Skip to main content

Microwave Materials for Defense and Aerospace Applications

  • Living reference work entry
  • First Online:
Handbook of Advanced Ceramics and Composites

Abstract

Microwave materials are fundamental building blocks for defense and aerospace applications, which have been used as dielectric resonators, radomes, multilayer packages, electromagnetic shield, and so on. These materials and devices made of them should survive in harsh environmental conditions, and hence the availability of suitable materials is limited. Microwave materials are used for signal propagation as well as shielding unwanted signals in military and aerospace applications depending on their properties. The essential material characteristics required for signal propagation applications are very low relative permittivity, low dielectric loss, low-temperature variation of relative permittivity/resonant frequency, and low coefficient of thermal expansion. The materials used for these applications are in the form of substrates, foams, inks, bulk resonators, high-temperature co-fired ceramics (HTCC), low-temperature co-fired ceramics (LTCC), printed circuit boards (PCBs), etc. The materials should absorb or reflect microwaves for electromagnetic interference (EMI) shielding applications. The present chapter gives an overview of microwave material requirements, properties, and their applications in antennas, filters, and oscillators in the military and aerospace sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

5G:

Fifth generation

AESA:

Active electronically steered antennas

BoPET:

Biaxially oriented poly-ethylene terephthalate

BSE:

Bore sight errors

CTE:

Coefficients of thermal expansion

DR:

Dielectric resonator

DRA:

Dielectric resonator antenna

DRO:

Dielectric resonator oscillator

EBG:

Electromagnetic bandgap

ECM:

Electronic countermeasures

EMI:

Electromagnetic interference

EMP:

Electromagnetic pulse

ESD:

Electrostatic discharge

GPS:

Global positioning systems

HARP:

Halpern anti-radiation paint

HPSN:

Hot-pressed silicon nitride

HTCC:

High-temperature co-fired ceramics

HTPAHs:

Heat-treated polyaromatic hydrocarbons

ICs:

Integrated circuits

IoT:

Internet of Things

IT:

Information technology

ITS:

Intelligent transport system

LTCC:

Low-temperature co-fired ceramics

MCM:

Multi-chip module

MCMB:

Mesocarbon microbead

MICs:

Microwave integrated circuits

MLC:

Multilayer capacitor

MMICs:

Monolithic microwave integrated circuits

MP:

Melting point

MWCNT:

Multiwall carbon nanotube

NRI:

Negative refractive index

PCB:

Printed circuit board

POE:

Polyolefin elastomer

PPCP:

Polypropylene random copolymer

PTFE:

Polytetrafluoroeten

RBSN:

Reaction-bonded silicon nitride

RF:

Radio-frequency

RFI:

Radio-frequency interference

RFID:

Radio-frequency identification

SCFS:

Slip-cast fused silica

SiP:

System in package

SOP:

System on package

TC:

Thermal conductivity

UWB:

Ultra-wideband

Wi-Fi:

Wireless fidelity

WiMAX:

Worldwide interoperability for microwave access

WLAN:

Wireless local area network

References

  1. Richtmeyer R (1939) Dielectric resonators. J Appl Phys 15:391–398

    Article  Google Scholar 

  2. Okaya A (1960) The rutile microwave resonator. T Proc IRE 48:1921–1921

    Google Scholar 

  3. Cohen S (1968) Microwave band pass filters containing high Q dielectric resonators. IEEE Trans Microw Theory Tech MTT-16:1628–1629

    Google Scholar 

  4. Masse DJ, Purcel RA, Ready DW, Maguire EA, Hartwig C (1971) A new low loss high K temperature compensated dielectric for microwave applications. Proc IEEE 59:1628–1629

    Article  Google Scholar 

  5. Wakino K, Nishikawa T, Tamura S, Ishikawa Y (1975) Microwave bandpass filters containing dielectric resonators with improved temperature stability and spurious response. IEEE-MTT-S Int Microw Symp Dig, Palo Alton, CA, 63–65

    Google Scholar 

  6. Sebastian MT (2008) Dielectric materials for wireless communication. Elsevier, Amsterdam

    Google Scholar 

  7. Sebastian MT, Ubic R, Jantunen H (2017) Microwave materials and applications. Two Volume sets John Wiley & Sons Inc., West Sussex

    Book  Google Scholar 

  8. Sebastian MT, Ubic R, Jantunen H (2015) Low-loss dielectric ceramic materials and their properties. Int Mater Rev 60(7):392–412

    Article  CAS  Google Scholar 

  9. Jain T (2013) Technology advancement in wireless communications. Int J Sci Technol Res 2(8):2277–8616

    Google Scholar 

  10. Seraphim DP, Feinberg I (1981) Electronic packaging evolution in IBM. IBM J Res Dev Res Dev 25:617–618

    Article  Google Scholar 

  11. Tummula PK (1996) Microelectronic packaging handbook. Springer, New York

    Google Scholar 

  12. Varghese J (2016) Zircon based hard. LAP LAMBERT Academic Publisher, Soft Microwave Substrates and Devices

    Google Scholar 

  13. Ralf R, Patrick S, Martin O (2014) SMTR® module – evolution towards Airborne Applications. International Radar Conference-2014, https://doi.org/10.1109/RADAR.2014.7060400

  14. Schuh H (2009) X-band T/R-module front-end based on GaN MMICs. Intern J Microw Wirel Technol 1:387–394

    Article  Google Scholar 

  15. Yu H, Liu J, Zhang W, Zhang S (2015) Ultra-low sintering temperature ceramics for LTCC applications: a review. J Mater Sci Mater Electron [Internet]:1–10. Springer. Available from: http://link.springer.com/10.1007/s10854-015-3282-y

  16. Jin Y, Wang Z, Chen J (2010) Introduction to microsystem packaging technology. CRC Press, Boca Raton

    Google Scholar 

  17. Chen L-Y, HiTEC, HiTEN, & CICMT (2014), Vol. 2014, No. HITEC, pp. Dielectr. Perform. a High Purity HTCC Alumina High Temp. – a comparison study with other polycrystalline alumina,” Additional Conferences Device Packaging HiTEC, HiTEN, & CICMT; January 2014, p 000271–7

    Google Scholar 

  18. Chen L-Y, Neudeck PG, Hunter G (2016) Electrical Performance of a High Temperature 32-I/O HTCC Alumina Package. 21000 Brookpark Road Cleveland, Ohio 44135 2 NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, Ohio 44135

    Google Scholar 

  19. Blackwell E, Raton B (2000) The electronic packaging handbook. Press CRC, Boca Raton

    Google Scholar 

  20. Harper C (2000) Electronic packaging and interconnection handbook, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  21. Varghese J, Vahera T, Ohsato H, Iwata M, Jantunen H (2017) Novel low-temperature sintering ceramic substrate based on indialite/cordierite glass ceramics. Jap J Appl Phys 56:10PE01

    Article  Google Scholar 

  22. Varghese J, Joseph T, Sebastian MT (2011) ZrSiO4 ceramics for microwave integrated circuit applications. Mater Lett 65(7):1092–1094

    Article  CAS  Google Scholar 

  23. Pullanchiyodan A, Surendran KP (2016) Formulation of Sol–Gel derived bismuth silicate dielectric ink for flexible electronics applications. Ind Eng Chem Res:7108–7115. Available from: http://pubs.acs.org/doi/abs/10.1021/acs.iecr.6b00871

    Article  CAS  Google Scholar 

  24. Arun S, Sebastian MT, Surendran KP (2017) Li2ZnTi3O8 based high κ LTCC tapes for improved thermal management in hybrid circuit applications. Ceram Int 43(7):5509–5516

    Article  CAS  Google Scholar 

  25. Ferro Corporation (2015) Low temperature co – fired ceramic systems A6M/A6M – E high frequency LTCC tape system [Internet]. Tech. data sheet LTCC. 2015. pp 1–2. Available from: http://www.ferro.com/Our+Products/ColorsGlass/Electronic/Electronic-Materials/docs/A6M-E LTCC Tape System.pdf

  26. Dupont. LTCC [Internet]. Datasheet (2017) (cited 1 Jan 2017). Available from: http://www.dupont.com/content/dam/dupont/products-and-services/electronic-and-electrical-materials/documents/prodlib/GreenTape_Design_Layout_Guidelines.pdf

  27. Thomas D, Abhilash P, Sebastian MT (2013) Casting and characterization of LiMgPO4 glass free LTCC tape for microwave applications. J Eur Ceram Soc 33(1):87–93

    Article  CAS  Google Scholar 

  28. Roshni SB, Sebastian MT, Surendran KP (2017) Can zinc aluminate-titania composite be an alternative for alumina as microelectronic substrate? Sci Rep[Internet] 7:40839. Nature Publishing Group; Available from: http://www.nature.com/articles/srep40839

  29. Kaneko T, Watanabe H, Akaishi M, Wada K (1999) AlN HTCC super miniaturized millimeter wave transceiver MCMs, the novel structure for the high reliability, the high performance and the mass productivity. IEEE MlT-S Dig 2:449–452. (0–7803–5135–5/99/$10.00 0 1999 IEEE)

    Google Scholar 

  30. Cressler JD, Mantooth HA (2013) Extreme environment electronics. Chapters 1–5. CRC Press, Boca Raton\Florida, pp 1–47

    Google Scholar 

  31. Spry DJ, Neudeck PG, Chen L, Lukco D, Chang CW, Beheim GM, Krasowski MJ, Prokop N (2016) Processing and characterization of thousand-hour 500 °C durable 4H-SiC JFET integrated circuits. In: Proceedings of the 2016 IMAPs international conference on high temperature electronics (HiTEC 2016). International Albuquerque, New Mexico

    Article  Google Scholar 

  32. Catalog Smt (2017) HTCC QFN Packages to 40 GHz [Internet]. 2017 [cited 1 Jan 2017]. p 1. Available from: https://smtnet.com/company/index.cfm?fuseaction=view_company&company_id=47300&component=catalog&catalog_id=19408

  33. Dupont (2009) DuPont™ Green Tape™ 951 Technical Datasheet. 2009;3

    Google Scholar 

  34. Sebastian MT, Jantunen H (2008) Low loss dielectric materials for LTCC applications: a review. Int Mater Rev 53:57–90

    Article  CAS  Google Scholar 

  35. Sebastian MT, Wang H, Jantunen H (2016) Low temperature co-fired ceramics with ultra-low sintering temperature: a review. Curr Opin Solid State Mater Sci 20:151–170

    Article  CAS  Google Scholar 

  36. Suresh EK, Prasad K, Arun NS, Ratheesh R (2016) Synthesis and microwave dielectric properties of A16V18O61 (a = Ba, Sr and ca) ceramics for LTCC applications. J Electron Mater 45(6):2996–3002

    Article  CAS  Google Scholar 

  37. Varghese J, Ramachandran P, Sobocinski M, Vahera T, Jantunen H (2019) ULTCC glass composites based on rutile and anatase with co-firing at 400 °C for high frequency applications. ACS Sustain Chem Eng 7(4):4274–4283

    Article  CAS  Google Scholar 

  38. Joseph N, Varghese J, Teirikangas M, Sebastian MT, Jantunen H (2018) Ultra-low sintering temperature ceramic composites of CuMoO 4 through Ag 2 O addition for microwave applications. Compos Part B 141:214–220

    Article  CAS  Google Scholar 

  39. Joseph N, Varghese J, Teirikangas M, Sebastian MT, Jantunen H (2016) Glass-free CuMoO4 ceramic with excellent dielectric and thermal properties for ultralow temperature co-fired ceramic applications. ACS Sustain Chem Eng 4(10):5632–5639

    Article  CAS  Google Scholar 

  40. Varghese J, Surendran KP, Sebastian MT (2014) Room temperature curable silica ink. RSC Adv 4(88):47701–47707

    Article  CAS  Google Scholar 

  41. Varghese J, Teirikangas M, Puustinen J, Jantunen H, Sebastian MT (2015) Room temperature curable zirconium silicate dielectric ink for electronic applications. J Mater Chem C 3(35):9240–9246

    Article  CAS  Google Scholar 

  42. Joseph AM, Nagendra B, Bhoje Gowd E, Surendran KP (2016a) Screen-printable electronic ink of ultrathin boron nitride Nanosheets. ACS Omega 1(6):1220–1228

    Article  CAS  Google Scholar 

  43. Joseph N, Sebastian MT (2016) A facile formulation and excellent electromagnetic absorption of room temperature curable polyaniline nanofiber based inks. J Mater Chem C 4:999–1008

    Article  CAS  Google Scholar 

  44. Liu W, Wang H, Zhou D, Li K (2010) Dielectric properties of low-firing Bi2Mo2O9 thick films screen printed on Al foils and alumina substrates. J Am Ceram Soc 93(8):2202–2206

    Article  CAS  Google Scholar 

  45. Pullanchiyodan A, Surendran KP (2016) Formulation of sol–gel derived bismuth silicate dielectric ink for flexible electronics applications. J Eur Ceram Soc 36(8):1939–1944

    Article  CAS  Google Scholar 

  46. Sebastian MT, Jantunen H (2010a) Polymer-ceramic composites of 0-3 connectivity for circuits in electronics: a review. Int J Appl Ceram Technol 7(4):415–434

    CAS  Google Scholar 

  47. Wall L (1972) Fluoropolymers. Wiley, New York

    Google Scholar 

  48. Willis OR (2008) Characterizing fluroropolymeric materials for microelectronics and MEMS packaging, ProQuest Information and Learning Company, USA

    Google Scholar 

  49. Bur A (1985) Dielectric properties of polymers at microwave frequencies: a review. Polymer (Guildf) 26:963–977

    Article  CAS  Google Scholar 

  50. Allen F, Robert L, Michael E (1996) Ceramic filled composite polymeric electrical substrate materials exhibiting high dielectric constant and low thermal coefficient of dielectric constant

    Google Scholar 

  51. Allen FHIII (1994) Fluoropolymeric electrical substrate material exhibiting low thermal coefficient of dielectric constant, US Patent No. 5358775

    Google Scholar 

  52. Sebastian MT, Krupka J, Arun S, Kim CH, Kim HT (2018) Polypropylene-high resistivity silicon composite for high frequency applications. Mater Lett (232):92–94

    Article  CAS  Google Scholar 

  53. Popielarz R, Chiang C (2007) Polymer composites with dielectric constant comparable to that of barium titanate ceramics. Mater Sci Eng B 139:48–54

    Article  CAS  Google Scholar 

  54. Sun Y, Rogers J (2007) Inorganic semiconductors for flexible electronics. Adv Mater 19:1897–1916

    Article  CAS  Google Scholar 

  55. Rogers J, Huang Y (2009) A curvy, stretchy future for electronics. Proc Natl Acad Sci 106:10875–10876

    Article  CAS  Google Scholar 

  56. Seol Y, Noh H, Lee S (2008) Mechanically flexible low-leakage multilayer gate dielectrics for flexible organic thin film transistor. Appl Phys Lett 93:013305–1–013305–3

    Article  CAS  Google Scholar 

  57. Gubbels F, Jaeger R, Gleria M (2007) Silicones in industrial applications. In: Jaeger R, Gleria M (eds) Inorganic polymers. Nova Science Publishers, New York, pp 61–162

    Google Scholar 

  58. Yang S, Jiang K (2012) Elastomer Application in Microsystem and Microfluidics. In: Boczkowska A (ed) Advanced elastomers – technology, properties and applications. InTech. Open Science mind, Rijeka, pp 203–222

    Google Scholar 

  59. Sebastian MT, Chameswary J (2016) Flexible and stretchable electronic composites, springer series on polymer and composite materials. In: Ponnamma D (ed) Poly(Isobutylene-co-Isoprene) compos flex electron appl. Springer International Publishing, Switzerland, pp 335–365

    Google Scholar 

  60. Sebastian MT, Ananthalumar S, Subodh G, Juuti J, Teirinkangas M, Jantunen H (2012) Composite electroceramics. In: Nicolais L, Borzacchiello A (eds) Wiley encyclopedia of composites, 2nd edn. Wiley, Inc., Boston

    Google Scholar 

  61. Amin A, Sierakowski R (1990) Effect of thermomechanical coupling on the response of elastic solids. AIAA J 28(7):1319–1322

    Article  Google Scholar 

  62. Dasgupta S (2015) Polymer matrix composites for electromagnetic applications in aircraft structures. J Indian Inst Sci 952:75–296

    Google Scholar 

  63. Chen F, Shen Q, Zhang L (2010) Electromagnetic optimal design and preparation of broadband ceramic radome material with graded porous structure. Prog Electromagn Res 105:445–461

    Article  Google Scholar 

  64. Hong T, Song M-Z, Liu Y (2011) RF directional modulation technique using a switched antenna array for communication and direction-finding applications. Prog Electromagn Res 120:195–213

    Article  Google Scholar 

  65. Military aerospace (2011) Shielding-against-electromagnetic-and-rf-interference-for-safety-and-mission-success [Internet]. Technol. Focus. 2017 [cited 20 Jul 2011]. Available from: http://www.militaryaerospace.com/articles/print/volume-28/issue-7/technology-focus/shielding-against-electromagnetic-and-rf-interference-for-safety-and-mission-success.html

  66. Chauhan S, Abraham M, Choudhary V (2016) Superior EMI shielding performance of thermally stable carbon nanofiber/poly(ether-ketone) composites in 26.5–40 GHz frequency range. J Mater Sci 51:9705–9715

    Article  CAS  Google Scholar 

  67. Pascucci N. (2016) EMI shielding caulk delivers superior performance in military radar systems, [internet]. Available from: www.parker.com/chomerics

  68. Wen B, Cao M, Lu M, Cao W, Long H, Wang X et al (2014) Reduced graphene oxides light weight and high efficiency electromagnetic interference shielding at elevated temperatures. Adv Mater 26:3484–3489

    Article  CAS  Google Scholar 

  69. Saville P (2005) Review of Radar Absorbing Materials. RDC Atl. TM 2005-003

    Google Scholar 

  70. Halpern O (1960) Method and means for minimizing reflection of high frequency radio waves, US Patent No. 2923934

    Google Scholar 

  71. Halpern O, Johnson MHJ, Wright RW (1960) Isotropic absorbing layers, US Patent No. 2951247

    Google Scholar 

  72. Joseph N, Singh S, Sirugudu R, Murthy V, Ananthakumar S, Sebastian MT (2013) Effect of silver incorporation into PVDF-barium titanate composites for EMI shielding applications. Mater Res Bull 48:1681–1687

    Article  CAS  Google Scholar 

  73. Chauhan S, Abrahamand M, Choudhary V (2016) Electromagnetic shielding and mechanical properties of thermally stable poly (ether ketone) multiwalled carbon nanotube composites prepared using twin screw extruder equipped with novel fractional mixing elements. RSC Adv 6(2016):113781–113790

    Article  CAS  Google Scholar 

  74. Klemperer C, Maharaj D (2009) Composite electromagnetic interference shielding materials for aerospace applications. Compos Struct 91:467–472

    Article  Google Scholar 

  75. Byeon J, Kim J-W (2011) Aerosol based fabrication of a Cu/polymer and its application for electromagnetic interference shielding. Thin Solid Films 520:1048–1052

    Article  CAS  Google Scholar 

  76. Kumar A, Singh A, Kumari S, Dutta P, Dhawan S, Dhar A (2014) Polyaromatic-hydrocarbon-based carbon copper composites for the suppression of electromagnetic pollution. J Mater Chem A 2:16632

    Article  CAS  Google Scholar 

  77. Al-Ghamdi AA, El-Tantawy F, Aal N, El-Mossalamy E, Mahmoud W (2009) Stability of new electrostatic discharge protection and electromagnetic wave shielding effectiveness from poly(vinyl chloride)/graphite/nickel nanoconducting composites. Polym Degrad Stab 94:980–986

    Article  CAS  Google Scholar 

  78. Al-Ghamdi A, El-Tantawy F (2010) New electromagnetic wave shielding effectiveness at microwave frequency of polyvinyl chloride reinforced graphite/copper nanoparticles. Compos Part A 41:1693–1701

    Article  CAS  Google Scholar 

  79. Shahzad F, Alhabeb M, Hatter C, Anasori B, Hong SM, Koo C et al (2016) Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353:1137–1140

    Article  CAS  Google Scholar 

  80. Skotheim TA, Elsenbaumer R, Reynolds JR (1998) Handbook of conducting polymers. Marcel Dekker, New York

    Google Scholar 

  81. Chaudhary A, Kumari S, Kumar R, Teotia S, Singh B, Singh A et al (2016) Lightweight and easily foldable MCMB-MWCNTs composite paper with exceptional electromagnetic interference shielding. ACS Appl Mater Interfaces 8:10600–10608

    Article  CAS  Google Scholar 

  82. Joseph N, Varghese J, Sebastian MT (2017a) Graphite reinforced polyvinylidene fluoride composites an efficient and sustainable solution for electromagnetic pollution. Compos Part B Eng 123:271–278

    Article  CAS  Google Scholar 

  83. Al-Saleh M (2015) Influence of conductive network structure on the EMI shielding and electrical percolation of carbon nanotube/polymer nanocomposites. Synth Met 205:78–84

    Article  CAS  Google Scholar 

  84. Sun X, Liu X, Shen X, Wu Y, Wang Z, Kim J-K (2016) Graphene foam/carbon nanotube/poly(dimethyl siloxane) composites for exceptional microwave shielding. Compos Part A 85:199–206

    Article  CAS  Google Scholar 

  85. Al-Saleh M, Saadeh W, Sundararaj U (2013) EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon NY 60:146–156

    Article  CAS  Google Scholar 

  86. Kumar R, Dhawan S, Singh H, Kaur A (2016) Charge transport mechanism of thermally reduced graphene oxide and their fabrication for high performance shield against electromagnetic pollution. Mater Chem Phys 180:413–421

    Article  CAS  Google Scholar 

  87. Goyal R (2013) Cost-efficient high performance polyetheretherketone/expanded graphite nanocomposites with high conductivity for EMI shielding application. Mater Chem Phys 142:195–198

    Article  CAS  Google Scholar 

  88. Modak P, Kondawar S, Nandanwar D (2015) Synthesis and characterization of conducting polyaniline/graphene nanocomposites for electromagnetic interference shielding. Procedia Mater Sci 10:588–594

    Article  CAS  Google Scholar 

  89. Theilmann P, Yun D-J, Asbeck P, Park S-H (2013) Superior electromagnetic interference shielding and dielectric properties of carbon nanotube composites through the use of high aspect ratio CNTs and three-roll milling. Org Electron 14:1531–1537

    Article  CAS  Google Scholar 

  90. Wang H, Zheng K, Zhang X, Ding X, Zhang Z, Bao C et al (2016) 3D network porous polymeric composites with outstanding electromagnetic interference shielding. Compos Sci Technol 125:22–29

    Article  CAS  Google Scholar 

  91. Li Y, Shen B, Pei X, Zhang Y, Yi D, Zhai W et al (2016) Ultrathin carbon foams for effective electromagnetic interference shielding. Carbon NY 100:375–385

    Article  CAS  Google Scholar 

  92. Luo X, Chugh R, Biller BC, Hoi Y, Chung D (2002) Electronic applications of flexible graphite. J Electron Mater 31(5):535–544

    Article  CAS  Google Scholar 

  93. Luo X, Chung D (1996) Electromagnetic interference shielding reaching 130 dB using flexible graphite. Carbon NY 34:1293–1299

    Article  CAS  Google Scholar 

  94. Al-Ghamdi A, Al-Ghamdi A, Al-Turki Y, Yakuphanoglu F, El-Tantawy F (2016) Electromagnetic shielding properties of graphene/acrylonitrile butadiene rubber nanocomposites for portable and flexible electronic devices. Compos Part B 88:212–219

    Article  CAS  Google Scholar 

  95. Gupta A, Varshney S, Goyal A, Sambyal P, Gupta B, Dhawan S (2015) Enhanced electromagnetic shielding behavior of multilayer graphene anchored luminescent TiO2 in PPY matrix. Mater Lett 158:167–169

    Article  CAS  Google Scholar 

  96. Verma P, Saini P, Malik R, Choudhary V (2015) Excellent electromagnetic interference shielding and mechanical properties of high loading carbon nanotubes/polymer composites designed using melt recirculation equipped twin-screw extruder. Carbon NY 89:308–317

    Article  CAS  Google Scholar 

  97. Mishra M, Singh A, Dhawan S (2013) Expanded graphite–nanoferrite–fly ash composites for shielding of electromagnetic pollution. J Alloys Compd 557:244–251

    Article  CAS  Google Scholar 

  98. Zhang L, Alvarez N, Zhang M, Haase M, Malik R, Mast D et al (2015) Preparation and characterization of graphene paper for electromagnetic interference shielding. Carbon N Y 82:353–359

    Article  CAS  Google Scholar 

  99. Dhawan R, Kumari S, Kumar R, Dhawan S, Dhakate S (2015) Mesocarbon microsphere composites with Fe3O4 nanoparticles for outstanding electromagnetic interference shielding effectiveness. RSC Adv 5:43279

    Article  CAS  Google Scholar 

  100. Farhan S, Wang R, Li K (2016) Electromagnetic interference shielding effectiveness of carbon foam containing in situ grown silicon carbide nanowires. Ceram Int 42:11330–11340

    Article  CAS  Google Scholar 

  101. Kaur A (2012) Ishpal, Dhawan S. tuning of EMI shielding properties of polypyrrole nanoparticles with surfactant concentration. Synth Met 162:1471–1477

    Article  CAS  Google Scholar 

  102. Joseph N, Varghese J, Sebastian MT (2015) Self-assembled polyaniline nanofibers withenhanced electromagnetic shielding properties. RSC Adv 5:20459–20466

    Article  CAS  Google Scholar 

  103. Bayat M, Yang H, Ko F, Michelson D, Mei A (2014) Electromagnetic interference shielding effectiveness of hybrid multifunctional Fe3O4/carbon nanofiber composite. Polymer (Guildf). 55:936–943

    Article  CAS  Google Scholar 

  104. Cabrera C, Miranda F (2015) Advanced nanomaterials for aerospace applications. CRC press, Taylor and Francis group

    Google Scholar 

  105. Joseph N, Janardhanan C, Sebastian MT (2014) Electromagnetic interference shielding properties of butyl rubber-single walled carbon nanotube composites. Compos Sci Technol 1:139–144

    Article  CAS  Google Scholar 

  106. Tong X (2009) Advanced materials and design for electromagnetic interference shielding. CRC Press, Taylor and Francis group, Now York

    Google Scholar 

  107. Joseph N, Varghese J, Sebastian MT (2016) A facile formulation and excellent electromagnetic absorption of room temperature curable polyaniline nanofiber based inks. J Mater Chem C 4:999–1008

    Article  CAS  Google Scholar 

  108. Joseph N, Varghese J, Sebastian MT (2017b) In situ polymerized polyaniline nanofiber-based functional cotton and nylon fabrics as millimeter-wave absorbers. Nat Polym 49:391–399

    CAS  Google Scholar 

  109. Zhou P, Chen J, Liu M, Jiang P, Li B, Hou X-M (2017) Microwave absorption properties of SiC@SiO2@Fe3O4 hybrids in the 2–18 GHz range. Int J Miner Metall Mater 24:804–813

    Article  CAS  Google Scholar 

  110. Kong L, Li Z, Liu L, Huang R, Abshinova M, Yang Z et al (2013) Recent progress in some composite materials and structures for specific, electromagnetic applications. Int Mater Rev 58:203

    Article  CAS  Google Scholar 

  111. Folgueras L, Alves M, Rezende M (2010) Microwave absorbing paints and sheets based on carbonyl iron and polyaniline: measurement and simulation of their properties. J Aerosp Technol Manag 1:63–70

    Article  Google Scholar 

  112. Kajfez D, Guillon P (1986) Dielectric resonators. Artech House, Norwood

    Google Scholar 

  113. Mcallister M, Long S (1983) Rectangular dielectric resonator antenna. IEEE Electron Lett 19:218–219

    Article  Google Scholar 

  114. Luk K, Leung K (2002) Dielectric resonator antennas. Electronic & electrical engineering research studies series. Research Studies Press, Taunton

    Google Scholar 

  115. Petosa A (2007) Dielectric resonator antenna handbook. Artech House, Boston

    Google Scholar 

  116. Garg R, Bhartia P, Bahl I, Ittipiboon A (2000) Microstrip antenna design hand book. Artech house Inc., Norwood

    Google Scholar 

  117. Garg R (2001) Microstrip antenna design handbook. Artech house Inc., Norwood

    Google Scholar 

  118. Imbriale W (ed) (2006) Spaceborne antennas for planetary exploration. Wiley, Hoboken

    Google Scholar 

  119. Kumar G, Ray K (2003) Broadband microstrip antennas. Artech House, Boston

    Google Scholar 

  120. Pozar D, Schaube D (eds) (1995) Microstrip antennas: the analysis and design of microstrip antennas and arrays. Institute of Electrical and Electronics Engineers, New York

    Google Scholar 

  121. Petoso A, Ittipiboon A (2010) Dielectric resonator antennas. A historical review and the current state of the art. IEEE Antennas Propag Mag 52:91–116

    Article  Google Scholar 

  122. Soren D, Ghatak R, Mishra R, Poddar D (2014) Dielectric resonator antennas: designs and advances. Progr Electromag Res B 60:195–213

    Article  Google Scholar 

  123. Ozzaim C (2014) Monopole antenna loaded by stacked annular ring dielectric resonators for ultrawide bandwidth. Microw Opt Technol Lett 56:2395–2398

    Article  Google Scholar 

  124. Kingley S, OKeefe S (1999) Beam steering and monopulse processing of probe fed dielectric resonator antenna. Proc Rada Sonar Navig 3:121–125

    Article  Google Scholar 

  125. Svedin J, Huss L, Karlen D, Enoksson P, Rusu C (2007) A micromachined 94 GHz dielectric resonator antenna for focal plane array applications. In: IEEE international microwave symposium, Honolulu, –IEEE MTT-S, pp 1375–1378

    Google Scholar 

  126. Liflander J (2010) Ceramic chip antennas vs. PCB trace antennas: a comparison. MPDIGEST [Internet]. 2010; Available from: Feature article, White paper, www.pulseelectronics.com/download/3721/g041/pdf

  127. Bijumon P, Menon S, Lethakumari B, Sebastian MT, Mohanan P (2006) Broad band elliptical dielectric resonator antennas excited with geometry modified microstrip lines. Microw Opt Technol Lett 48:65–67

    Article  Google Scholar 

  128. Kumari R, Behera S (2014) Investigation on log periodic dielectric resonator antenna array for Ku band applications electromagnetics. Electromagnetics 34(1):19–33. Taylor Francis

    Article  Google Scholar 

  129. Kumari R, Behera S (2013b) Nine element frequency independent dielectric resonator array for X- band applications. Microw Opt Technol Lett 55(2):400–403

    Article  Google Scholar 

  130. Menon S, Lethakumary B, Bijumon P, Sebastian M, Mohanan P (2005) L-strip fed wide band rectangular dielectric resonator antenna. Microw Opt Technol Lett 45:227–228

    Article  Google Scholar 

  131. Suma M, Menon S, Bijumon P, Sebastian M, Mohanan P (2005) Rectangular dielectric resonator antenna on a conductor -backed co-planar waveguide. Microw Opt Technol Lett 45(2):154–156

    Article  Google Scholar 

  132. Caloz C, Itoh T (2006) Electromagnetic metamaterials: transmission line theory and microwave applications. Piscataway, Wiley

    Google Scholar 

  133. Ganguly D, Guha D, George S, Kumar C, Sebastian M, Antar Y (2017) New design approach for hybrid monopole antenna to achieve increased ultra-wide bandwidth. IEEE Antennas Propag Mag 11:139–144

    Google Scholar 

  134. Ghosh S, Chakrabarty A (2008) Ultrawide band performance of dielectric loaded T-shaped monopole transmit and receive antenna/EMI sensor. IEEE Antennas Wirel Propag Lett 7:358–361

    Article  Google Scholar 

  135. Guha D, Gupta B, Antar Y (2012) Hybrid monopole-DRAs using hemispherical/conical-shaped dielectric ring resonators: improved ultrawide band designs. IEEE Trans Antennas Propag 60:393–398

    Article  Google Scholar 

  136. Guha D, Gupta B, Antar Y (2009) New pawn-shaped dielectric ring resonator loaded hybrid monopole antenna for improved ultrawide bandwidth. IEEE Antennas Wirel Propag Lett 8:1178–1181

    Article  Google Scholar 

  137. Guha D, Antar Y, Ittipiboon A, Petosa A, Lee D (2006) Improved design guidelines for the ultra wideband monopole-dielectric resonator antenna. EEE Antennas Wirel Propag Lett 5:373–377

    Article  Google Scholar 

  138. Jazi M, Denidni T (2008) A new hybrid skirt monopole dielectric resonator antenna. In: Proceedings of the IEEE antennas propagation society international symposium, pp 1–4

    Google Scholar 

  139. Kumari R, Behera S (2013c) Mushroom shaped dielectric resonator antenna for WiMAX applications. Microw Opt Technol Lett 55:1360–1365

    Article  Google Scholar 

  140. Ozzaim C, Ustuner S, Tarim N (2013) Stacked conical ring dielectric resonator antenna excited by a monopole for improved ultrawide bandwidth. IEEE Trans Antennas Propag 61:1435–1438

    Article  Google Scholar 

  141. Sheeja K, Behera S, Sahu P (2012) Bandwidth improvement of a zeroth order resonant antenna for WiMax applications. Int J RF Microw Comput Eng 22(4):569–574

    Article  Google Scholar 

  142. Ullah U, Ain M, Mahyuddin N, Othman M, Ahmad Z, Abdullah M et al (2015) Antenna in LTCC technologies: a review and the current state of the art. IEEE Antennas Propag Mag 57:241–260

    Article  Google Scholar 

  143. Kim D, Kang D, Shin M, Jung H, Lim J (2016) Design of a low temperature co-fired ceramic (LTCC) based antenna with broadband and high gain at 60 GHz bands. In: IEEE international conference on consumer electronics Asia. ICCE-Asia, pp 1–3

    Google Scholar 

  144. Abbosh A, Bialkowski M, Jacob M, Mazierska J (2005) Investigations into an LTCC based ultra-wide band antenna. In: Asia-Pacific microwave conference (APMC), p 4

    Google Scholar 

  145. Imbert M (2017) Assessment of LTCC based dielectric flat lens antennas and switched beam arrays for future 5G millimeter – wave communication systems. IEEE Trans Antennas Propag 65:6453–6473

    Article  Google Scholar 

  146. Li J, Zhan Y, Qin W, Wu Y, Chen J-X (2017) Differential dielectric resonator filters. IEEE Trans Compon Packag Manuf Technol 7:637–645

    Article  CAS  Google Scholar 

  147. Qin W, Chen J-X (2017) Balanced/balun filters based on dielectric resonators. In: IEEE global symposium on millimeter-waves

    Google Scholar 

  148. Wang ZK (2007) Dielectric resonators and filters. IEEE Microw Mag 8:115–127

    Article  Google Scholar 

  149. Zhu L, Mansour R, Yu M (2017) Triple-band dielectric resonator bandpass filters. In: IEEE MTT-S international microwave symposium. pp 745–747

    Google Scholar 

  150. Webster J (1999) Dielectric resonator oscillators. In: Wiley encyclopedia of electrical and electronics engineering. Wiley, Chichester

    Chapter  Google Scholar 

  151. Ugurlu S (2011) Dielectric resonator oscillator design and realization at 4.25 GHz. In: International conference 2011, p II-205-II-208

    Google Scholar 

  152. Hamed K, Freundorfer A, Antar Y (2007) A monolithic differential coupling mechanism for dielectric resonators excitation in conductive silicon substrates. IEEE Microw Wirel Components Lett 17:25–27

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Varghese .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Varghese, J., Joseph, N., Jantunen, H., Behera, S.K., Kim, H.T., Sebastian, M.T. (2019). Microwave Materials for Defense and Aerospace Applications. In: Mahajan, Y., Roy, J. (eds) Handbook of Advanced Ceramics and Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-73255-8_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73255-8_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73255-8

  • Online ISBN: 978-3-319-73255-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics