Skip to main content

Oral Anticoagulant Therapy in the Arab World

  • Living reference work entry
  • First Online:
Handbook of Healthcare in the Arab World

Abstract

Arterial and venous thromboembolism are leading causes of morbidity and mortality around the world. Heparins (unfractionated heparin and low-molecular-weight heparins) and vitamin K antagonists have been the leading therapeutic medical options for the treatment and prevention of thromboembolic disorders for almost 70 years. Nevertheless, the many limitations of these traditional anticoagulants have fueled the search for novel agents over the past 15 years, and a new class of oral anticoagulants that specifically target activated factor X and thrombin have been developed and are now commercially available.

The most common complication of these therapies is bleeding; patients who require these therapies risk thrombotic events, making it a challenge to manage these kinds of complications. The best way to deal with these treatment complications is to educate patients with regard to their medication, and assure them a good adherence to their treatment. This chapter reviews research into adherence to medication regimens in anticoagulant treatment in the Arab world, identifying the extent to which adherence to medication regimens have been studied in the region, and to review evidence regarding adherence rates, the reasons for nonadherence and its impact on patients from the Arab countries. We also document the factors associated with the use of warfarin and the risk of bleeding in the Arab world in order to better understand the causes of the high rate of bleeding incidents in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AF:

Atrial fibrillation

aPTT:

Activated partial thromboplastin time

BRCP:

Breast cancer resistance protein

DOAC:

Direct oral anticoagulants

dTT:

Dilute thrombin time

DVT:

Deep vein thrombosis

ECT:

Ecarin clotting time

EQ-VAS:

EQ-visual analog scale

FDA:

Food and Drug Administration

HMC:

Hamad Medical Corporation

HRQoL:

Health-related quality of life

INR:

International normalized ratio

IV:

Intravenous

KAMC:

King Abdulaziz Medical City

KSA:

Kingdom of Saudi Arabia

LMWH:

Low-molecular-weight heparins

MAMS:

Medication adherence measuring scale

MENA:

Middle East and North Africa

NOACs:

Novel oral anticoagulants

PCC:

Prothrombin complex concentrates

PE:

Pulmonary embolism

PT:

Prothrombin time

QOL:

Quality of life

SC:

Subcutaneous

SD:

Standard deviation

SKG:

Satisfactory knowledge group

UAE:

United Arab Emirates

UFH:

Unfractionated heparin

UKG:

Unsatisfactory knowledge group

VKA:

Vitamin K antagonists

VKOR:

Vitamin K epoxide reductase

VTE:

Venous thromboembolism

WBCT:

Whole blood clotting time

WTA:

Adherence to warfarin therapy

References

  • Ababneh MA, Al-Azzam SI, Alzoubi KH, Rababa’h AM (2016) Adherence in outpatients taking warfarin and its effect on anticoagulation control in Jordan. Int J Clin Pharm 38:816–821

    CAS  PubMed  Google Scholar 

  • Ageno W, Gallus AS, Wittkowsky A, Crowther M, Hylek EM, Palareti G (2012) Oral anticoagulant therapy. Antithrombotic therapy and prevention of thrombosis, 9th edition. American college of chest physicians evidence-based clinical practice guidelines. Chest 141(Suppl 2):e44s–e88s

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alrashid MH, Al-Serri A, Alshemmari SH, Koshi P, Al-Bustan SA (2016) Association of genetic polymorphisms in the VKORC1 and CYP2C9 genes with warfarin dosage in a Group of Kuwaiti Individuals. Mol Diagn Ther 20(2):183–190

    CAS  PubMed  Google Scholar 

  • Al-Saikhan FI (2020) Warfarin therapy adherence and health-related quality of life among patients using warfarin in Saudi Arabia. Niger J Clin Pract 23:398–407

    CAS  PubMed  Google Scholar 

  • ALAmmari M, Alturaiki A, Althemery AU et al (2019) Factors associated with the use of warfarin and the risk of bleeding: cross-sectional study. Indo american journal of pharmaceutical sciences: o6 pp. 7284–7291

    Google Scholar 

  • Althemery AU et al (2020) Comparison between warfarin and apixaban. Ann Thorac Med 15(2):84–89

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ansell J, Hirsh J, Hylek E et al (2008) The pharmacology and management of the vitamin K antagonists. American college of chest physicians evidence-based clinical practice guidelines (8th Edition). Chest 133(Suppl 6):160s–198s

    CAS  PubMed  Google Scholar 

  • Ansell JE, Bakhru SH, Laulicht BE et al (2017) Single-dose ciraparantag safely and completely reverses anticoagulant effects of edoxaban. Thromb Haemost 117:238–245

    PubMed  PubMed Central  Google Scholar 

  • Anuary CT, Wann LS, Calkins H, Chen LY, Cigarroa JE, Cleveland JC Jr et al (2019) 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American college of cardiology/American Heart Association task force on clinical practice guidelines and the heart R. Circulation 140:E125–E151

    Google Scholar 

  • Azizi M (2014) Bleeding accidents with K antivitamins thesis N° 107

    Google Scholar 

  • Bader LA, Elewa H (2016) The impact of genetic and non-genetic factors on warfarin dose prediction in MENA region: a systematic review. PLoS One 11(12):e0168732

    PubMed  PubMed Central  Google Scholar 

  • Balkhi B, Al-Rasheedi M, Elbur AI, Alghamadi A (2018) Association between satisfaction with and adherence to warfarin therapy on the control of international normalized ratio: a hospital-based study in Saudi Arabia. Saudi Pharm J 26:145–149

    PubMed  Google Scholar 

  • Bazan N, Sabry N, Rizk A, Mokhtar S, Badary O (2014) Factors affecting warfarin dose requirements and quality of anticoagulation in adult Egyptian patients: role of gene polymorphism. Ir J Med Sci 183(2):161–172

    CAS  PubMed  Google Scholar 

  • Bernard ML, Shotwell M, Nietert PJ, Gold MR (2012) Meta-analysis of bleeding complications associated with cardiac rhythm device implantation. Circ Arrhythm Electrophysiol 5(3):468–474

    PubMed  PubMed Central  Google Scholar 

  • Beyth RJ, Quinn LM, Landefeld CS (1998) Prospective evaluation of an index for predicting the risk of major bleeding in outpatients treated with warfarin. Am J Med 105(2):91–99

    CAS  PubMed  Google Scholar 

  • Boehringer Ingelheim Pharmaceuticals I (2015) Praxbind prescribing information. Ridgefield, CT

    Google Scholar 

  • Bounnit A, Boughalem M (2011) Accidents to AVK: a retrospective study of 30 cases, Thesis

    Google Scholar 

  • Bourkhissi L (2015) Accidents to AVK. Control case study: about 200 patients thesis, N° 66

    Google Scholar 

  • Cannegieter SC, Rosendaal FR, Briet E (1994) Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses. Circulation 89(2):635–641

    CAS  PubMed  Google Scholar 

  • Cavallari LH, Langaee TY, Momary KM et al (2010) Genetic and clinical predictors of warfarin dose requirements in African Americans. Clin Pharmacol Ther 87(4):459–464

    CAS  PubMed  Google Scholar 

  • Ciurus T, Sobczak S, Cichocka-Radwan A et al (2015) New oral anticoagulants – a practical guide. Polish J Cardio- Thorac Surg 12:111–118

    Google Scholar 

  • Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A et al (2009) Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med 361(12):1139–1151

    CAS  PubMed  Google Scholar 

  • Costin JC (2014) PER977 [Aripazine] – a nonspecific anticoagulant reversal agent [presentation]. Available at: http://cardiac-safety.org/wp-content/uploads/2014/11/3.-James-Costin_Perosphere.pdf. Accessed 11 July 2017

  • Costin J, Ansell J, Laulicht B et al (2014) Reversal agents in development for the new oral anticoagulants. Postgrad Med 126:1–6

    Google Scholar 

  • Crowther M, Crowther MA (2015) Antidotes for novel oral anticoagulants: current status and future potential. Arterioscler Thromb Vasc Biol 35:1736–1746

    CAS  PubMed  Google Scholar 

  • Da Silva RMFL (2017) Pharmacological profile of non-vitamin K antagonist oral anticoagulants. Afr J Pharm Pharmacol 11:125–136

    Google Scholar 

  • Dager WE, Gosselin RC, Kitchen S et al (2012) Dabigatran effects on the international normalized ratio, activated partial thromboplastin time, thrombin time, and fibrinogen: a multicenter, in vitro study. Ann Pharmacother 46:1627–1636. Accessed 6 July 2017.

    PubMed  Google Scholar 

  • Daiichi Sankyo Inc (2015) Savaysa prescribing information. Parsippany, NJ. Accessed July 9, 2017

    Google Scholar 

  • DiMarco JP, Flaker G, Waldo AL, Corley SD, Greene HL, Safford RE et al (2005) Factors affecting bleeding risk during anticoagulant therapy in patients with atrial fibrillation: observations from the atrial fibrillation follow-up investigation of rhythm management (AFFIRM) study. Am Heart J 149(4):650–656

    PubMed  Google Scholar 

  • Ebell MH (2010) Predicting the risk of bleeding in patients taking warfarin. Am Fam Physician 81(6):780

    PubMed  Google Scholar 

  • Eikelboom JW, Weitz JI (2010) Update on antithrombotic therapy. New anticoagulants. Circulation 121:1523–1532

    PubMed  Google Scholar 

  • Ekladious SM, Issac MS, El-Atty Sharaf SA, Abou-Youssef HS (2013) Validation of a proposed warfarin dosing algorithm based on the genetic make-up of Egyptian patients. Mol Diagn Ther 17(6):381–390

    CAS  PubMed  Google Scholar 

  • Eltayeb TYM, Mohamed MS, Elbur AI, Elsayed ASA (2017) Satisfaction with and adherence to warfarin treatment: a cross-sectional study among Sudanese patients. J Saudi Heart Assoc 29:169–175

    PubMed  Google Scholar 

  • Esmerian MO, Mitri Z, Habbal MZ, Geryess E, Zaatari G, Alam S et al (2011) Influence of CYP2C9 and VKORC1 polymorphisms on warfarin and acenocoumarol in a sample of lebanese people. J Clin Pharmacol 51(10):1418–1428

    CAS  PubMed  Google Scholar 

  • Estrada CA, Martin-Hryniewicz M, Peek BT, Collins C, Byrd JC (2004) Literacy and numeracy skills and anticoagulation control. Am J Med Sci 328:88–93

    PubMed  Google Scholar 

  • Fang MC, Chang Y, Hylek EM, Rosand J, Greenberg SM, Go AS et al (2004) Advanced age, anticoagulation intensity, and risk for intracranial Hemorrhage among patients taking warfarin for atrial fibrillation. Ann Intern Med 141(10):745

    PubMed  Google Scholar 

  • Ghozlan MF, Foad DA, Darwish YW, Saad AA (2015) Impact of CYP2C9 and VKORC1 genetic polymorphisms upon warfarin dose requirements in Egyptian patients with acute coronary syndrome. Blood Coagul Fibrinolysis 26(5):499–504

    CAS  PubMed  Google Scholar 

  • Granger CB, Alexander JH, McMurray JJ, Lopes RD, Hylek EM, Hanna M et al (2011) Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med 365(11):981–992

    CAS  PubMed  Google Scholar 

  • Hart RG, Pearce LA, Aguilar MI (2007) Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann Intern Med 146(12):857–867

    PubMed  Google Scholar 

  • Heidbuchel H, Verhamme P, Alings M, Antz M, Hacke W, Oldgren J et al (2013) European heart rhythm association practical guide on the use of new oral anticoagulants in patients with non-valvular atrial fibrillation. Europace 15(5):625–651

    PubMed  Google Scholar 

  • Heidbuchel H, Verhamme P, Alings M et al (2015) Updated European heart rhythm association practical guide on the use of non-vitamin K antagonist anticoagulants in patients with non-valvular atrial fibrillation. Europace 17:1467–1507

    PubMed  Google Scholar 

  • Hirsh J (1991a) Heparin. N Engl J Med 324:1565–1574

    CAS  PubMed  Google Scholar 

  • Hirsh J (1991b) Oral anticoagulant drugs. N Engl J Med 324:1865–1875

    CAS  PubMed  Google Scholar 

  • Holbrook A, Schulman S, Witt DM et al (2012) Evidence-based management of anticoagulant therapy: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 141(Suppl 2):e152S–e184S

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu TY, Vaidya VR, Asirvatham SJ (2016) Reversing anticoagulant effects of novel oral anticoagulants: role of ciraparantag, andexanet alfa, and idarucizumab. Vasc Health Risk Manag 12:35–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huisman MV, Rothman KJ, Paquette M, Teutsch C, Diener H-C, Dubner SJ et al (2017) The changing landscape for stroke prevention in AF. J Am Coll Cardiol 69(7):777–785

    PubMed  Google Scholar 

  • Issac MS, El-Nahid MS, Wissa MY (2014) Is there a role for MDR1, EPHX1 and protein Z gene variants in modulation of warfarin dosage? A study on a cohort of the Egyptian population. Mol Diagn Ther 18(1):73–83

    CAS  PubMed  Google Scholar 

  • Jackson LR 2nd, Becker RC (2014) Novel oral anticoagulants: pharmacology, coagulation measures, and considerations for reversal. J Thromb Thrombolysis 37:380–391

    CAS  PubMed  Google Scholar 

  • Janssen Pharmaceuticals I (2015) Xarelto prescribing information, Titusville. Available at: http://www.janssenlabels.com/package-insert/product-monograph/prescribing-information/XARELTO-pi.pdf. Accessed 30 Apr 2018

  • Johnston KM, Osenenko KM, Qatami L, Donato BMK, Alsheikh-ali AA, Binbrek AS et al (2015) Health care resource utilization and costs in individuals with atrial fibrillation in United Arab Emirates and Kingdom of Saudi Arabia : a retrospective cohort study. Int J Intern Med 4(2):17–25

    Google Scholar 

  • Kasmeridis C, Apostolakis S, Ehlers L, Rasmussen LH, Boriani G, Lip GY (2013) Cost effectiveness of treatments for stroke prevention in atrial fibrillation: focus on the novel oral anticoagulants. PharmacoEconomics 31(11):971–980

    PubMed  Google Scholar 

  • Kawai VK, Cunningham A, Vear SI, Van Driest SL, Oginni A, Xu H et al (2014) Genotype and risk of major bleeding during warfarin treatment. Pharmacogenomics 15(16):1973–1983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kearon C, Akl EA, Comerota AJ, Prandoni P, Bounameaux H, Goldhaber SZ et al (2012) Antithrombotic therapy for VTE disease: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 141(Suppl 2):e419S–e496S

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khudair IF, Hanssens YI (2010) Evaluation of patients’ knowledge on warfarin in outpatient anticoagulation clinics in a teaching hospital in Qatar. Saudi Med J 31(6):672–677

    PubMed  Google Scholar 

  • Kuo L-N, Liou J-P, Chen H-Y, Chiang Y-C, Wu M-TM (2013) Evaluation of the safety and efficacy of warfarin in Taiwanese patients. Int J Clin Pharmacol Ther 51(2):106–113

    CAS  PubMed  Google Scholar 

  • Kustos SA, Fasinu PS (2019) Direct-Acting Oral Anticoagulants and Their Reversal Agents – An Update. Medicines 6(4):103. https://doi.org/10.3390/medicines6040103

  • Lapostollea F, Siguret V, Martin A-C et al (2018) Vitamin K antagonists and emergencies. Eur J Emerg Med 25(6):1

    Google Scholar 

  • Laulicht B, Bakhru S, Jiang X et al (2013) Antidote for new oral anticoagulants: mechanism of action and binding specificity of PER977. J Thromb Haemost 11(75):1538–7933

    Google Scholar 

  • Lawrence LK, Leung MD (2020) Direct oral anticoagulants (DOACs) and parenteral direct-acting Dosing and adverse effects. Available at: https://www.uptodate.com/contents/direct-oral-anticoagulants-doacs-and-parenteral-directacting-anticoagulants-dosing-and-adverse-effects

  • Limdi NA, McGwin G, Goldstein JA et al (2008) Influence of CYP2C9 and VKORC1 1173C/T genotype on the risk of hemorrhagic complications in African-American and European-Ameri- can patients on warfarin. Clin Pharmacol Ther 83(2):312–321

    CAS  PubMed  Google Scholar 

  • Lindh JD, Holm L, Andersson ML, Rane A (2009) Influence of CYP2C9 genotype on warfarin dose requirements – a systematic review and meta-analysis. Eur J Clin Pharmacol 65(4):365–375

    CAS  PubMed  Google Scholar 

  • Lippi G, Franchini M (2008) Pathogenesis of venous thromboembolism: when the cup Runneth over. Semin Thromb Hemost 34:747–761

    CAS  PubMed  Google Scholar 

  • Lippi G, Franchini M, Targher G (2011) Arterial thrombus formation in cardiovascular disease. Nat Rev Cardiol 8:502–512

    PubMed  Google Scholar 

  • Lippi G, Mattiuzzi C, Cervellin G, Favaloro EJ (2017) Direct oral anticoagulants: analysis of worldwide use and popularity using Google trends. Ann Transl Med 5(16):322–322

    PubMed  PubMed Central  Google Scholar 

  • Litzenburger Felix Schiele T, van Ryn J, Canada K et al (2013) A specific antidote for dabigatran: functional and structural characterization. Thromb Hemost 121:3554–3562

    Google Scholar 

  • Loebstein R, Vecsler M, Kurnik D, Austerweil N, Gak E, Halkin H et al (2005) Common genetic variants of microsomal epoxide hydrolase affect warfarin dose requirements beyond the effect of cytochrome P450 2C9. Clin Pharmacol Ther 77(5):365–372

    CAS  PubMed  Google Scholar 

  • Mannucci PM, Franchini M (2011) Old and new anticoagulant drugs. Ann Med 43:116–123

    CAS  PubMed  Google Scholar 

  • Maria O, Esmerian MS, Zahi Mitri MD et al (2011) Influence of CYP2C9 and VKORC1 polymorphisms on warfarin and Acenocoumarol in a sample of Lebanese people. J Clin Pharmacol 51:1418–1428

    Google Scholar 

  • Masotti L, Campanini M (2013) Pharmacology of new oral anticoagulants: mechanism of action, pharmacokinetics, pharmacodynamics. Ital J Med 7:s8):1–s8):7

    Google Scholar 

  • Mayet AY (2016) Patient adherence to warfarin therapy and its impact on anticoagulation control. Saudi Pharm J 24(1):29–34. Internet

    PubMed  Google Scholar 

  • Mohrien K, Oliphant CS, Self TH (2013) Drug interactions with novel oral anticoagulants, Consulant360. Accessed 1 January 2017

    Google Scholar 

  • Naderiravesh N, Bahadoram S, Shiri H, Anbohi SZ, Khodakarim S, Langroudi FH (2015) Examining the correlation of adherence to warfarin therapy with demographic characteristic. Iran J Crit Care Nurs 8:103–108

    Google Scholar 

  • Namazi S, Azarpira N, Hendijani F, Khorshid MB, Vessal G, Mehdipour AR (2010) The impact of genetic poly- morphisms and patient characteristics on warfarin dose requirements: a cross-sectional study in Iran. Clin Ther 32(6):1050–1060

    CAS  PubMed  Google Scholar 

  • Oner Ozgon G, Langaee TY, Feng H, Buyru N, Ulutin T, Hatemi AC et al (2008) VKORC1 and CYP2C9 poly- morphisms are associated with warfarin dose requirements in Turkish patients. Eur J Clin Pharmacol 64(9):889–894

    CAS  PubMed  Google Scholar 

  • Ozer N, Cam N, Tangurek B, Ozer S, Uyarel H, Oz D et al (2010) The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements in an adult Turkish population. Heart and Vessels 25(2):155–162

    Google Scholar 

  • Ozer M, Demirci Y, Hizel C, Sarikaya S, Karalti İ, Kaspar C et al (2013) Impact of genetic factors (CYP2C9, VKORC1 and CYP4F2) on warfarin dose requirement in the Turkish population. Basic Clin Pharmacol Toxicol 112(3):209–214

    CAS  PubMed  Google Scholar 

  • Patel MR, Mahaffey KW, Garg J, Pan G, Singer DE, Hacke W et al (2011) Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med 365(10):883–891

    CAS  PubMed  Google Scholar 

  • Pathare A, Al Khabori M, Alkindi S, Al Zadjali S, Misquith R, Khan H et al (2012) Warfarin pharmacogenetics: development of a dosing algorithm for Omani patients. J Hum Genet 57(10):665–669

    CAS  PubMed  Google Scholar 

  • Pernod G, Albaladejo P, Godier A, Samama C et al (2013) Management of major bleeding complications and emergency surgery in patients on long-term treatment with direct oral anticoagulants, thrombin or factor-Xa inhibitors: proposals of the working group on perioperative haemostasis (GIHP) – march 2013. Arch Cardiovasc Dis 106(6–7):382–393. https://doi.org/10.1016/j.acvd.2013.04.009

    Article  PubMed  Google Scholar 

  • Perzborn E, Strassburger J, Wilmen A et al (2005) In vitro and in vivo studies of the novel antithrombotic agent BAY 59-7939-an oral, direct factor Xa inhibitor. J Thromb Haemost 3:514–521

    CAS  PubMed  Google Scholar 

  • Pollack CV, Reilly PA, Bernstein R et al (2015) Design and rationale for RE-VERSE AD: a phase 3 study of idarucizumab, a specific reversal agent for dabigatran. Thromb Haemost 114:198–205

    PubMed  Google Scholar 

  • Portola Pharmaceuticals I (2017) Bevyxxa prescribing information. San Francisco, CA

    Google Scholar 

  • Radaideh KM, Matalqah LM (2017) Factors associated with adherence to warfarin among atrial fibrillation patients and its impact on anticoagulation control. Int J Cardiovasc Res 6:3. Internet

    Google Scholar 

  • Raghavan V, Rbaibi Y, Pastor-Soler NM, Carattino MD, Weisz OA (2014) Shear stress-dependent regulation of apical endocytosis in renal proximal tubule cells mediated by primary cilia. Proc Natl Acad Sci USA 111:8506–8511

    Google Scholar 

  • Reilly PA, Van Ryn J, Grottke O et al (2016) Idarucizumab, a specific reversal agent for dabigatran: mode of action, pharmacokinetics and pharmacodynamics, and safety and efficacy in phase 1 subjects. Am J Med 129(11A):S64–S72

    CAS  PubMed  Google Scholar 

  • Rose DK, Bar B (2018) Direct oral anticoagulant agents: pharmacologic profile, indications, coagulation monitoring, and reversal agents. J Stroke Cerebrovasc Dis 27(8):2049–2058

    PubMed  Google Scholar 

  • Scharf RE (2012) Drugs that affect platelet function. Semin Thromb Hemost 38(8):865–883

    CAS  PubMed  Google Scholar 

  • Shahin MH, Khalifa SI, Gong Y, Hammad LN, Sallam MT, El Shafey M et al (2011) Genetic and non-genetic factors associated with warfarin dose requirements in Egyptian patients. Pharmacogenet Genomics 21(3):130–135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shahin MH, Cavallari LH, Perera MA, Khalifa SI, Misher A, Langaee T et al (2013) VKORC1 Asp36Tyr geo- graphic distribution and its impact on warfarin dose requirements in Egyptians. Thromb Haemost 109(6):1045–1050

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shehab A, Elnour AA, Sadik A, Abu Mandil M, AlShamsi A et al (2015) Clinical utility of dabigatran in Central United Arab Emirates, a pharmacovigilance study. Saudi Med J 36(11):1290–1298

    PubMed  PubMed Central  Google Scholar 

  • Shireman TI, Mahnken JD, Howard PA, Kresowik TF, Hou Q, Ellerbeck EF (2006) Development of a contemporary bleeding risk model for elderly warfarin recipients. Chest 130(5):1390–1396

    PubMed  Google Scholar 

  • Shrif NE, Won HH, Lee ST, Park JH, Kim KK, Kim MJ et al (2011) Evaluation of the effects of VKORC1 poly- morphisms and haplotypes, CYP2C9 genotypes, and clinical factors on warfarin response in Sudanese patients. Eur J Clin Pharmacol 67(11):1119–1130

    CAS  PubMed  Google Scholar 

  • Siegal DM, Konkle BA (2014) What is the effect of rivaroxaban on routine coagulation tests? American Society of Hematology, Washington, DC, pp 334–336

    Google Scholar 

  • Snipelisky D, Kusumoto F (2013) Current strategies to minimize the bleeding risk of warfarin. J Blood Med 4:89–99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Squibb (2015) COUMADIN- warfarin sodium tablet) [package insert]. Princeton, NJ: Bristol-Myers Squibb Pharma Company. Available at: http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=d91934a0-902e-c26c-23ca-d5accc4151b6

  • Squibb (2018) Bristol-Myers Squibb Company. Eliquis (apixaban) package insert. Princeton, NJ: Bristol- Myers Squibb Company, 2016

    Google Scholar 

  • Stacy Z, Richter S (2017) Practical considerations for the use of direct oral anticoagulants in patients with atrial fibrillation. Clin Appl Thromb 23:5–19

    CAS  Google Scholar 

  • Stirling Y (1995) Warfarin-induced changes in procoagulant and anticoagulant proteins. Blood Coagul Fibrinolysis 6:361–375

    CAS  PubMed  Google Scholar 

  • Theones M, Minguet J, Bramlage K et al (2016) Betrixaban – the next direct factor Xa inhibitor? Expert Rev Hematol 9:1111–1117

    Google Scholar 

  • Tummala R, Kavtaradze A, Gupta A et al (2016) Specific antidotes against direct oral anticoagulants: a comprehensive review of clinical trials data. Int J Cardiol 214:292–298

    PubMed  Google Scholar 

  • Wakakura S, Hara F, Fujino T, Hamai A, Ohara H, Kabuki T et al (2018) Comparison of direct oral anticoagulants and warfarin in the treatment of deep venous thrombosis in the chronic phase. Int Heart J 59(1):126–135

    CAS  PubMed  Google Scholar 

  • Wang D, Chen H, Momary KM, Cavallari LH, Johnson JA, Sadée W (2008) Regulatory polymorphism in vitamin K epoxide reductase complex subunit 1 (VKORC1) affects gene expression and warfarin dose requirement. Blood 112(4):1013–1021

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weitz JI, Quinlan DJ, Eikelboom JW (2012) Periprocedural management and approach to bleeding in patients taking dabigatran. Circulation 126:2428–2432

    PubMed  Google Scholar 

  • Wieloch M, Sjalander A, Frykman V, Rosenqvist M, Eriksson N, Svensson PJ (2011) Anticoagulation control in Sweden: reports of time in therapeutic range, major bleeding, and thrombo-embolic complications from the national quality registry AuriculA. Eur Heart J 32:2282–2289

    CAS  PubMed  Google Scholar 

  • World Health Organization ( 2017) WHO model list of essential medicines, 20th list (March 2017, amended August 2017). World Health Organization. https://apps.who.int/iris/handle/10665/273826

  • Wysowski DK, Nourjah P, Swartz L (2007) Bleeding complications with warfarin use: a prevalent adverse effect resulting in regulatory action. Arch Intern Med 167:1414–1419

    PubMed  Google Scholar 

  • Yildirim E, Erol K, Birdane A (2014) Warfarin dose requirement in Turkish patients: the influences of patient characteristics and polymorphisms in CYP2C9, VKORC1 and factor VII. Hippokratia 18(4):319–327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zehnder JL, Leung LL, Tirnauer JS (2017) Clinical use of coagulation tests. UpToDate. Accessed 30 July 2017

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Abdeladim, S., Elharrass, M., Bensahi, I., Elouarradi, A., Sabry, M. (2021). Oral Anticoagulant Therapy in the Arab World. In: Laher, I. (eds) Handbook of Healthcare in the Arab World. Springer, Cham. https://doi.org/10.1007/978-3-319-74365-3_194-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74365-3_194-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74365-3

  • Online ISBN: 978-3-319-74365-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics