals (CNC). AIP Conf Proc 1614:375–380

    Article  CAS  Google Scholar 

  254. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121

    Article  PubMed  CAS  Google Scholar 

  255. Pourjavadi A, Hosseinzadeh H (2010) Synthesis and properties of partially hydrolyzed acrylonitrile-co-acrylamide superabsorbent hydrogel. Drugs 13:14

    Google Scholar 

  256. Li W, An H, Tan Y, Lu C, Liu C, Li P, Xu K, Wang P (2012) Hydrophobically associated hydrogels based on acrylamide and anionic surface active monomer with high mechanical strength. Soft Matter 8:5078–5086

    Article  CAS  Google Scholar 

  257. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–339

    Article  PubMed  CAS  Google Scholar 

  258. Leung KM, Yeoh GP, Chan KW (2007) Breast pathology in complications associated with polyacrylamide hydrogel (PAAG) mammoplasty. Hong Kong Med J 13:137–140

    PubMed  CAS  Google Scholar 

  259. Tokuyama H, Yazaki N (2010) Preparation of poly (N-isopropylacrylamide) hydrogel beads by circulation polymerization. React Funct Polym 70:967–971

    Article  CAS  Google Scholar 

  260. Merril E, Pekala RW, Mahmud NA (1987) Hydrogel for blood contact. In: Peppas NA (ed) Hydrogels in medicine and pharmacy, vol 3. CRC Press, Boca Rotan, pp 1–16

    Google Scholar 

  261. Siegel RA, Falamarzian M, Firestone BA, Moxley BC (1988) pH-controlled release from hydrophobic/polyelectrolyte copolymer hydrogels. J Control Release 8:179–182

    Article  CAS  Google Scholar 

  262. Stanojević M, Kalagasidis KM, Stupar M, Filipović J (2005) Swelling and paracetamol release studies of poly (acrylamide-co-itaconic acid) hydrogels. J Control Release 101:305

    PubMed  Google Scholar 

  263. Feng H, Zheng T, Wang X, Wang H (2016) Poly (acrylamide)-MWNTs hybrid hydrogel with extremely high mechanical strength. Open Chem 14:150–157

    CAS  Google Scholar 

  264. Yang M, Liu C, Li Z, Gao G, Liu F (2010) Temperature-responsive properties of poly (acrylic acid-co-acrylamide) hydrophobic association hydrogels with high mechanical strength. Macromolecules 43:10645–10651

    Article  CAS  Google Scholar 

  265. Yang X, Huang L, Zhou L, Xu H, Yi Z (2016) A photochromic copolymer hydrogel contact lens: from synthesis to application. Int J Polym Sci 2016:4374060, 8 pages

    Google Scholar 

  266. Karadağ E, Saraydin D, Çaldiran Y, Güven O (2000) Swelling studies of copolymeric acrylamide/crotonic acid hydrogels as carriers for agricultural uses. Polym Adv Technol 11:59–68

    Article  Google Scholar 

  267. Kim S, Iyer G, Nadarajah A, Frantz JM, Spongberg AL (2010) Polyacrylamide hydrogel properties for horticultural applications. Int J Polym Anal Charact 15:307–318

    Article  CAS  Google Scholar 

  268. Seliktar D (2012) Designing cell-compatible hydrogels for biomedical applications. Science 336:1124–1128

    Article  PubMed  CAS  Google Scholar 

  269. Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267

    Article  CAS  Google Scholar 

  270. Khademhosseini A, Langer R (2007) Microengineered hydrogels for tissue engineering. Biomaterials 28:5087–5092

    Article  PubMed  CAS  Google Scholar 

  271. Smith EA, Prues SL, Oehme FW (1997) Environmental degradation of polyacrylamides. II. Effects of environmental (outdoor) exposure. Ecotoxicol Environ Saf 37:76–91

    Article  PubMed  CAS  Google Scholar 

  272. Tilson H (1981) The neurotoxicity of acrylamide: an overview. Neurotoxicol Teratol 3:445–461

    CAS  Google Scholar 

  273. Koyama N, Yasui M, Oda Y, Suzuki S, Satoh T, Suzuki T, Matsuda T, Masuda S, Kinae N, Honma M (2011) Genotoxicity of acrylamide in vitro: acrylamide is not metabolically activated in standard in vitro systems. Environ Mol Mutagen 52:11–19

    Article  PubMed  CAS  Google Scholar 

  274. McCollister D, Oyen F, Rowe V (1964) Toxicology of acrylamide. Toxicol Appl Pharmacol 6:172–181

    Article  CAS  Google Scholar 

  275. Greene SA (2013) Sittig’s handbook of pesticides and agricultural chemicals. William Andrew, Norwich, NY, p 13

    Google Scholar 

  276. Ma J, Li X, Bao Y (2015) Advances in cellulose-based superabsorbent hydrogels. RSC Adv 5:59745–59757

    Article  CAS  Google Scholar 

  277. Ohmine I, Tanaka T (1982) Salt effects on the phase transition of ionic gels. J Chem Phys 77:5725–5729

    Article  CAS  Google Scholar 

  278. Luo S-K, Chen G-P, Sun Z-S, Cheng N-X (2011) Our strategy in complication management of augmentation mammaplasty with polyacrylamide hydrogel injection in 235 patients. J Plast Reconstr Aesthet Surg 64:731–737

    Article  PubMed  Google Scholar 

  279. Wang Z-X, Luo D-L, Dai X, Yu P, Tao L, Li S-R (2012) Polyacrylamide hydrogel injection for augmentation mammaplasty: loss of ability for breastfeeding. Ann Plast Surg 69:123–128

    Article  PubMed  CAS  Google Scholar 

  280. Rong L, Lan S-J, Shao Y, Chen Z, Zhang D (2015) A case of special complication following a large amount of polyacrylamide hydrogel injected into the epicranial aponeurosis: leukocytopenia. Case Rep Med 2015:695359

    Article  PubMed  PubMed Central  Google Scholar 

  281. Do ER, Shim JS (2012) Long-term complications from breast augmentation by injected polyacrylamide hydrogel. Arch Plast Surg 39:267–269

    Article  PubMed  PubMed Central  Google Scholar 

  282. Kavoussi H, Ebrahimi A (2012) Delayed gel indurations as an adverse effect of polyacrylamide filler and its easy treatment. Dermatol Res Pract 2012:4

    Article  Google Scholar 

  283. Cheng N-X, Liu L-G, Hui L, Chen Y-L, Xu S-L (2009) Breast cancer following augmentation mammaplasty with polyacrylamide hydrogel (PAAG) injection. Aesthet Plast Surg 33:563

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abul K. Mallik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mallik, A.K. et al. (2018). Benefits of Renewable Hydrogels over Acrylate- and Acrylamide-Based Hydrogels. In: Mondal, M. (eds) Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-76573-0_10-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76573-0_10-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76573-0

  • Online ISBN: 978-3-319-76573-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics