Skip to main content

Materials Aspects of Thermal Barrier Coatings

  • Living reference work entry
  • First Online:
Handbook of Advanced Ceramics and Composites
  • 394 Accesses

Abstract

Thermal barrier coatings (TBCs) are being used for the past few decades for providing thermal insulation to metallic components of hot parts of gas turbine engines. The low thermal conductivity ceramic coatings contribute toward maintaining a large temperature difference between the hot gases in the gas turbine and the superalloy components. High engine efficiency as well as prolonged component lifetime can be achieved by integrating TBCs with gas turbine components at the design stage itself. While yttria-stabilized zirconia emerged as the work-horse TBC material, a few other advanced compositions are also being used by some of the engine manufacturers. Prominent among these are zirconia-based compositions with rare-earth oxide additions, either with tetragonal or pyrochlore structure. A lot of research activity has focused on durability issues relevant to the TBC technology, for enhancing reliability as well as performance. Phase transformations, oxidation-induced residual stress, changes in fracture toughness, and thermochemical attack by contaminants ingested by the engine are some of the important degradation mechanisms governing durability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Pollock TM (2016) Alloy design for aircraft engines. Nat Mater 15:809–815

    Article  CAS  Google Scholar 

  2. Naumenko D, Pillai R, Chyrkin A, Quadakkers WJ (2017) Overview on recent developments of bondcoats for plasma-sprayed thermal barrier coatings. J Therm Spray Technol 26:1743–1757

    Article  CAS  Google Scholar 

  3. Padture NP (2016) Advanced structural ceramics in aerospace propulsion. Nat Mater 15:804–809

    Article  CAS  Google Scholar 

  4. Pollock TM, Lipkin DM, Hemker KJ (2012) Multifunctional coating interlayers for thermal-barrier systems. MRS Bull 37:923–931

    Article  CAS  Google Scholar 

  5. Miller RA (1987) Current status of thermal barrier coatings – an overview. Surf Coat Technol 30:1–11

    Article  CAS  Google Scholar 

  6. Evans AG, Mumm DR, Hutchinson JW, Meier GH, Pettit FS (2001) Mechanisms controlling the durability of thermal barrier coatings. Prog Mater Sci 46:505–553

    Article  Google Scholar 

  7. Mattox DM (2018) Chapter 5 – Thermal evaporation and deposition in vacuum. In: Mattox DM (ed) The foundations of vacuum coating technology, 2nd edn. William Andrew Publishing, Oxford, pp 151–184. https://doi.org/10.1016/B978-0-12-813084-1.00005-4

    Chapter  Google Scholar 

  8. Padture NP, Gell M, Jordan EH (2002) Thermal barrier coatings for gas-turbine engine applications. Science 296:280–284

    Article  CAS  Google Scholar 

  9. Wright PK (1998) Influence of cyclic strain on life of a PVD TBC. Mater Sci Eng A 245:191–200

    Article  Google Scholar 

  10. Vaßen R, Kagawa Y, Subramanian R, Zombo P, Zhu D (2012) Testing and evaluation of thermal-barrier coatings. MRS Bull 37:911–916

    Article  CAS  Google Scholar 

  11. Ang ASM, Berndt CC (2014) A review of testing methods for thermal spray coatings. Int Mater Rev 59:179–223

    Article  CAS  Google Scholar 

  12. Clarke DR, Levi CG (2003) Materials design for the next generation thermal barrier coatings. Annu Rev Mater Res 33:383–417

    Article  CAS  Google Scholar 

  13. Darolia R (2013) Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects. Int Mater Rev 58:315–348

    Article  CAS  Google Scholar 

  14. Evans AG, Clarke DR, Levi CG (2008) The influence of oxides on the performance of advanced gas turbines. J Eur Ceram Soc 28:1405–1419

    Article  CAS  Google Scholar 

  15. Levi CG, Hutchinson JW, Vidal-Sétif MH, Johnson CA (2012) Environmental degradation of thermal-barrier coatings by molten deposits. MRS Bull 37:932–941

    Article  CAS  Google Scholar 

  16. Wellman RG, Nicholls JR (2000) Some observations on erosion mechanisms of EB PVD TBCS. Wear 242:89–96

    Article  CAS  Google Scholar 

  17. Chen X et al (2004) Mechanisms governing the high temperature erosion of thermal barrier coatings. Wear 256:735–746

    Article  CAS  Google Scholar 

  18. Viswanathan V, Dwivedi G, Sampath S (2015) Multilayer, multimaterial thermal barrier coating systems: design, synthesis, and performance assessment. J Am Ceram Soc 98:1769–1777

    Article  CAS  Google Scholar 

  19. Luthra KL, Spacil HS (1982) Impurity deposits in gas turbines from fuels containing sodium and vanadium. J Electrochem Soc 129:649–656

    Article  CAS  Google Scholar 

  20. Nagelberg AS (1985) Destabilization of yttria-stabilized zirconia induced by molten sodium vanadate-sodium sulfate melts. J Electrochem Soc 132:2502–2507

    Article  CAS  Google Scholar 

  21. Reddy N, Gandhi AS (2013) Molten salt attack on t′ yttria-stabilised zirconia by dissolution and precipitation. J Eur Ceram Soc 33:1867–1874

    Article  CAS  Google Scholar 

  22. Kilo M et al (2003) Cation self-diffusion of 44 Ca, 88 Y, and 96 Zr in single-crystalline calcia- and yttria-doped zirconia. J Appl Phys 94:7547–7552

    Article  CAS  Google Scholar 

  23. Levi CG (1998) Metastability and microstructure evolution in the synthesis of precursors. Acta Meter 46:787–800

    Article  CAS  Google Scholar 

  24. Miller RA, Smialek JL Garlick RG (1981) Phase stability in plasma-sprayed, partially stabilized zirconia-yttria. In: Advances in ceramics, vol 3. Am Ceram Soc, Columbus, pp 241–253

    Google Scholar 

  25. Lughi V, Clarke DR (2005) Transformation of electron-beam physical vapor-deposited 8 wt% yttria-stabilized zirconia thermal barrier coatings. J Am Ceram Soc 88:2552–2558

    Article  CAS  Google Scholar 

  26. Lughi V, Clarke DR (2005) High temperature aging of YSZ coatings and subsequent transformation at low temperature. Surf Coat Technol 200:1287–1291

    Article  CAS  Google Scholar 

  27. Lipkin DM et al (2013) Phase evolution upon aging of air-plasma sprayed t′-zirconia coatings: I – synchrotron X-ray diffraction. J Am Ceram Soc 96:290–298

    Article  CAS  Google Scholar 

  28. Loganathan A, Gandhi AS (2012) Effect of phase transformations on the fracture toughness of t′ yttria stabilized zirconia. Mater Sci Eng A 556:927–935

    Article  CAS  Google Scholar 

  29. Krogstad JA et al (2013) Phase evolution upon aging of air plasma sprayed t′-zirconia coatings: II-microstructure evolution. J Am Ceram Soc 96:299–307

    Article  CAS  Google Scholar 

  30. Krogstad JA et al (2015) In situ diffraction study of the high-temperature decomposition of t′-zirconia. J Am Ceram Soc 98:247–254

    Article  CAS  Google Scholar 

  31. Loganathan A, Gandhi AS (2012) Effect of high-temperature aging on the fracture toughness of ytterbia-stabilized t′ zirconia. Scr Mater 67:285–288

    Article  CAS  Google Scholar 

  32. Loganathan A, Gandhi AS (2017) Toughness evolution in Gd- and Y-stabilized zirconia thermal barrier materials upon high-temperature exposure. J Mater Sci 52:7199–7206

    Article  CAS  Google Scholar 

  33. Loganathan A, Gandhi AS (2011) Fracture toughness of t′ ZrO2 stabilised with MO1.5 (M =Y, Yb & Gd) for thermal barrier application. Trans Indian Inst Metals 64:71–74

    Article  CAS  Google Scholar 

  34. Ponnuchamy MB, Gandhi AS (2015) Phase and fracture toughness evolution during isothermal annealing of spark plasma sintered zirconia co-doped with Yb, Gd and Nd oxides. J Eur Ceram Soc 35:1879–1887

    Article  CAS  Google Scholar 

  35. Ren X, Pan W (2014) Mechanical properties of high-temperature-degraded yttria-stabilized zirconia. Acta Mater 69:397–406

    Article  CAS  Google Scholar 

  36. Dwivedi G, Viswanathan V, Sampath S, Shyam A, Lara-Curzio E (2014) Fracture toughness of plasma-sprayed thermal barrier ceramics: influence of processing, microstructure, and thermal aging. J Am Ceram Soc 97:2736–2744

    Article  CAS  Google Scholar 

  37. Renteria AF, Saruhan B, Schulz U, Raetzer-scheibe H (2006) Effect of morphology on thermal conductivity of EB-PVD PYSZ TBCs. Surf Coat Technol 201:2611–2620

    Article  CAS  Google Scholar 

  38. Zhu D, Miller RA (2000) Thermal conductivity and elastic modulus evolution of thermal barrier coatings under high heat flux conditions. J Therm Spray Technol 9:175–180

    Article  CAS  Google Scholar 

  39. Cernuschi F, Lorenzoni L, Ahmaniemi S, Vuoristo P, Mäntylä T (2005) Studies of the sintering kinetics of thick thermal barrier coatings by thermal diffusivity measurements. J Eur Ceram Soc 25:393–400

    Article  CAS  Google Scholar 

  40. Matsumoto M, Yamaguchi N, Matsubara H (2004) Low thermal conductivity and high temperature stability of ZrO 2-Y2O3-La2O3 coatings produced by electron beam PVD. Scr Mater 50:867–871

    Article  CAS  Google Scholar 

  41. Guo S, Kagawa Y (2006) Effect of thermal exposure on hardness and Young’s modulus of EB-PVD yttria-partially-stabilized zirconia thermal barrier coatings. Ceram Int 32:263–270

    Article  CAS  Google Scholar 

  42. Rätzer-Scheibe HJ, Schulz U (2007) The effects of heat treatment and gas atmosphere on the thermal conductivity of APS and EB-PVD PYSZ thermal barrier coatings. Surf Coat Technol 201:7880–7888

    Article  CAS  Google Scholar 

  43. Lughi V, Tolpygo VK, Clarke DR (2004) Microstructural aspects of the sintering of thermal barrier coatings. Mater Sci Eng A 368:212–221

    Article  CAS  Google Scholar 

  44. Leyens C, Schulz U, Pint BA, Wright IG (1999) Influence of electron beam physical vapor deposited thermal barrier coating microstructure on thermal barrier coating system performance under cyclic oxidation conditions. Surf Coat Technol 120–121:68–76

    Article  Google Scholar 

  45. Evans AG, He MY, Hutchinson JW (2001) Mechanics-based scaling laws for the durability of thermal barrier coatings. Prog Mater Sci. https://doi.org/10.1016/S0079-6425(00)00007-4

    Article  CAS  Google Scholar 

  46. Clarke DR, Oechsner M, Padture NP (2012) Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull 37:891–898

    Article  CAS  Google Scholar 

  47. Lin CK, Berndt CC (1995) Statistical analysis of microhardness variations in thermal spray coatings. J Mater Sci 30:111–117

    Article  CAS  Google Scholar 

  48. Burns AJ, Subramanian R, Kempshall BW, Sohn YH (2004) Microstructure of as-coated thermal barrier coatings with varying lifetimes. Surf Coat Technol 177–178:89–96

    Article  CAS  Google Scholar 

  49. Nicholls JR, Lawson KJ, Johnstone A, Rickerby DS (2002) Methods to reduce the thermal conductivity of EB-PVD TBCs. Surf Coat Technol 152:383–391

    Article  Google Scholar 

  50. Lu TJ, Levi CG, Wadley HNG, Evans AG (2001) Distributed porosity as a control parameter for oxide thermal barriers made by physical vapor deposition. J Am Ceram Soc 84:2937–2946

    Article  CAS  Google Scholar 

  51. Clarke DR (2003) Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf Coat Technol 163:67–74

    Article  Google Scholar 

  52. Levi CG (2004) Emerging materials and processes for thermal barrier systems. Curr Opin Solid State Mater Sci 8:77–91

    Article  CAS  Google Scholar 

  53. Pan W, Phillpot SR, Wan C, Chernatynskiy A, Qu Z (2012) Low thermal conductivity oxides. MRS Bull 37:917–922

    Article  CAS  Google Scholar 

  54. Winter MR, Clarke DR (2007) Oxide materials with low thermal conductivity. J Am Ceram Soc. https://doi.org/10.1111/j.1551-2916.2006.01410.x

    Article  CAS  Google Scholar 

  55. Zhu D, Chen YL Miller RA (2003) Defect clustering and nano phase struture characterization of Multi-component rare earth oxide doped Zirconia-yttria thermal barrier coatings, 27th International Cocoa Beach Conference on Advanced Ceramics and Composites: A Editors Waltraud M. Kriven and Hau-Tay Lin. Amn Ceram Soc ISSN 0 196-62 19

    Google Scholar 

  56. Zhu D, Miller RA (2005) Development of advanced low conductivity thermal barrier coatings. Int J Appl Ceram Technol 1:86–94

    Article  Google Scholar 

  57. Vassen R, Cao X, Tietz F, Basu D, Sto D (2000) Zirconates as new materials for thermal barrier coating. J Am Ceram Soc 28:2023–2028

    Google Scholar 

  58. Bakan E, Vaßen R (2017) Ceramic top coats of plasma-sprayed thermal barrier coatings: materials, processes, and properties. J Therm Spray Technol 26:992–1010

    Article  CAS  Google Scholar 

  59. Klemens PG (1997) Theory of thermal conductivity of nanophase materials. In: TMS annual meeting, pp 97–104

    Google Scholar 

  60. Raghavan S, Wang H, Dinwiddie RB, Porter WD, Mayo MJ (1998) The effect of grain size, porosity and yttria content on the thermal conductivity of nanocrystalline zirconia. Scr Mater 39:1119–1125

    Article  CAS  Google Scholar 

  61. Gentleman MM, Clarke DR (2004) Concepts for luminescence sensing of thermal barrier coatings. Surf Coat Technol 188–189:93–100

    Article  CAS  Google Scholar 

  62. Chambers MD, Clarke DR (2009) Doped oxides for high-temperature luminescence and lifetime thermometry. Annu Rev Mater Res 39:325–359

    Article  CAS  Google Scholar 

  63. Wang X, Lee G, Atkinson A (2009) Investigation of TBCs on turbine blades by photoluminescence piezospectroscopy. Acta Mater 57:182–195

    Article  CAS  Google Scholar 

  64. Clarke DR, Christensen RJ, Tolpygo V (1997) The evolution of oxidation stresses in zirconia thermal barrier coated superalloy leading to spalling failure. Surf Coat Technol 94–95:89–93

    Article  Google Scholar 

  65. Stecura S (1985) Optimization of the NiCrAl-Y/ZrO2-Y2O3 thermal barrier system. NASA-TM-86905; NASA Lewis Research Center: Cleveland

    Google Scholar 

  66. Mercer C, Williams JR, Clarke DR, Evans AG (2007) On a ferroelastic mechanism governing the toughness of metastable tetragonal-prime (t′) yttria-stabilized zirconia. https://doi.org/10.1098/rspa.2007.1829

    Article  CAS  Google Scholar 

  67. Virkar AV (1998) Role of ferroelasticity in toughening of zirconia ceramics. Key Eng Mater 153-154:183–210

    Article  CAS  Google Scholar 

  68. Baither D et al (2001) Ferroelastic and plastic deformation of t′ -zirconia single crystals. J Am Ceram Soc 84:1755–1762

    Article  Google Scholar 

  69. Schaedler TA, Leckie RM, Kraemer S, Evans AG, Levi CG (2007) Toughening of nontransformable t’ -YSZ by addition of Titania. J Am Ceram Soc 3901:3896–3901

    Google Scholar 

  70. Krogstad JA, Lepple M, Levi CG (2013) Opportunities for improved TBC durability in the CeO2-TiO2-ZrO2 system. Surf Coat Technol 221:44–52

    Article  CAS  Google Scholar 

  71. Bolon AM, Gentleman MM (2011) Raman spectroscopic observations of ferroelastic switching in ceria-stabilized zirconia. J Am Ceram Soc 94:4478–4482

    Article  CAS  Google Scholar 

  72. Pitek FM, Levi CG (2007) Opportunities for TBCs in the ZrO 2 – YO 1. 5 – TaO 2. 5 system. Surf Coat Technol 201:6044–6050

    Article  CAS  Google Scholar 

  73. Shian S et al (2014) The tetragonal-monoclinic, ferroelastic transformation in yttrium tantalate and effect of zirconia alloying. Acta Mater 69:196–202

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh S. Gandhi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gandhi, A.S. (2020). Materials Aspects of Thermal Barrier Coatings. In: Mahajan, Y., Roy, J. (eds) Handbook of Advanced Ceramics and Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-73255-8_50-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73255-8_50-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73255-8

  • Online ISBN: 978-3-319-73255-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics